[1]
|
Bai, L., Shao, H., Wang, H., Zhang, Z., Su, C., Dong, L., et al. (2017) Effects of Mesenchymal Stem Cell-Derived Exosomes on Experimental Autoimmune Uveitis. Scientific Reports, 7, Article No. 4323. https://doi.org/10.1038/s41598-017-04559-y
|
[2]
|
Zhao, G., Liu, F., Liu, Z., Zuo, K., Wang, B., Zhang, Y., et al. (2020) MSC-Derived Exosomes Attenuate Cell Death through Suppressing AIF Nucleus Translocation and Enhance Cutaneous Wound Healing. Stem Cell Research & Therapy, 11, Article No. 174. https://doi.org/10.1186/s13287-020-01616-8
|
[3]
|
Shi, R., Jin, Y., Hu, W., Lian, W., Cao, C., Han, S., et al. (2020) Exosomes Derived from Mmu_circ_0000250-Modified Adipose-Derived Mesenchymal Stem Cells Promote Wound Healing in Diabetic Mice by Inducing miR-128-3p/SIRT1-Mediated Autophagy. American Journal of Physiology-Cell Physiology, 318, C848-C856. https://doi.org/10.1152/ajpcell.00041.2020
|
[4]
|
Abdul Kareem, N., Aijaz, A. and Jeschke, M.G. (2021) Stem Cell Therapy for Burns: Story So Far. Biologics: Targets and Therapy, 15, 379-397. https://doi.org/10.2147/btt.s259124
|
[5]
|
Shou, J., Kong, X., Wang, X., Tang, Y., Wang, C., Wang, M., et al. (2019) Tizoxanide Inhibits Inflammation in LPS-Activated RAW264.7 Macrophages via the Suppression of NF-κB and MAPK Activation. Inflammation, 42, 1336-1349. https://doi.org/10.1007/s10753-019-00994-3
|
[6]
|
Liu, J., Yan, Z., Yang, F., Huang, Y., Yu, Y., Zhou, L., et al. (2020) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Cutaneous Wound Healing by Enhancing Angiogenesis through Delivering Angiopoietin-2. Stem Cell Reviews and Reports, 17, 305-317. https://doi.org/10.1007/s12015-020-09992-7
|
[7]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, Article 6478. https://doi.org/10.1126/science.aau6977
|
[8]
|
Hurwitz, S.N., Cheerathodi, M.R., Nkosi, D., York, S.B. and Meckes, D.G. (2018) Tetraspanin CD63 Bridges Autophagic and Endosomal Processes to Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1. Journal of Virology, 92, 1-21. https://doi.org/10.1128/jvi.01969-17
|
[9]
|
Zhang, W., Meng, T., Hu, J., Wen, L., Du, L., Cheng, X., et al. (2025) A Liquid Band-Aid with Mesenchymal Stem Cell-Derived Exosomes for Wound Healing in Mice. Current Pharmaceutical Biotechnology, 26, 911-922. https://doi.org/10.2174/0113892010331302240913114112
|
[10]
|
Zhang, Q., Su, P., Zhao, F., Ren, H., He, C., Wu, Q., et al. (2024) Enhancing Skin Injury Repair: Combined Application of PF-127 Hydrogel and hADSC-Exos Containing miR-148a-3p. ACS Biomaterials Science & Engineering, 10, 2235-2250. https://doi.org/10.1021/acsbiomaterials.3c01567
|
[11]
|
Li, J., Li, Y., Li, P., Zhang, Y., Du, L., Wang, Y., et al. (2022) Exosome Detection via Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. Acta Biomaterialia, 144, 1-14. https://doi.org/10.1016/j.actbio.2022.03.036
|
[12]
|
Hoang, D.M., Pham, P.T., Bach, T.Q., Ngo, A.T.L., Nguyen, Q.T., Phan, T.T.K., et al. (2022) Stem Cell-Based Therapy for Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 272. https://doi.org/10.1038/s41392-022-01134-4
|
[13]
|
Zhu, D., Hu, Y., Kong, X., Luo, Y., Zhang, Y., Wu, Y., et al. (2024) Enhanced Burn Wound Healing by Controlled-Release 3D ADMSC-Derived Exosome-Loaded Hyaluronan Hydrogel. Regenerative Biomaterials, 11, rbae035. https://doi.org/10.1093/rb/rbae035
|
[14]
|
Vakhshiteh, F., Atyabi, F. and Ostad, S.N. (2019) Mesenchymal Stem Cell Exosomes: A Two-Edged Sword in Cancer Therapy. International Journal of Nanomedicine, 14, 2847-2859. https://doi.org/10.2147/ijn.s200036
|
[15]
|
Zhou, Y., Zhou, G., Tian, C., Jiang, W., Jin, L., Zhang, C., et al. (2016) Exosome-Mediated Small RNA Delivery for Gene Therapy. WIREs RNA, 7, 758-771. https://doi.org/10.1002/wrna.1363
|
[16]
|
Ye, H., Wang, F., Xu, G., Shu, F., Fan, K. and Wang, D. (2023) Advancements in Engineered Exosomes for Wound Repair: Current Research and Future Perspectives. Frontiers in Bioengineering and Biotechnology, 11, Article 1301362. https://doi.org/10.3389/fbioe.2023.1301362
|
[17]
|
Torreggiani, E., Perut, F., Roncuzzi, L., Zini, N., Baglìo, S. and Baldini, N. (2014) Exosomes: Novel Effectors of Human Platelet Lysate Activity. European Cells and Materials, 28, 137-151. https://doi.org/10.22203/ecm.v028a11
|
[18]
|
Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. https://doi.org/10.5966/sctm.2014-0267
|
[19]
|
Zheng, J., Wang, W., Hong, T., Yang, S., Shen, J. and Liu, C. (2020) Suppression of MicroRNA-155 Exerts an Anti-Inflammatory Effect on CD4+ T Cell-Mediated Inflammatory Response in the Pathogenesis of Atherosclerosis. Acta Biochimica et Biophysica Sinica, 52, 654-664. https://doi.org/10.1093/abbs/gmaa040
|
[20]
|
Xu, Y.Q., Xu, Y. and Wang, S.H. (2019) Effect of Exosome-Carried miR-30a on Myocardial Apoptosis in Myocardial Ischemia-Reperfusion Injury Rats through Regulating Autophagy. European Review for Medical and Pharmacological Sciences, 23, 7066-7072.
|
[21]
|
van Niel, G., D’Angelo, G. and Raposo, G. (2018) Shedding Light on the Cell Biology of Extracellular Vesicles. Nature Reviews Molecular Cell Biology, 19, 213-228. https://doi.org/10.1038/nrm.2017.125
|
[22]
|
Santoso, M.R., Ikeda, G., Tada, Y., Jung, J., Vaskova, E., Sierra, R.G., et al. (2020) Exosomes from Induced Pluripotent Stem Cell-Derived Cardiomyocytes Promote Autophagy for Myocardial Repair. Journal of the American Heart Association, 9, e014345. https://doi.org/10.1161/jaha.119.014345
|
[23]
|
Şahin, F., Koçak, P., Güneş, M.Y., Özkan, İ., Yıldırım, E. and Kala, E.Y. (2018) In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles. Applied Biochemistry and Biotechnology, 188, 381-394. https://doi.org/10.1007/s12010-018-2913-1
|