间充质干细胞外泌体通过不同信号通路改善阿尔茨海默病的研究进展
Research Progress on the Improvement of Alzheimer’s Disease by Mesenchymal Stem Cell Exosomes through Different Signaling Pathways
DOI: 10.12677/acm.2025.1551498, PDF, HTML, XML,   
作者: 焦庆欣:西安医学院研究生工作部,陕西 西安;刘卫平*:西安医学院第一附属医院神经外科,陕西 西安
关键词: 阿尔兹海默病间充质干细胞外泌体信号通路机制Alzheimer’s Disease Mesenchymal Stem Cell Exosomes Signaling Pathways Mechanisms
摘要: 阿尔茨海默病(Alzheimer’s Disease, AD)是最普遍的痴呆类型,是一种长期的退行性疾病。在病理学上,它定义为括β淀粉样蛋白(Amyloid-β, Aβ)沉积形成的老年斑(Senile Slaques, SP)和过度磷酸化Tau蛋白导致的神经原纤维缠结(Neurofibrillary Tangle, NFT)。这会导致神经元死亡,尤其是在海马体和皮层中。AD作为一种严重危害老年人健康的神经退行性疾病,目前缺乏有效的根治手段。间充质干细胞外泌体(Mesenchymal Stem Cell-derived Exosomes, MSC-Exos)凭借其独特的生物学特性,在AD治疗领域展现出巨大的治疗潜力。本文旨在阐述间充质干细胞外泌体调控的关键信号通路及其在AD中的作用,为AD的治疗研究提供全面且深入的参考。
Abstract: Alzheimer’s Disease (AD) is the most prevalent type of dementia, representing a long-term degenerative condition. Pathologically, it is characterized by the formation of senile plaques (SP) due to the deposition of amyloid-β (Aβ) and neurofibrillary tangles (NFT) caused by hyperphosphorylated tau protein. These pathological changes lead to neuronal death, particularly in the hippocampus and cortex. As a neurodegenerative disease that severely threatens the health of the elderly, AD currently lacks effective curative treatments. Mesenchymal Stem Cell-derived Exosomes (MSC-Exos) demonstrate significant therapeutic potential in the field of AD treatment due to their unique biological properties. This article aims to elucidate the key signaling pathways regulated by MSC-Exos and their role in AD, providing a comprehensive and in-depth reference for AD treatment research.
文章引用:焦庆欣, 刘卫平. 间充质干细胞外泌体通过不同信号通路改善阿尔茨海默病的研究进展[J]. 临床医学进展, 2025, 15(5): 1330-1336. https://doi.org/10.12677/acm.2025.1551498

1. 引言

阿尔茨海默病(Alzheimer’s Disease, AD)是一种起病隐匿、进行性发展的神经退行性疾病,主要表现为记忆障碍、失语(语言功能受损)、失用(无法执行熟悉的动作)、失认(无法识别熟悉的人或物)、视空间技能损害(如难以判断距离和方向)、执行功能障碍(如计划和组织能力下降)以及人格和行为改变等全面性痴呆症状[1]。近些年研究进一步揭示了AD的多因素致病网络,核心假说仍围绕Aβ沉积和Tau蛋白异常磷酸化,但新发现强调了神经炎症、血脑屏障功能障碍、氧化应激、突触功能障碍、遗传因素、线粒体代谢异常、自噬及脑肠轴微生物群异常的关键作用[2]。抗胆碱酯酶抑制剂和抗谷氨酰胺能药物是目前被批准使用的两类药物,主要包括多奈哌齐、美金刚、加兰他敏、卡巴拉汀,但药物治疗是基于症状的,而不是治愈性的,主要是限制认知症状和痴呆的行为和心理症状的进展[3]。目前,脂质体及外泌体治疗、基因编辑治疗、免疫疗法等仍在调查和研究中,因此,积极探索和开发有效的AD治疗方法已迫在眉睫[4]

间充质干细胞(MSC)是目前研究较为广泛的干细胞,MSC易于分离并且很容易在培养皿中生长,其分化潜力以及旁分泌作用使其成为组织修复的关键选择。MSC衍生的外泌体(MSC-Exos)可以概括MSC的生物学潜力,间充质干细胞外泌体(Mesenchymal Stem Cell-Derived Exosomes, MSC-Exos)作为一种无细胞治疗工具,凭借其纳米级尺寸、低免疫原性及高效生物活性分子递送能力,展现出比间充质干细胞更显著的神经保护潜力[5]。研究表明,MSC-Exos可通过清除Aβ沉积、抑制神经炎症、减轻氧化应激及促进神经再生等多重机制改善AD动物模型的认知功能[6]

2. 外泌体调控的关键信号通路及其在AD中的作用

2.1. NF-κB炎症通路

在AD发病过程中,慢性炎症反应始终贯穿整个病程。NF-κB炎症通路是细胞响应外界刺激(如病原体、细胞因子或氧化应激)的核心信号传导网络,NF-κB的激活在参与炎症反应的基因转录中至关重要,其核心分子为核因子κB (NF-κB)转录因子家族(如p50/p65异二聚体)。静息状态下,NF-κB与抑制蛋白IκB结合并滞留于胞质;当细胞通过Toll样受体(TLR)、肿瘤坏死因子(TNF)受体或白细胞介素-1 (IL-1)受体等感知炎症信号后,IκB激酶(IKK)复合体被激活,磷酸化IκB并促使其泛素化降解,释放NF-κB进入细胞核,启动促炎因子(TNF-α、IL-6、IL-1β)、趋化因子及抗凋亡蛋白的转录,放大炎症反应[7]。中枢神经系统(CNS)中NF-κB的激活触发多细胞反应和基因反式激活,这与神经退行性疾病的发生和发展错综复杂。多种内外源性刺激源可通过触发NF-κB信号通路的活化,进而促进神经胶质网络中炎症介质的转录调控及活性氧簇的过量生成[8]。在AD中,Aβ肽和tau聚集体的持续过度细胞外积累诱导神经元细胞内Ca+增加、NF-κB激活、ROS释放、诱导一氧化氮合酶(iNOS)、一氧化氮(NO)伴随小胶质细胞激活。神经胶质细胞和神经细胞都上调NF-κB介导的兴奋性毒性谷氨酸、炎性细胞因子和促进神经元损伤的氧化应激合成。神经病理学研究表明,Aβ聚集体可激活邻近星形胶质细胞内NF-κB信号级联反应,促进活性氧簇及炎症介质的过量生成。这种异常激活状态在胶质-神经元交互网络中形成自我维持的病理环路:活化的小胶质细胞及邻近星形胶质细胞通过持续性分泌促炎因子,进一步加剧神经元内环境稳态失衡,最终引发突触传递异常、程序性细胞死亡及阿尔茨海默病病理特征的进行性恶化。实验证据显示,该病理级联反应的强度与淀粉样斑块负荷呈显著正相关[9]

miR-146a是一种抗炎microRNA,通过抑制白细胞介素-1受体相关激酶1 (IRAK1)和肿瘤坏死因子受体相关因子6 (TRAF6)来下调NF-κB活性[10]。Nakano M等人的研究揭示了骨髓来源的间充质干细胞外泌体(Bone Marrow Mesenchymal Stem Cell Exosomes, BMSC-Exos)通过将miR-146a转移到星形胶质细胞中来改善AD模型中认知障碍。体外实验表明,BM-MSCs分泌的外泌体miR-146a被星形胶质细胞吸收,在星形胶质细胞中观察到miR-146a水平升高和NF-κB水平降低[11]。因此,NF-κB炎症通路被认为是外泌体调节AD免疫失衡的重要炎症通路,能够积极参与炎症反应并影响其结果,为AD治疗开辟了新的思路。

2.2. 氧化应激通路

在AD患者的脑组织中,由于线粒体功能障碍及脂质过氧化反应增强等原因,抗氧化防御系统发生紊乱,导致细胞内氧化应激水平升高。氧化应激通路是细胞在活性氧(ROS,如超氧阴离子、过氧化氢)过量积累时触发的防御与损伤响应机制,Nrf2-ARE通路是防御氧化应激的内在机制。Nrf2是一种转录因子,可诱导大量细胞保护和和解毒基因,在维持细胞氧化还原稳态和调节炎症反应中起关键作用。有许多证据强调了Nrf2-ARE通路在神经退行性疾病中的保护作用,因为它可以减少氧化应激和神经炎症[12]。在AD大脑中观察到转录因子Nrf2 (核因子–红细胞2-p45衍生因子2)及其驱动基因(NQO1、HO-1和GCLC)的表达下降,以及Nrf2相关通路的改变[13]。Keap1是细胞内外源性物质和氧化应激的优秀氧化还原传感器。静息状态下,Keap1结合Nrf2并促进其泛素化降解;当ROS或亲电物质攻击Keap1时,Nrf2释放并入核激活抗氧化反应元件(ARE),驱动谷胱甘肽合成酶(如GCLC)、超氧化物歧化酶(SOD)及解毒酶(如HO-1、NQO1)的表达,恢复氧化还原平衡[14]

Han Wang等人的研究表明,MSC-Exos治疗改善了在细胞模型或APP/PS1转基因小鼠中观察到的海马神经元缺陷,并且治疗机制与体外和体内的Nrf2防御系统相关,表明MSC-Exos可以作为治疗AD的功能性纳米治疗剂[15]

2.3. 神经营养因子通路

神经营养因子表达的改变,特别是脑源性神经营养因子(brain-derived neurotrophic factor, BDNF)的改变与AD的发展有关[16]。BDNF属于神经营养蛋白家族,对中枢和周围神经系统的正常发育很重要,在神经元的发育、生存和功能中起着重要作用[17]。它调节神经传递,促进突触生长并调节突触可塑性BDNF在维持神经元稳态以及通过谷氨酸活性依赖性途径发育突触和增强其功能方面发挥着重要作用[18]。神经营养因子BDNF在中枢神经系统内呈现广泛分布特征,其中前额叶皮质与海马区呈现显著表达优势。神经科学研究证实,该神经营养因子通过调控突触效能和神经发生过程,对高级认知功能的维持具有关键作用。值得注意的是,AD患者海马区BDNF水平下降与记忆损害程度呈现显著相关性[19]。BDNF表达降低与Aβ积累、tau磷酸化、神经元凋亡和神经炎症有关[20],这进一步支持BDNF作为AD诊断生物标志物和治疗靶点的潜力。

Dong Peng等人[21]的研究表明,载有miR-206-3p拮抗素(MSC-EVs-anta)的间充质干细胞衍生的工程细胞外囊泡,通过鼻内给药递送可改善AD认知障碍。从机制上讲,MSC-EVs-anta在AD小鼠中显著上调脑源性神经营养因子(BDNF),并激活BDNF/TrkB信号通路。Sen Liu等人[22]的研究阐明通过侧脑室注入BMSC-Exos处理模型小鼠海马中小胶质细胞和星形胶质细胞的过度激活受到抑制,伴有IL-1β、IL-6、TNF-α、Aβ1-42和p-Tau的表达降低,突触相关蛋白和BDNF的蛋白表达上调。还发现BDNF丰度与神经胶质细胞活化标志物和炎性细胞因子Aβ1-42和p-tau的表达呈负相关。其机制可能参与神经胶质激活及其相关神经炎症和BDNF相关海马神经病理变化的调节。

2.4. 自噬通路

自噬(Autophagy)是细胞通过形成双层膜结构的自噬体包裹胞内受损组分(如异常蛋白、衰老细胞器或病原体),并将其转运至溶酶体降解再利用的保守过程,在能量应激、清除有害物质及维持细胞稳态中发挥核心作用;其关键步骤由ULK1复合物启动,Beclin-1调控自噬体形成,LC3脂化参与膜延伸,并受mTOR (抑制)和AMPK (激活)动态调控,异常自噬与神经退行性疾病(如阿尔茨海默病)、癌症(促存活或促死亡双重角色)及免疫紊乱密切相关[23]。由Aβ1-42和p-tau引起的线粒体自噬缺陷是AD进展和记忆丧失的主要因素[24],线粒体自噬缺陷和线粒体功能障碍阻碍了ATP的产生,从而诱导AMPK激活(p-AMPK)。AMPK激活通常会导致过度的线粒体裂变[25],并在恶性循环中进一步减少ATP的产生。p-AMPK的过度激活会诱导tau磷酸化,这对Aβ1-42寡聚体的突触毒性作用至关重要[26]。过度激活的mTOR是AD的可能原因,受各种上游信号级联的调节,如GSK3、AMPK (PI3-K)/Akt和IGF-1。还观察到许多疾病,如线粒体功能障碍、自身免疫和癌症,都会影响这些通路,导致mTOR不受控制地刺激并导致tau蛋白过度磷酸化。这种现象导致NFT和成对螺旋丝(PHF)的形成,这是AD的典型症状。此外,由于mTOR激活直接抑制自噬,也会形成Aβ斑块,诱导tau蛋白过度磷酸化和mTOR活性,从而增强AD的进展[27]

相关研究提供的证据表明,MSC-Exos通过PI3K/AKT/mTOR通路和相关信号通路调节自噬,促进Aβ降解,调节免疫力并导致记忆和神经功能障碍的改善。此外,MSC-Exos调节microRNA以改善AD发病机制。在这种情况下,揭示了外泌体与自噬通路之间存在密切联系并在AD病程进展中起到重要作用,MSC-Exos可以被认为是治疗AD的潜在治疗选择[28]

2.5. Wnt/β-Catenin信号通路

在多细胞生物中,Wnt蛋白控制干细胞和祖细胞的更新和分化,以调节胚胎发育、成体组织稳态和组织再生。由β-catenin在细胞内转导的经典Wnt信号转导缺陷与发育障碍、退行性疾病和癌症有关[29]。中枢神经系统内,Wnt/β-catenin信号通路不仅对神经细胞生存和神经形成过程具有关键调控作用,还参与调控突触动态可塑性,并维持血脑屏障的结构与功能完整性。该通路的功能活化可有效抑制Aβ的异常沉积,并调控tau蛋白的磷酸化稳态。值得注意的是,在AD病理进程中,该信号系统的功能受到多因素介导的显著抑制。研究表明,其活性降低与淀粉样斑块形成、神经纤维缠结积累及神经炎症反应均存在显著相关性。因此,针对该通路的靶向调控可能为开发AD治疗策略提供新的方向,通过分子干预恢复其生理功能有望成为神经退行性疾病治疗领域的重要突破口。Wnt/β-catenin信号通路是调节细胞增殖、迁移和分化的重要通路,Wnt蛋白是哺乳动物成体干细胞的关键驱动因素。研究表明,失调的Wnt/β-catenin信号转导在AD的发病机制中起重要作用[30]。当Wnt与卷曲(Fz)和低密度脂蛋白相关蛋白(LRP)受体结合时,细胞质蛋白Dishevelled (Dvl)被募集到膜上。Fz激活Dvl导致糖原合成酶激酶-3 (GSK-3)的抑制,GSK-3是一种磷酸化β-catenin的激酶,标记其被蛋白酶体途径降解。Fz对GSK-3的抑制导致β-catenin稳定,使蛋白质易位到细胞核,与T细胞因子/淋巴增强因子(TCF/LEF)转录因子家族结合,并调节Wnt靶基因的表达[31]

目前的研究表明,BMSC-Exos通过将miR-29c-3p携带到神经元中以靶向BACE1并激活Wnt/β-catenin通路来改善AD。BMSC-Exos可被神经元细胞内化,然后释放其携带的miR-29c-3p,上调神经元中miR-29c-3p的表达。miR-29c-3p的上调抑制BACE1,然后激活Wnt/β-catenin通路,降低Aβ1-42和炎性细胞因子(IL-1β、IL-6和TNF-α)的水平,从而在AD的治疗中发挥治疗作用[32]。综上所述,Wnt/β-catenin信号通路在神经元分化、存活以及突触传递等功能中发挥关键作用。

3. 小结

外泌体作为细胞间信息传递的关键载体,通过调控多种信号通路在AD的病理进程和神经保护中扮演“双刃剑”角色。在AD中,外泌体可通过传递病理性分子(如Aβ、磷酸化tau蛋白、促炎因子)加剧神经退行性变:例如,小胶质细胞外泌体激活NF-κB通路放大炎症反应,神经元外泌体通过内吞体–溶酶体通路扩散Aβ和tau病理,而Wnt/β-catenin通路的抑制则促进tau过度磷酸化。相反,间充质干细胞或星形胶质细胞来源的外泌体可通过递送保护性分子(如miR-146a、BDNF、抗氧化酶)激活PI3K/Akt、Nrf2等通路,增强自噬、抑制炎症并修复突触功能。此外,外泌体携带的Aβ42、pTau及特定miRNA (如miR-132)可作为早期诊断标志物,而工程化外泌体靶向递送siRNA或神经营养因子为AD治疗提供了新方向。然而,外泌体的异质性、血脑屏障穿透效率及潜在毒性仍需进一步研究。未来需结合多组学分析和精准递送技术,解析特定细胞来源外泌体的信号调控网络,以开发基于通路干预的AD治疗策略。

NOTES

*通讯作者。

参考文献

[1] Testo, A.A., Roundy, G. and Dumas, J.A. (2024) Cognitive Decline in Alzheimer’s Disease. In: Kidd, E.J. and Newhouse, P.A., Eds., Neurobiology of Alzheimers Disease, Springer, 181-195.
https://doi.org/10.1007/7854_2024_527
[2] Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J. and Chen, L. (2024) Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduction and Targeted Therapy, 9, Article No. 211.
https://doi.org/10.1038/s41392-024-01911-3
[3] Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., et al. (2022) Alzheimer’s Disease: Treatment Strategies and Their Limitations. International Journal of Molecular Sciences, 23, Article 13954.
https://doi.org/10.3390/ijms232213954
[4] Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125.
https://doi.org/10.2174/1570159x18666200528142429
[5] Zhang, Z.G., Buller, B. and Chopp, M. (2019) Exosomes—Beyond Stem Cells for Restorative Therapy in Stroke and Neurological Injury. Nature Reviews Neurology, 15, 193-203.
https://doi.org/10.1038/s41582-018-0126-4
[6] Lotfy, A., AboQuella, N.M. and Wang, H. (2023) Mesenchymal Stromal/Stem Cell (MSC)-Derived Exosomes in Clinical Trials. Stem Cell Research & Therapy, 14, Article No. 66.
https://doi.org/10.1186/s13287-023-03287-7
[7] Wan, F. and Lenardo, M.J. (2009) The Nuclear Signaling of NF-κB: Current Knowledge, New Insights, and Future Perspectives. Cell Research, 20, 24-33.
https://doi.org/10.1038/cr.2009.137
[8] Camandola, S. and Mattson, M.P. (2007) NF-κB as a Therapeutic Target in Neurodegenerative Diseases. Expert Opinion on Therapeutic Targets, 11, 123-132.
https://doi.org/10.1517/14728222.11.2.123
[9] Srinivasan, M. and Lahiri, D.K. (2015) Significance of NF-κB as a Pivotal Therapeutic Target in the Neurodegenerative Pathologies of Alzheimer’s Disease and Multiple Sclerosis. Expert Opinion on Therapeutic Targets, 19, 471-487.
https://doi.org/10.1517/14728222.2014.989834
[10] Kubota, K., Nakano, M., Kobayashi, E., Mizue, Y., Chikenji, T., Otani, M., et al. (2018) An Enriched Environment Prevents Diabetes-Induced Cognitive Impairment in Rats by Enhancing Exosomal miR-146a Secretion from Endogenous Bone Marrow-Derived Mesenchymal Stem Cells. PLOS ONE, 13, e0204252.
https://doi.org/10.1371/journal.pone.0204252
[11] Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T.S., Saito, Y., Konari, N., et al. (2020) Bone Marrow-Derived Mesenchymal Stem Cells Improve Cognitive Impairment in an Alzheimer’s Disease Model by Increasing the Expression of MicroRNA-146a in Hippocampus. Scientific Reports, 10, Article No. 10772.
https://doi.org/10.1038/s41598-020-67460-1
[12] Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J. and León, R. (2016) Nrf2-ARE Pathway: An Emerging Target against Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. Pharmacology & Therapeutics, 157, 84-104.
https://doi.org/10.1016/j.pharmthera.2015.11.003
[13] Osama, A., Zhang, J., Yao, J., Yao, X. and Fang, J. (2020) Nrf2: A Dark Horse in Alzheimer’s Disease Treatment. Ageing Research Reviews, 64, Article ID: 101206.
https://doi.org/10.1016/j.arr.2020.101206
[14] Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cellular and Molecular Life Sciences, 73, 3221-3247.
https://doi.org/10.1007/s00018-016-2223-0
[15] Wang, H., Liu, Y., Li, J., Wang, T., Hei, Y., Li, H., et al. (2021) Tail-Vein Injection of MSC-Derived Small Extracellular Vesicles Facilitates the Restoration of Hippocampal Neuronal Morphology and Function in APP / PS1 Mice. Cell Death Discovery, 7, Article No. 230.
https://doi.org/10.1038/s41420-021-00620-y
[16] Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., et al. (2013) Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases. BioMed Research International, 2013, Article ID: 901082.
https://doi.org/10.1155/2013/901082
[17] Binder, D.K. and Scharfman, H.E. (2004) Brain-Derived Neurotrophic Factor. Growth Factors, 22, 123-131.
https://doi.org/10.1080/08977190410001723308
[18] Lu, B., Nagappan, G., Guan, X., Nathan, P.J. and Wren, P. (2013) BDNF-Based Synaptic Repair as a Disease-Modifying Strategy for Neurodegenerative Diseases. Nature Reviews Neuroscience, 14, 401-416.
https://doi.org/10.1038/nrn3505
[19] Ng, T.K.S., Ho, C.S.H., Tam, W.W.S., Kua, E.H. and Ho, R.C. (2019) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 20, Article 257.
https://doi.org/10.3390/ijms20020257
[20] Wang, Z., Xiang, J., Liu, X., Yu, S.P., Manfredsson, F.P., Sandoval, I.M., et al. (2019) Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer’s Disease. Cell Reports, 28, 655-669.e5.
https://doi.org/10.1016/j.celrep.2019.06.054
[21] Peng, D., Liu, T., Lu, H., Zhang, L., Chen, H., Huang, Y., et al. (2024) Intranasal Delivery of Engineered Extracellular Vesicles Loaded with miR-206-3p Antagomir Ameliorates Alzheimer’s Disease Phenotypes. Theranostics, 14, 7623-7644.
https://doi.org/10.7150/thno.103596
[22] Liu, S., Fan, M., Xu, J., Yang, L., Qi, C., Xia, Q., et al. (2022) Exosomes Derived from Bone-Marrow Mesenchymal Stem Cells Alleviate Cognitive Decline in AD-Like Mice by Improving BDNF-Related Neuropathology. Journal of Neuroinflammation, 19, Article No. 35.
https://doi.org/10.1186/s12974-022-02393-2
[23] Cui, M., Yoshimori, T. and Nakamura, S. (2022) Autophagy System as a Potential Therapeutic Target for Neurodegenerative Diseases. Neurochemistry International, 155, Article ID: 105308.
https://doi.org/10.1016/j.neuint.2022.105308
[24] Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nature Neuroscience, 22, 401-412.
https://doi.org/10.1038/s41593-018-0332-9
[25] Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L., Losón, O.C., Hellberg, K., et al. (2016) AMP-Activated Protein Kinase Mediates Mitochondrial Fission in Response to Energy Stress. Science, 351, 275-281.
https://doi.org/10.1126/science.aab4138
[26] Mairet-Coello, G., Courchet, J., Pieraut, S., Courchet, V., Maximov, A. and Polleux, F. (2013) The CAMKK2-AMPK Kinase Pathway Mediates the Synaptotoxic Effects of Aβ Oligomers through Tau Phosphorylation. Neuron, 78, 94-108.
https://doi.org/10.1016/j.neuron.2013.02.003
[27] Mueed, Z., Tandon, P., Maurya, S.K., Deval, R., Kamal, M.A. and Poddar, N.K. (2019) Tau and mTOR: The Hotspots for Multifarious Diseases in Alzheimer’s Development. Frontiers in Neuroscience, 12, Article 1017.
https://doi.org/10.3389/fnins.2018.01017
[28] Ebrahim, N., Al Saihati, H.A., Alali, Z., Aleniz, F.Q., Mahmoud, S.Y.M., Badr, O.A., et al. (2024) Exploring the Molecular Mechanisms of MSC-Derived Exosomes in Alzheimer’s Disease: Autophagy, Insulin and the PI3K/Akt/mTOR Signaling Pathway. Biomedicine & Pharmacotherapy, 176, Article ID: 116836.
https://doi.org/10.1016/j.biopha.2024.116836
[29] Maurice, M.M. and Angers, S. (2025) Mechanistic Insights into Wnt-β-Catenin Pathway Activation and Signal Transduction. Nature Reviews Molecular Cell Biology, 26, 371-388.
https://doi.org/10.1038/s41580-024-00823-y
[30] Jia, L., Piña-Crespo, J. and Li, Y. (2019) Restoring Wnt/β-Catenin Signaling Is a Promising Therapeutic Strategy for Alzheimer’s Disease. Molecular Brain, 12, Article No. 104.
https://doi.org/10.1186/s13041-019-0525-5
[31] Maguschak, K.A. and Ressler, K.J. (2012) A Role for Wnt/β-Catenin Signaling in the Neural Mechanisms of Behavior. Journal of Neuroimmune Pharmacology, 7, 763-773.
https://doi.org/10.1007/s11481-012-9350-7
[32] Sha, S., Shen, X., Cao, Y. and Qu, L. (2021) Mesenchymal Stem Cells-Derived Extracellular Vesicles Ameliorate Alzheimer’s Disease in Rat Models via the MicroRNA-29c-3p/BACE1 Axis and the Wnt/β-Catenin Pathway. Aging, 13, 15285-15306.
https://doi.org/10.18632/aging.203088