[1]
|
Testo, A.A., Roundy, G. and Dumas, J.A. (2024) Cognitive Decline in Alzheimer’s Disease. In: Kidd, E.J. and Newhouse, P.A., Eds., Neurobiology of Alzheimer’s Disease, Springer, 181-195. https://doi.org/10.1007/7854_2024_527
|
[2]
|
Zhang, J., Zhang, Y., Wang, J., Xia, Y., Zhang, J. and Chen, L. (2024) Recent Advances in Alzheimer’s Disease: Mechanisms, Clinical Trials and New Drug Development Strategies. Signal Transduction and Targeted Therapy, 9, Article No. 211. https://doi.org/10.1038/s41392-024-01911-3
|
[3]
|
Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., et al. (2022) Alzheimer’s Disease: Treatment Strategies and Their Limitations. International Journal of Molecular Sciences, 23, Article 13954. https://doi.org/10.3390/ijms232213954
|
[4]
|
Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125. https://doi.org/10.2174/1570159x18666200528142429
|
[5]
|
Zhang, Z.G., Buller, B. and Chopp, M. (2019) Exosomes—Beyond Stem Cells for Restorative Therapy in Stroke and Neurological Injury. Nature Reviews Neurology, 15, 193-203. https://doi.org/10.1038/s41582-018-0126-4
|
[6]
|
Lotfy, A., AboQuella, N.M. and Wang, H. (2023) Mesenchymal Stromal/Stem Cell (MSC)-Derived Exosomes in Clinical Trials. Stem Cell Research & Therapy, 14, Article No. 66. https://doi.org/10.1186/s13287-023-03287-7
|
[7]
|
Wan, F. and Lenardo, M.J. (2009) The Nuclear Signaling of NF-κB: Current Knowledge, New Insights, and Future Perspectives. Cell Research, 20, 24-33. https://doi.org/10.1038/cr.2009.137
|
[8]
|
Camandola, S. and Mattson, M.P. (2007) NF-κB as a Therapeutic Target in Neurodegenerative Diseases. Expert Opinion on Therapeutic Targets, 11, 123-132. https://doi.org/10.1517/14728222.11.2.123
|
[9]
|
Srinivasan, M. and Lahiri, D.K. (2015) Significance of NF-κB as a Pivotal Therapeutic Target in the Neurodegenerative Pathologies of Alzheimer’s Disease and Multiple Sclerosis. Expert Opinion on Therapeutic Targets, 19, 471-487. https://doi.org/10.1517/14728222.2014.989834
|
[10]
|
Kubota, K., Nakano, M., Kobayashi, E., Mizue, Y., Chikenji, T., Otani, M., et al. (2018) An Enriched Environment Prevents Diabetes-Induced Cognitive Impairment in Rats by Enhancing Exosomal miR-146a Secretion from Endogenous Bone Marrow-Derived Mesenchymal Stem Cells. PLOS ONE, 13, e0204252. https://doi.org/10.1371/journal.pone.0204252
|
[11]
|
Nakano, M., Kubota, K., Kobayashi, E., Chikenji, T.S., Saito, Y., Konari, N., et al. (2020) Bone Marrow-Derived Mesenchymal Stem Cells Improve Cognitive Impairment in an Alzheimer’s Disease Model by Increasing the Expression of MicroRNA-146a in Hippocampus. Scientific Reports, 10, Article No. 10772. https://doi.org/10.1038/s41598-020-67460-1
|
[12]
|
Buendia, I., Michalska, P., Navarro, E., Gameiro, I., Egea, J. and León, R. (2016) Nrf2-ARE Pathway: An Emerging Target against Oxidative Stress and Neuroinflammation in Neurodegenerative Diseases. Pharmacology & Therapeutics, 157, 84-104. https://doi.org/10.1016/j.pharmthera.2015.11.003
|
[13]
|
Osama, A., Zhang, J., Yao, J., Yao, X. and Fang, J. (2020) Nrf2: A Dark Horse in Alzheimer’s Disease Treatment. Ageing Research Reviews, 64, Article ID: 101206. https://doi.org/10.1016/j.arr.2020.101206
|
[14]
|
Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. and Dulak, J. (2016) Role of Nrf2/HO-1 System in Development, Oxidative Stress Response and Diseases: An Evolutionarily Conserved Mechanism. Cellular and Molecular Life Sciences, 73, 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
|
[15]
|
Wang, H., Liu, Y., Li, J., Wang, T., Hei, Y., Li, H., et al. (2021) Tail-Vein Injection of MSC-Derived Small Extracellular Vesicles Facilitates the Restoration of Hippocampal Neuronal Morphology and Function in APP / PS1 Mice. Cell Death Discovery, 7, Article No. 230. https://doi.org/10.1038/s41420-021-00620-y
|
[16]
|
Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., et al. (2013) Serum Brain-Derived Neurotrophic Factor Levels in Different Neurological Diseases. BioMed Research International, 2013, Article ID: 901082. https://doi.org/10.1155/2013/901082
|
[17]
|
Binder, D.K. and Scharfman, H.E. (2004) Brain-Derived Neurotrophic Factor. Growth Factors, 22, 123-131. https://doi.org/10.1080/08977190410001723308
|
[18]
|
Lu, B., Nagappan, G., Guan, X., Nathan, P.J. and Wren, P. (2013) BDNF-Based Synaptic Repair as a Disease-Modifying Strategy for Neurodegenerative Diseases. Nature Reviews Neuroscience, 14, 401-416. https://doi.org/10.1038/nrn3505
|
[19]
|
Ng, T.K.S., Ho, C.S.H., Tam, W.W.S., Kua, E.H. and Ho, R.C. (2019) Decreased Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Patients with Alzheimer’s Disease (AD): A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 20, Article 257. https://doi.org/10.3390/ijms20020257
|
[20]
|
Wang, Z., Xiang, J., Liu, X., Yu, S.P., Manfredsson, F.P., Sandoval, I.M., et al. (2019) Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer’s Disease. Cell Reports, 28, 655-669.e5. https://doi.org/10.1016/j.celrep.2019.06.054
|
[21]
|
Peng, D., Liu, T., Lu, H., Zhang, L., Chen, H., Huang, Y., et al. (2024) Intranasal Delivery of Engineered Extracellular Vesicles Loaded with miR-206-3p Antagomir Ameliorates Alzheimer’s Disease Phenotypes. Theranostics, 14, 7623-7644. https://doi.org/10.7150/thno.103596
|
[22]
|
Liu, S., Fan, M., Xu, J., Yang, L., Qi, C., Xia, Q., et al. (2022) Exosomes Derived from Bone-Marrow Mesenchymal Stem Cells Alleviate Cognitive Decline in AD-Like Mice by Improving BDNF-Related Neuropathology. Journal of Neuroinflammation, 19, Article No. 35. https://doi.org/10.1186/s12974-022-02393-2
|
[23]
|
Cui, M., Yoshimori, T. and Nakamura, S. (2022) Autophagy System as a Potential Therapeutic Target for Neurodegenerative Diseases. Neurochemistry International, 155, Article ID: 105308. https://doi.org/10.1016/j.neuint.2022.105308
|
[24]
|
Fang, E.F., Hou, Y., Palikaras, K., Adriaanse, B.A., Kerr, J.S., Yang, B., et al. (2019) Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nature Neuroscience, 22, 401-412. https://doi.org/10.1038/s41593-018-0332-9
|
[25]
|
Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L., Losón, O.C., Hellberg, K., et al. (2016) AMP-Activated Protein Kinase Mediates Mitochondrial Fission in Response to Energy Stress. Science, 351, 275-281. https://doi.org/10.1126/science.aab4138
|
[26]
|
Mairet-Coello, G., Courchet, J., Pieraut, S., Courchet, V., Maximov, A. and Polleux, F. (2013) The CAMKK2-AMPK Kinase Pathway Mediates the Synaptotoxic Effects of Aβ Oligomers through Tau Phosphorylation. Neuron, 78, 94-108. https://doi.org/10.1016/j.neuron.2013.02.003
|
[27]
|
Mueed, Z., Tandon, P., Maurya, S.K., Deval, R., Kamal, M.A. and Poddar, N.K. (2019) Tau and mTOR: The Hotspots for Multifarious Diseases in Alzheimer’s Development. Frontiers in Neuroscience, 12, Article 1017. https://doi.org/10.3389/fnins.2018.01017
|
[28]
|
Ebrahim, N., Al Saihati, H.A., Alali, Z., Aleniz, F.Q., Mahmoud, S.Y.M., Badr, O.A., et al. (2024) Exploring the Molecular Mechanisms of MSC-Derived Exosomes in Alzheimer’s Disease: Autophagy, Insulin and the PI3K/Akt/mTOR Signaling Pathway. Biomedicine & Pharmacotherapy, 176, Article ID: 116836. https://doi.org/10.1016/j.biopha.2024.116836
|
[29]
|
Maurice, M.M. and Angers, S. (2025) Mechanistic Insights into Wnt-β-Catenin Pathway Activation and Signal Transduction. Nature Reviews Molecular Cell Biology, 26, 371-388. https://doi.org/10.1038/s41580-024-00823-y
|
[30]
|
Jia, L., Piña-Crespo, J. and Li, Y. (2019) Restoring Wnt/β-Catenin Signaling Is a Promising Therapeutic Strategy for Alzheimer’s Disease. Molecular Brain, 12, Article No. 104. https://doi.org/10.1186/s13041-019-0525-5
|
[31]
|
Maguschak, K.A. and Ressler, K.J. (2012) A Role for Wnt/β-Catenin Signaling in the Neural Mechanisms of Behavior. Journal of Neuroimmune Pharmacology, 7, 763-773. https://doi.org/10.1007/s11481-012-9350-7
|
[32]
|
Sha, S., Shen, X., Cao, Y. and Qu, L. (2021) Mesenchymal Stem Cells-Derived Extracellular Vesicles Ameliorate Alzheimer’s Disease in Rat Models via the MicroRNA-29c-3p/BACE1 Axis and the Wnt/β-Catenin Pathway. Aging, 13, 15285-15306. https://doi.org/10.18632/aging.203088
|