牙龈卟啉单胞菌促进口腔鳞状细胞癌进展的分子机制的研究现状
Research Advances on the Molecular Mechanisms of Porphyromonas gingivalis in Promoting Oral Squamous Cell Carcinoma Progression
DOI: 10.12677/acm.2025.1551492, PDF, HTML, XML,   
作者: 杨 军, 李 勇*:重庆医科大学附属口腔医院,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 口腔鳞状细胞癌牙龈卟啉单胞菌肿瘤微环境上皮–间质转化口腔微生物群Oral Squamous Cell Carcinoma Porphyromonas gingivalis Tumor Microenvironment Epithelial-Mesenchymal Transition (EMT) Oral Microbiota
摘要: 牙龈卟啉单胞菌(Porphyromonas gingivalis, Pg)作为牙周病的主要致病菌,近年被证实与口腔鳞状细胞癌(OSCC)的发生、发展及预后密切相关。Pg通过炎症微环境、免疫逃逸、代谢重编程等机制促进OSCC发展。本文综述了Pg参与OSCC进展的分子机制,为OSCC的治疗策略提供理论依据。
Abstract: P. gingivalis, a primary pathogenic bacterium in periodontitis, has been increasingly implicated in the onset, progression, and prognosis of oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis promotes the development of OSCC through mechanisms including inflammatory microenvironment modulation, immune escape, and metabolic reprogramming. This review summarizes the molecular mechanisms by which P. gingivalis contributes to OSCC development, providing a theoretical basis for therapeutic strategies against OSCC.
文章引用:杨军, 李勇. 牙龈卟啉单胞菌促进口腔鳞状细胞癌进展的分子机制的研究现状[J]. 临床医学进展, 2025, 15(5): 1284-1289. https://doi.org/10.12677/acm.2025.1551492

1. 引言

口腔鳞状细胞癌(OSCC)占头颈部恶性肿瘤的90%,其发生与吸烟、饮酒等传统危险因素相关[1] [2]。近年研究发现,口腔微生物群失调(如Pg的慢性感染)通过诱导慢性炎症和基因突变参与OSCC的癌变过程。Pg作为牙周炎的主要致病菌,可通过多种途径促进OSCC的侵袭和转移,成为肿瘤微环境(TME)的重要调控者。本文对Pg促进OSCC的分子机制进行了总结。

2. 炎症与免疫逃逸

Pg通过多种炎症调控机制影响OSCC进展。Pg分泌的毒力因子如脂多糖(LPS)和牙龈蛋白酶(gingipains)可直接破坏宿主细胞屏障,促进上皮–间质转化(EMT),增强肿瘤侵袭性[3] [4]。还可激活Toll样受体(TLR)及NOD1信号通路,诱导NF-κB和MAPK通路活化,促进致炎因子(IL-6、IL-8、TNF-α)的释放,形成慢性炎症微环境[5]-[9]。Omori等发现OSCC患者肿瘤组织中,PD-L1高表达与细菌感染标志物(如LPS水平)呈正相关,此外,使用牙龈卟啉单胞菌脂多糖处理口腔鳞状细胞癌细胞系发现LPS通过TLR4信号诱导OSCC细胞PD-L1表达,并通过外泌体(EXOs)传递PD-L1至周围微环境[10]。Guo等发现Pg通过激活中性粒细胞TLR2受体及ROS/ERK信号通路,驱动胞外诱捕网(NETs)的形成和释放,增强OSCC细胞侵袭和迁移能力,促进EMT,重塑肿瘤免疫微环境[11]。现有研究多聚焦单一通路(如TLR4-PD-L1),但对不同炎症信号(如TLR2 vs TLR4)的时空特异性调控缺乏深入探讨。

Pg通过多种途径抑制抗肿瘤免疫应答。Pg抑制巨噬细胞对肿瘤细胞的吞噬功能,同时诱导分泌IL-10等免疫抑制因子[12] [13]。Yao等发现Pg通过上调ASC和caspase-1 (分别增加6倍和4倍),激活NLRP3炎性小体,释放IL-1β和IL-18,形成慢性炎症微环境[14]。这种炎症反应与肿瘤相关巨噬细胞(TAMs)向M2型极化相关,进一步抑制抗肿瘤免疫[14] [15]。此外,Pg通过CXCL2/CXCR2轴招募肿瘤相关中性粒细胞(TANs),并通过DOK3信号促进TAMs的促瘤表型,抑制CD8+ T细胞活性[16]-[18]

3. 细胞增殖与凋亡失衡

Pg可激活促增殖信号通路。其LPS结合TLR2/4或NOD1受体,激活PI3K/AKT和Wnt/β-catenin通路,上调Cyclin D1、c-Myc等细胞周期蛋白,促进肿瘤细胞增殖,其效应与Fn (具核梭杆菌)的FadA蛋白协同增强,这种跨物种通路激活提示微生物群可能共享致癌信号节点[3] [5] [6] [19] [20]。此外还可抑制p53功能,导致细胞周期检查点失控[4] [13]

Pg通过多种途径调控肿瘤细胞凋亡。Pg分泌的磷酸乙醇胺二氢神经酰胺(PEDHC)抑制酸性神经酰胺酶(ASAH1)表达,导致细胞内神经酰胺累积,最终通过抑制caspase-3活化阻止凋亡[21]。Yuan等的研究报道Pg通过抑制mTOR通路(降低磷酸化mTOR水平)和激活AMPK信号,显著增强OSCC细胞的自噬活性,通过清除细胞内受损细胞器和氧化应激产物,维持肿瘤细胞在微环境压力下的存活[9]。此外,Liu等发现Pg通过外膜囊泡(OMVs)高效递送sRNA23392至OSCC细胞,直接靶向桥粒胶蛋白DSC2,破坏细胞间黏附并抑制凋亡,sRNA23392-DSC2轴通过激活TGF-β/Smad通路进一步驱动EMT进程[22]

4. 微生物群协同作用

Pg与口腔微生物群的协同效应是促进OSCC发展的重要机制。1、Pg与其他微生物交叉激活致癌信号通路。Shao等发现Fn通过上调ZEB1、Snail等转录因子诱导pEMT表型,促进OSCC细胞侵袭[23]。Kamarajan等指出Pg与齿垢密螺旋体(Treponema denticola, Td)通过TLR/MyD88信号激活整合素αV/FAK通路,增强细胞迁移和肿瘤形成[24]。2、Pg与产酸菌的协同代谢调控。研究报道口腔菌群失调(如Pg与乳酸杆菌、链球菌共存)可导致微环境酸化,促进DNA损伤和基因组不稳定性[25] [26]。Isono等发现Pg的代谢产物(如丁酸)可能与其他菌群的短链脂肪酸协同抑制宿主免疫应答,加速肿瘤生长[27]。3、Pg协同微生物群共同调控免疫抑制微环境。Pg与Fn共同诱导M2型巨噬细胞极化、Treg细胞扩增及PD-L1表达上调,形成免疫抑制微环境,抑制CD8+ T细胞活性,从而促进OSCC免疫逃逸[20] [25] [27]。有研究报道了EB病毒(EBV)与Pg形成“病毒–细菌”正反馈环路,协同促进癌变,EBV感染通过上调口腔黏膜细胞中细菌黏附分子(如ICAM-1),增强Pg的定植能力,同时Pg的炎症信号(如NF-κB)激活EBV潜伏感染[28]。此外,Pg与EB病毒(EBV)协同上调IL-6和COX-2,形成慢性炎症微环境,加速基因组不稳定性[26]-[28]

5. 代谢重编程与肿瘤微环境调控

Pg通过多途径驱动OSCC的代谢重编程。1、脂质代谢重编程:Pg通过NOD1/KLF5轴上调硬脂酰辅酶A去饱和酶1 (SCD1),促进单不饱和脂肪酸合成,增强肿瘤干细胞(CSCs)特性(如肿瘤球形成能力、化疗耐药性),SCD1抑制剂可逆转Pg诱导的干细胞表型[29]。Lu等使用人永生化口腔上皮细胞建立Pg的长期感染模型,发现长期Pg感染通过抑制ZFP36蛋白(一种RNA结合蛋白,参与mRNA稳定性调控)表达,激活CCAT1/MK2复合物,促进KLF5依赖性脂代谢基因转录,增强肿瘤进展[30]。2、表观遗传调控与基因表达改变:Pg感染导致抑癌基因(如p53)失活,解除对代谢检查点的调控,同时激活癌基因(Cyclin D1),促进细胞周期进展[26] [31] [32]。Baraniya等发现Pg可能通过诱导CD36基因启动子区域的DNA高甲基化(如DNMTs活性增强),抑制脂肪酸转运蛋白CD36转录,从而减少癌细胞对游离脂肪酸的摄取,迫使癌细胞转向依赖内源性脂质合成(如FASN上调)以满足能量需求[33] [34]。此外,Pg与Fn的协同代谢产生短链脂肪酸(SCFAs)等物质,抑制组蛋白去乙酰化酶(HDACs),影响表观遗传调控[35]。3、微生物群代谢产物:Pg通过分泌毒力因子(如牙龈蛋白酶)产生致癌代谢物(如琥珀酸、丁酸),直接促进肿瘤细胞增殖和侵袭。这些代谢物可激活缺氧诱导因子(HIF-1α),增强糖酵解(Warburg效应)和能量代谢[32] [36]。Pg与口腔微生物群(如具核梭杆菌)协同形成生物膜微环境,产生局部缺氧和酸性代谢产物,进一步驱动HIF-1α依赖的代谢适应[23] [24] [35]。此外,Pg通过外膜囊泡(OMVs)传递毒力因子,直接干扰宿主线粒体功能,促进ROS积累和氧化磷酸化失调[37] [38]。OMVs还可递送脂质代谢相关分子,调控宿主细胞代谢[20]

6. 小结

综上,牙龈卟啉单胞菌通过多维度机制驱动口腔鳞状细胞癌的恶性进展。该致病菌被证实可激活上皮–间质转化、抑制宿主免疫监控系统、增强肿瘤细胞增殖速率,并显著提升其侵袭转移潜能等机制,从而系统性地加剧口腔鳞癌的病理恶化过程。值得注意的是,Pg并非独立发挥作用,其调控的炎症反应、代谢适应与免疫抑制间存在复杂的交互作用,并与共生微生物形成致癌网络。这些分子机制的研究具有重要的临床意义,为靶向治疗提供了潜在干预点。本文总结了这些分子机制,为OSCC的诊治提供了重要的理论依据。

NOTES

*通讯作者。

参考文献

[1] Tan, Y., Wang, Z., Xu, M., Li, B., Huang, Z., Qin, S., et al. (2023) Oral Squamous Cell Carcinomas: State of the Field and Emerging Directions. International Journal of Oral Science, 15, Article No. 44.
https://doi.org/10.1038/s41368-023-00249-w
[2] Kumar, M., Nanavati, R., Modi, T. and Dobariya, C. (2016) Oral Cancer: Etiology and Risk Factors: A Review. Journal of Cancer Research and Therapeutics, 12, 458-463.
https://doi.org/10.4103/0973-1482.186696
[3] Singh, S. and Singh, A.K. (2022) Porphyromonas gingivalis in Oral Squamous Cell Carcinoma: A Review. Microbes and Infection, 24, Article 104925.
https://doi.org/10.1016/j.micinf.2021.104925
[4] Lafuente Ibáñez de Mendoza, I., Maritxalar Mendia, X., García de la Fuente, A.M., Quindós Andrés, G. and Aguirre Urizar, J.M. (2019) Role of Porphyromonas gingivalis in Oral Squamous Cell Carcinoma Development: A Systematic Review. Journal of Periodontal Research, 55, 13-22.
https://doi.org/10.1111/jre.12691
[5] Wen, L., Mu, W., Lu, H., Wang, X., Fang, J., Jia, Y., et al. (2020) Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. Journal of Dental Research, 99, 666-675.
https://doi.org/10.1177/0022034520909312
[6] Qin, Y., Li, Z., Liu, T., Ma, J., Liu, H., Zhou, Y., et al. (2024) Prevotella intermedia Boosts OSCC Progression through ISG15 Upregulation: A New Target for Intervention. Journal of Cancer Research and Clinical Oncology, 150, Article No. 206.
https://doi.org/10.1007/s00432-024-05730-5
[7] Vyhnalova, T., Danek, Z., Gachova, D. and Linhartova, P.B. (2021) The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms, 9, Article 1549.
https://doi.org/10.3390/microorganisms9081549
[8] Irfan, M., Delgado, R.Z.R. and Frias-Lopez, J. (2020) The Oral Microbiome and Cancer. Frontiers in Immunology, 11, Article 591088.
https://doi.org/10.3389/fimmu.2020.591088
[9] Yuan, K., Xu, S., Liu, G., Han, Y., Hu, J., Zhang, W., et al. (2024) Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression by Modulating Autophagy. Oral Diseases, 31, 492-502.
https://doi.org/10.1111/odi.15157
[10] Omori, Y., Noguchi, K., Kitamura, M., Makihara, Y., Omae, T., Hanawa, S., et al. (2024) Bacterial Lipopolysaccharide Induces PD-L1 Expression and an Invasive Phenotype of Oral Squamous Cell Carcinoma Cells. Cancers, 16, Article 343.
https://doi.org/10.3390/cancers16020343
[11] Guo, Z., Jing, S., Jia, X., Elayah, S.A., Xie, L., Cui, H., et al. (2024) Porphyromonas gingivalis Promotes the Progression of Oral Squamous Cell Carcinoma by Stimulating the Release of Neutrophil Extracellular Traps in the Tumor Immune Microenvironment. Inflammation Research, 73, 693-705.
https://doi.org/10.1007/s00011-023-01822-z
[12] Liu, S., Zhou, X., Peng, X., Li, M., Ren, B., Cheng, G., et al. (2020) Porphyromonas gingivalis Promotes Immunoevasion of Oral Cancer by Protecting Cancer from Macrophage Attack. The Journal of Immunology, 205, 282-289.
https://doi.org/10.4049/jimmunol.1901138
[13] Lan, Z., Zou, K., Cui, H., Zhao, Y. and Yu, G. (2023) Porphyromonas gingivalis Suppresses Oral Squamous Cell Carcinoma Progression by Inhibiting MUC1 Expression and Remodeling the Tumor Microenvironment. Molecular Oncology, 18, 1174-1188.
https://doi.org/10.1002/1878-0261.13517
[14] Yao, Y., Shen, X., Zhou, M. and Tang, B. (2021) Periodontal Pathogens Promote Oral Squamous Cell Carcinoma by Regulating ATR and NLRP3 Inflammasome. Frontiers in Oncology, 11, Article 722797.
https://doi.org/10.3389/fonc.2021.722797
[15] Li, C., Gong, Z. and Yu, J. (2024) Deliberation Concerning the Role of M1-Type Macrophage Subset in Oral Carcinogenesis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 220.
https://doi.org/10.1186/s13046-024-03128-2
[16] Li, C., Su, Y., Gong, Z. and Liu, H. (2022) Porphyromonas gingivalis Activation of Tumor-Associated Macrophages via DOK3 Promotes Recurrence of Oral Squamous Cell Carcinoma. Medical Science Monitor, 28, e937126.
https://doi.org/10.12659/msm.937126
[17] Guo, Z., Jing, S., Jumatai, S. and Gong, Z. (2022) Porphyromonas gingivalis Promotes the Progression of Oral Squamous Cell Carcinoma by Activating the Neutrophil Chemotaxis in the Tumour Microenvironment. Cancer Immunology, Immunotherapy, 72, 1523-1539.
https://doi.org/10.1007/s00262-022-03348-5
[18] Guo, Z., Jumatai, S., Jing, S., Hu, L., Jia, X. and Gong, Z. (2021) Bioinformatics and Immunohistochemistry Analyses of Expression Levels and Clinical Significance of CXCL2 and Tans in an Oral Squamous Cell Carcinoma Tumor Microenvironment of Prophyromonas gingivalis Infection. Oncology Letters, 21, Article No. 189.
https://doi.org/10.3892/ol.2021.12450
[19] Pignatelli, P., Nuccio, F., Piattelli, A. and Curia, M.C. (2023) The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms, 11, Article 2358.
https://doi.org/10.3390/microorganisms11092358
[20] McIlvanna, E., Linden, G.J., Craig, S.G., Lundy, F.T. and James, J.A. (2021) Fusobacterium nucleatum and Oral Cancer: A Critical Review. BMC Cancer, 21, Article No. 1212.
https://doi.org/10.1186/s12885-021-08903-4
[21] Yamada, C., Ho, A., Nusbaum, A., Xu, R., Davey, M.E., Nichols, F., et al. (2023) Inhibitory Effect of Porphyromonas gingivalis‐Derived Phosphoethanolamine Dihydroceramide on Acid Ceramidase Expression in Oral Squamous Cells. Journal of Cellular and Molecular Medicine, 27, 1290-1295.
https://doi.org/10.1111/jcmm.17722
[22] Liu, D., Liu, S., Liu, J., Miao, L., Zhang, S. and Pan, Y. (2021) sRNA23392 Packaged by Porphyromonas gingivalis Outer Membrane Vesicles Promotes Oral Squamous Cell Carcinomas Migration and Invasion by Targeting Desmocollin‐2. Molecular Oral Microbiology, 36, 182-191.
https://doi.org/10.1111/omi.12334
[23] Shao, W., Fujiwara, N., Mouri, Y., Kisoda, S., Yoshida, K., Yoshida, K., et al. (2021) Conversion from Epithelial to Partial-EMT Phenotype by Fusobacterium nucleatum Infection Promotes Invasion of Oral Cancer Cells. Scientific Reports, 11, Article No. 14943.
https://doi.org/10.1038/s41598-021-94384-1
[24] Kamarajan, P., Ateia, I., Shin, J.M., Fenno, J.C., Le, C., Zhan, L., et al. (2020) Periodontal Pathogens Promote Cancer Aggressivity via TLR/MyD88 Triggered Activation of Integrin/FAK Signaling That Is Therapeutically Reversible by a Probiotic Bacteriocin. PLOS Pathogens, 16, e1008881.
https://doi.org/10.1371/journal.ppat.1008881
[25] Li, R., Xiao, L., Gong, T., Liu, J., Li, Y., Zhou, X., et al. (2022) Role of Oral Microbiome in Oral Oncogenesis, Tumor Progression, and Metastasis. Molecular Oral Microbiology, 38, 9-22.
https://doi.org/10.1111/omi.12403
[26] La Rosa, G., Gattuso, G., Pedullà, E., Rapisarda, E., Nicolosi, D. and Salmeri, M. (2020) Association of Oral Dysbiosis with Oral Cancer Development (Review). Oncology Letters, 19, 3045-3058.
https://doi.org/10.3892/ol.2020.11441
[27] Isono, H., Nakajima, S., Watanabe, S., Takeda, A.K., Yoshii, H., Shimoda, A., et al. (2025) Involvement of Oral Microbiome in the Development of Oral Malignancy. Cancers, 17, Article 632.
https://doi.org/10.3390/cancers17040632
[28] Núñez-Acurio, D., Bravo, D. and Aguayo, F. (2020) Epstein-Barr Virus-Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens, 9, Article 1059.
https://doi.org/10.3390/pathogens9121059
[29] Zang, W., Geng, F., Liu, J., Wang, Z., Zhang, S., Li, Y., et al. (2025) Porphyromonas gingivalis Potentiates Stem-Like Properties of Oral Squamous Cell Carcinoma by Modulating SCD1-Dependent Lipid Synthesis via NOD1/KLF5 Axis. International Journal of Oral Science, 17, Article No. 15.
https://doi.org/10.1038/s41368-024-00342-8
[30] Lu, Z., Cao, R., Geng, F. and Pan, Y. (2024) Persistent Infection with Porphyromonas gingivalis Increases the Tumorigenic Potential of Human Immortalised Oral Epithelial Cells through ZFP36 Inhibition. Cell Proliferation, 57, e13609.
https://doi.org/10.1111/cpr.13609
[31] Singh, S., Yadav, P.K. and Singh, A.K. (2023) Structure Based High-Throughput Virtual Screening, Molecular Docking and Molecular Dynamics Study of Anticancer Natural Compounds against Fimbriae (FimA) Protein of Porphyromonas gingivalis in Oral Squamous Cell Carcinoma. Molecular Diversity, 28, 1141-1152.
https://doi.org/10.1007/s11030-023-10643-5
[32] Hu, X., Shen, X. and Tian, J. (2021) The Effects of Periodontitis Associated Microbiota on the Development of Oral Squamous Cell Carcinoma. Biochemical and Biophysical Research Communications, 576, 80-85.
https://doi.org/10.1016/j.bbrc.2021.07.092
[33] Baraniya, D., Jain, V., Lucarelli, R., Tam, V., Vanderveer, L., Puri, S., et al. (2020) Screening of Health-Associated Oral Bacteria for Anticancer Properties in Vitro. Frontiers in Cellular and Infection Microbiology, 10, Article 575656.
https://doi.org/10.3389/fcimb.2020.575656
[34] Baraniya, D., Chitrala, K.N. and Al-Hebshi, N.N. (2022) Global Transcriptional Response of Oral Squamous Cell Carcinoma Cell Lines to Health-Associated Oral Bacteria—An in Vitro Study. Journal of Oral Microbiology, 14, Article 2073866.
https://doi.org/10.1080/20002297.2022.2073866
[35] Fitzsimonds, Z.R., Rodriguez-Hernandez, C.J., Bagaitkar, J. and Lamont, R.J. (2020) From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. Journal of Dental Research, 99, 604-612.
https://doi.org/10.1177/0022034520907341
[36] Chattopadhyay, I., Lu, W., Manikam, R., Malarvili, M.B., Ambati, R.R. and Gundamaraju, R. (2022) Can Metagenomics Unravel the Impact of Oral Bacteriome in Human Diseases? Biotechnology and Genetic Engineering Reviews, 39, 85-117.
https://doi.org/10.1080/02648725.2022.2102877
[37] Metsäniitty, M., Hasnat, S., Öhman, C., Salo, T., Eklund, K.K., Oscarsson, J., et al. (2024) Extracellular Vesicles from Aggregatibacter actinomycetemcomitans Exhibit Potential Antitumorigenic Effects in Oral Cancer: A Comparative in Vitro Study. Archives of Microbiology, 206, Article No. 244.
https://doi.org/10.1007/s00203-024-03976-8
[38] Chen, Q., Shan, T., Liang, Y., Xu, Y., Shi, E., Wang, Y., et al. (2023) A Biomimetic Phototherapeutic Nanoagent Based on Bacterial Double-Layered Membrane Vesicles for Comprehensive Treatment of Oral Squamous Cell Carcinoma. Journal of Materials Chemistry B, 11, 11265-11279.
https://doi.org/10.1039/d3tb02046k