糖尿病肾病血液高凝状态的治疗策略综述
A Comprehensive Review of Therapeutic Strategies for Hypercoagulable State in Diabetic Kidney Disease
DOI: 10.12677/acm.2025.1551501, PDF, HTML, XML,   
作者: 田洋洋:山东第一医科大学(山东省医学科学院)研究生部,山东 济南;山东第一医科大学第一附属医院肾脏病科,山东 济南;刘以鹏*:山东第一医科大学第一附属医院肾脏病科,山东 济南
关键词: 糖尿病肾病血液高凝状态多靶点治疗Diabetic Kidney Disease Hypercoagulable State Multi-Target Therapy
摘要: 糖尿病肾病(diabetic kidney disease, DKD)是糖尿病(diabetes mellitus, DM)的主要微血管并发症之一。由于长期代谢异常、血流动力学改变、内皮损伤、凝血抗凝血失衡、血小板活化、纤溶系统抑制、补体系统激活、表观遗传调控等方面,DKD常伴血液高凝状态,不仅促进疾病进展,且增加心脑血管事件及下肢血栓风险,我们总结了当前DKD血液高凝的治疗策略以及发展前景,为DKD高凝状态的进一步治疗提供理论依据。
Abstract: Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus (DM) and is often characterized by a hypercoagulable state in the blood due to long-term metabolic abnormalities, hemodynamic changes, endothelial damage, imbalances in coagulation and anticoagulation, platelet activation, inhibition of the fibrinolytic system, activation of the complement system, and epigenetic regulation. This hypercoagulable state not only accelerates disease progression but also increases the risk of cardiovascular and cerebrovascular events, as well as lower limb thrombosis. In this context, we have summarized the current treatment strategies for the hypercoagulable state in diabetic kidney disease (DKD) as well as its future development prospects, providing a theoretical basis for further treatment of this condition.
文章引用:田洋洋, 刘以鹏. 糖尿病肾病血液高凝状态的治疗策略综述[J]. 临床医学进展, 2025, 15(5): 1350-1358. https://doi.org/10.12677/acm.2025.1551501

1. 引言

DKD是DM的主要并发症之一,其病理特征包括肾小球硬化、肾小管间质纤维化和微血管病变。国际糖尿病联合会(IDF)估计,2024年全球约有5.89亿成年人(20~79岁)患有糖尿病。预计到2050年,糖尿病患者的总人数将上升至8.53亿[1]。据估计,40%的DM患者在其一生中会发生慢性肾脏疾病(Chronic kidney disease, CKD),自1990年至2017年间,全球因2型糖尿病(Type 2 diabetes mellitus, T2DM)导致的慢性肾脏病新增病例数量由140万增加到2017年的240万,增幅约74%,其发病率从11.31%上升至37.05%,2019年,全球报告了260万例DKD新发病例,预计未来发病率将继续增加[2]。DKD患者的高凝状态是由于促凝与抗凝过程中的异常,导致血栓形成倾向增加,这一状态是早期诊断血栓栓塞性疾病的重要组成部分。代谢异常、凝血与抗凝系统失衡、纤溶抑制、血小板活化、炎症及补体调节等因素共同导致了DKD患者机体高凝状态[3]-[6],此状态在DKD患者肾动脉硬化以及伴发心脑血管等严重威胁生命的大血管疾病的过程中至关重要。由于DKD患者常见多种并发症,建议实施综合护理和整体治疗,以降低心血管疾病(cardiovascular disease, CVD)和肾脏疾病进展的风险[7]。近年来,随着对高凝状态机制的深入研究,DKD的治疗策略不断优化。本文旨在综述DKD血液高凝状态的治疗策略及其发展前景。

2. DKD血液高凝状态及治疗策略

2.1. 血糖管理

严格控制血糖水平对于减轻DKD引起的血液高凝状态以及预防血栓栓塞的形成至关重要[8]。UKPDS [9]和ADVANCE [10]等研究表明,降糖治疗能有效降低糖尿病微血管并发症(包括DKD)的风险。KDIGO和美国糖尿病协会(ADA)推荐使用糖化血红蛋白(HbA1c)来监测长期血糖控制[7]。根据ADA 2022标准与KDIGO 2022指南,二甲双胍和SGLT2抑制剂被推荐为CKD及DM患者的一线治疗方案[7]。对于eGFR ≥ 30 mL/min/1.73 m2的患者,此联合用药是安全有效的[11]。SGLT2抑制剂不仅能降糖,还能降[1]在降低血糖和HbA1c方面表现优异,并且低血糖风险较低[11] [13]。如果基础治疗未能达到目标血糖,可考虑添加其他降糖药物[7] [11]。KDIGO和ADA建议使用长效胰高血糖素样肽-1受体激动剂(GLP-1RA)作为首选的附加治疗,因其在改善血糖控制和促进体重减轻方面有效[11]。研究表明,GLP-1RA在HbA1c为7.0%且心血管风险高的糖尿病患者中可降低主要心血管不良事件的发生率[14]。Sattar等人进行的随机试验荟萃分析表明,GLP-1RA能降低包括严重蛋白尿、eGFR下降和肾功能衰竭等在内的复合肾脏结局风险,并降低T2DM患者的全因死亡率。已知对CVD和CKD有益的GLP-1RA包括利拉鲁肽、司美格鲁肽、阿必鲁肽和杜拉糖肽[7]。当eGFR降至15 mL/min/1.73 m2时,GLP-1RA仍可安全有效用于透析患者[7] [11]。但在eGFR < 60 mL/min/1.73 m2的患者中,其对心血管风险的益处较小[15]。对于晚期CKD、eGFR < 30 mL/min/1.73 m2或正在透析的患者,很多药物的使用受到限制,并且缺乏有关治疗策略的试验数据,血糖控制可能具有挑战性。对于1型糖尿病(Type 1 diabetes mellitus, T1DM)患者而言,唯一获批的治疗方式是胰岛素,其剂量需根据CKD的进展进行调整[7]。在T2DM患者中,晚期CKD增加了低血糖的风险,因此应优先选择不易引发低血糖的降糖药物[7] [16]。二肽基肽酶4抑制剂(如利格列汀和西格列汀)可用于eGFR < 30 mL/min/1.73 m2及透析患者,作为无法使用GLP-1RA的替代方案。此外,若其他药物存在禁忌、耐受性差或疗效不足,通常需要使用胰岛素降糖[7]

2.2. 血脂管理

血脂异常是DKD患者常见的合并症[17]。高水平的总胆固醇、低密度脂蛋白胆固醇和甘油三酯也是动脉粥样硬化性CVD和DKD发生进展的危险因素[18]。根据2013年KDIGO的指南,大多数未透析的成年DM和CKD患者应接受他汀类药物治疗,特别是50岁以上的CKD患者、eGFR ≥ 60 mL/min/1.73 m2的患者以及18~49岁有DM或CKD的患者,或有冠心病、既往缺血性卒中历史或10年内冠心病死亡风险 ≥ 10%的患者[19]。ADA推荐对40~75岁的成年DM患者、20~39岁伴有动脉粥样硬化性CVD风险因素的成年人以及75岁以上的患者实施中等强度的他汀治疗[7]。接受血液透析的患者通常不在推荐范围内,因为他汀对动脉粥样硬化性CVD的一级预防无效[20]。对于二级预防,ADA建议使用高强度他汀治疗。如需加强治疗,依据心血管疾病风险和低密度胆固醇水平,可加用依折麦布或PCSK-9抑制剂[7]。英国临床糖尿病学家协会(ABCD)和英国肾脏协会(UKKA)在其2024年的指南中推荐在DKD的各阶段开始使用20 mg阿托伐他汀治疗,对于未达到治疗目标的G1-G3a期肾病患者,建议考虑更高剂量或与依折麦布联合治疗,在肾病G1-G3a期出现他汀类药物不耐受的情况下,若单用依折麦布不能达到治疗目标,可联用苯甲多酸[21]

2.3. 血压管理

高血压常见于DKD患者。高血压会使肾功能恶化,促进血液高凝,增加心血管疾病的风险,因此,控制血压对DKD患者至关重要[22]。低风险患者的目标为低于140/90 mmHg,KDIGO建议CKD患者的收缩压应低于120 mmHg [7] [23]。而ADA则建议DKD、高血压、CVD高风险患者的血压目标为低于130/80 mmHg,低风险患者的血压目标为低于140/90 mmHg [7] [24],并可根据患者情况个性化调整。建议糖尿病、高血压和蛋白尿患者使用肾素–血管紧张素系统(RAS)抑制剂,如ACEI或ARB,并以最高耐受剂量治疗[7]。一些临床试验发现,与安慰剂或其他降压药物相比,RAS抑制剂最有效地降低了CKD进展的风险[25] [26]。因需多种药物联合以实现理想的血压控制,常可将RAS抑制剂、钙通道阻滞剂及利尿剂联合使用。同时,非甾体矿物皮质激素(ns-MRAs)如艾沙利酮和非奈利酮也被纳入治疗方案,作为新疗法应用于临床[7]。虽然艾沙利酮已被证明可以降低血压和蛋白尿,但评估其在DKD患者中的作用的长期研究仍缺乏[27]。当前唯一获批的能够减缓CKD进展并减少心血管事件的ns-MRA是非奈利酮[28]

2.4. 抗血小板药物治疗

研究显示,活化的血小板通过多种机制参与DKD的病理过程,促进血液高凝。血小板不仅在止血和凝血中起关键作用,还在炎症、纤维化等过程中发挥了重要作用。多项动物实验和临床研究表明,抗血小板药物可以改善DKD患者的肾功能,减少尿蛋白排泄,并延缓血栓栓塞事件及疾病进展。例如,P2Y12受体抑制剂氯吡格雷被证明能显著减少纤维连接蛋白的积累,改善DM诱导的肾纤维化[29]。磷酸二酯酶-3 (PDE-3)抑制剂西洛他唑被广泛用于治疗外周动脉疾病治疗,并在DKD患者中显示出显著的疗效。一项随机对照试验表明,西洛他唑显著降低了尿微量白蛋白水平,改善了肾功能[30]。此外,PGI2的类似物贝前列素钠也被证明能有效减少尿蛋白排泄,改善肾功能[31],并常用于外周动脉血栓栓塞性疾病。DKD的治疗不应仅依赖单一药物,而是需要综合考虑多种因素。结合抗血小板药物与其他治疗(如血管紧张素转换酶抑制剂、他汀类药物等)可以更有效地控制病情进展[32]。然而,抗血小板药物在DKD患者中的应用仍存在局限性,现有研究多为动物实验或小规模临床试验,缺乏长期疗效和安全性的研究,且未充分考虑个体差异和联合治疗的平衡。未来研究应深入探索抗血小板药物的作用机制,优化联合治疗方案,关注长期疗效和安全性,并制定个体化治疗策略,以更好地指导临床实践。

2.5. 抗凝药物治疗

为控制DKD患者血液高凝状态,抗凝药物治疗是最直接的方法,目前,临床上常用的抗凝药物包括低分子肝素和口服抗凝药(OAC),低分子肝素可以改善DM患者血液流变学和肾脏微循环,延缓肾小球硬化,降低肾内循环阻力。此外,肝素具有一定的抗炎和抗氧化功能,可以抑制炎症反应和肾细胞损伤[33]。对于合并CKD的DM患者,OAC治疗的选择应基于CHA2DS2-VASc卒中风险评分,低卒中风险患者(男性0分,女性1分)不应接受OAC治疗;而CHA2DS2-VASc ≥ 1的男性和CHA2DS2-VASc ≥ 2的女性患者则应考虑使用OAC。所有其他患者均推荐使用OAC,并需评估出血风险,可采用HAS-BLED评分[34]。在OAC的选择上,优先考虑直接口服抗凝药(DOACs),如Xa因子直接抑制剂利伐沙班、IIa因子直接抑制剂达比加群,相比维生素K拮抗剂(VKA)华法林,其药代动力学特征更简单,颅内出血风险更低[35]。DOACs在eGFR大于15 mL/min/1.73 m2的患者中获批使用,但达比加群要求eGFR超过30 mL/min/1.73 m2。虽然华法林适用于DKD的所有阶段,但对于eGFR低于15 mL/min/1.73 m2的患者,其益处证据非常有限。此外,现有研究表明,与DOACs相比,VKA的使用可能导致更快的肾功能下降,这可能是由于患者血管钙化加重[36]。Olivia S. Costa等人[37]的研究也显示,与华法林相比,利伐沙班能有效降低T2DM合并非瓣膜性房颤患者的肾脏和外周血管并发症的发生率及死亡率。因此,DKD患者的DOACs给药应根据年龄、体重和肾功能进行个性化调整,以确保治疗的安全性和有效性[34]

2.6. 抗炎治疗

DKD患者的慢性炎症在血液高凝中起着重要作用,抗炎治疗或许能间接改善血液的高凝,一些现有药物如RAS抑制剂、ns-MRA和SGLT2抑制剂具有抗炎特性。然而,炎症的非特异性改善可能是其他有益作用的次要后果,如肾小球高滤过和蛋白尿的减少。目前,一些有效的抗炎药物仍在研究中。研究显示,己酮可可碱的肾脏益处与其抗炎作用有关,DKD患者在接受其治疗后蛋白尿减少与TNF-α水平下降直接相关[38]。PREDIAN研究,一项针对DKD G3-G4和残余蛋白尿的随机对照实验(RCT),尽管RAS阻断,己酮茶碱仍能减缓CKD进展,减少尿白蛋白和尿TNF-α排泄,并维持抗炎蛋白klothos的表达[39]。白藜芦醇具有抗氧化和抗炎作用,早期一期试验结果显示白藜芦醇联合氯沙坦可减少DKD患者的蛋白尿[40]。甲基巴多洛酮通过激活Nrf2通路改善氧化应激,在二期RCT中显示可提高eGFR,尽管存在安全性问题,如体液超负荷、高血压、蛋白尿增加等,但在某些特定人群中仍处于临床试验阶段[41]。针对炎症相关细胞因子的研究也在进行中,Ridker PM等人发现[42]卡纳单抗作为IL-1β的单克隆抗体能够降低伴或不伴糖尿病的CKD患者心血管事件发生率,但未能改变肾功能。抗炎治疗在减轻DKD患者血液高凝方面有效,但临床应用仍在探索中,许多在动物模型中有效的药物在临床试验中未能取得相应效果,可能是由于人类和小鼠免疫细胞表型的差异[43]。此外,针对单一炎症介质的药物多未成功,多靶点策略或许更具潜力。

2.7. 补体靶向治疗

补体的激活不仅加剧了肾脏的炎症反应,且与凝血系统交互作用,导致肾小管和肾小球的损伤。慢性的炎症状态还会进一步促进血液的高凝。针对补体系统的治疗策略受到越来越多的关注。依库珠单抗和依库丽珠单抗通过靶向C5被广泛用于治疗非典型溶血性尿毒症综合征,而C5a受体拮抗剂阿伐可泮已获批用于ANKA相关血管炎的治疗。Gefurulimab (ALXN1720)作为C5抑制剂,目前正在进行针对蛋白尿性肾病的I期临床试验,包括DKD。此外,其他针对补体激活的干预措施,如补体抑制剂,可能通过减轻炎症改善DKD患者的血液高凝状态。最近的证据表明,C3a和C5a介导DKD的代谢反应,促进炎症。不同的阻断补体的策略,如SB290157 (C3aR拮抗剂)、K-76 COONa (C5和因子I抑制剂)和NOX-D21 (L-RNA/DNA spiegelmer C5a抑制剂)作为口服活性C5aR1抑制剂(PMX53),均显示出对DKD小鼠模型的保护效果[44]。未来的研究需要开发新型的补体靶向药物,以期改善DKD患者的血液高凝状态,延缓血栓形成,提高生活质量。

2.8. 纤溶系统调节

DKD患者胰岛素抵抗状态下常伴有纤溶酶原激活物抑制剂-1 (plasminogen activator inhibitor 1, PAI-1)水平升高,导致纤溶系统抑制,可能通过反馈机制刺激纤维蛋白原(fibrinogen, FIB)增加,从而促进血液高凝。Liu等人发现GLP-1RA可以抑制人血管内皮细胞中PAI-1的产生,从而改善T2DM患者的内皮细胞功能和动脉粥样硬化[45]。同时,高血糖可以作用于两个Sp1位点促进PAI-1的产生,这表明血糖水平的改善有助于降低PAI-1水平[46]。PAI-1在纤溶途径中发挥重要作用,还参与其他病理生理过程,包括癌症[47]、衰老[48]、心脏纤维化[49]和伤口愈合[50],使PAI-1成为一个非常有前景的治疗靶点。尽管大量的动物研究已经取得了较好的结果,但尚未有与PAI-1相关的药物获得临床批准。许多研究团队和制药公司正在开发PAI-1抑制剂,包括单克隆抗体、小分子物质和多肽[51] [52]。主要分为两类:直接抑制PAI-1的产生和干扰其生理作用。目前已开发出多种降低PAI-1 mRNA水平的药物(如T686、T2639),其在动物模型实验中均有药理作用[53] [54],但缺少临床试验数据,其完全抑制及剂量调控仍面临挑战。基于PAI-1与纤溶–凝血系统的复杂作用,靶向其功能调控(如阻断活性位点或构象修饰)可能较单纯降低浓度更具临床潜力。例如,在兔颈静脉血栓形成模型中,小鼠单克隆抗人PAI-1抗体CLB-2C8可切割和灭活PAI-1,并显著增强内源性血栓溶解和抑制血栓形成,但尚未在人体内进行进一步研究[55]。另一种抗体MEDI-579对PAI-1具有高亲和力和特异性,可调节其与t-PA和u-PA之间的相互作用[56]。在小分子药物中,经典的是PAI-039和替普沙汀,后续药物多基于提升其疗效。PAI-039于2004年获得专利,并在各种动物模型中显示出有希望的结果[57]。然而,其不抑制与玻连蛋白结合的PAI-1 [58],因此需要开发能够抵抗玻连蛋白结合的药物。尽管已经研发出多种能够作用于体外连接的PAI-1化合物,但尚未实现其完全抑制[59]。目前,针对DKD患者的FIB临床治疗仍然缺乏相关进展。不过,已有动物实验进行相关研究。Borna Sarker等人[60]的研究表明,糖尿病视网膜病变小鼠模型显示视网膜小胶质细胞活化及FIB沉积,去纤剂恩克罗特治疗可减少上述病理改变及促炎因子水平。靶向FIB干预可能为DKD血管病变提供新策略,为开发更具选择性和认知的新疗法迈出了重要一步。调节纤溶系统以减轻DKD患者的高凝状态前景乐观。

2.9. 表观遗传调控

除了上述DKD高凝的机制外,正在进行的研究强调了表观遗传变化在调节与DKD高凝状态机制相关的基因表达中的重要性。这些表观遗传修饰,包括DNA甲基化、组蛋白修饰、非编码RNA和microRNA,可能是由于高血糖引起的,或作为DKD发展的独立因素。它们被认为是增加疾病进展复杂性的关键调控层面[61]。与这些表观遗传改变相关的一个关键概念是“代谢记忆”,即高血糖的长期不良影响在血糖控制恢复后仍然存在。表观遗传变化以及AGEs的积累被认为是代谢记忆的基本驱动因素。这种现象使DKD的病程复杂化,并对治疗提出了严峻挑战,因为尽管随后进行了干预,高血糖的持久影响仍然存在[62]。因此,通过表观遗传学靶向治疗来解决代谢记忆问题可能是改善糖尿病患者高凝引起的血栓栓塞的一个有希望的途径,即使在高血糖得到控制之后,也有可能缓解DKD的进展。

3. 总结与展望

DKD的高凝状态机制复杂,涉及代谢异常、血小板活化、凝血–抗凝系统失调、纤溶抑制、补体级联激活及表观遗传调控等因素,常伴随多种并发症,并呈现显著个体化差异,目前尚未建立标准化诊疗方案。临床管理遵循多维度干预原则,在血糖、血压控制及调节脂代谢紊乱基础上,联合抗血小板、抗凝及抗炎治疗,并动态监测出血风险及肾功能变化。基于当前研究,我们建议未来的研究方向应包括多靶点联合治疗策略,借助基因组学、蛋白质组学、代谢组学及人工智能技术,精准解析肾脏局部凝血微环境的异质性,构建个体化诊疗体系,推动精准医学模式在DKD高凝状态中的应用,并为开发新型分子靶向治疗提供理论依据。

NOTES

*通讯作者。

参考文献

[1] International Diabetes Federation (2025) Diabetes Facts & Figures.
https://idf.org/about-diabetes/diabetes-facts-figures/
[2] International Diabetes Federation (2024) Diabetes and Kidney Disease.
https://diabetesatlas.org/atlas/diabetes-and-kidney-disease/
[3] Wang, K., Xu, W., Zha, B., Shi, J., Wu, G. and Ding, H. (2021) Fibrinogen to Albumin Ratio as an Independent Risk Factor for Type 2 Diabetic Kidney Disease. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 4557-4567.
https://doi.org/10.2147/dmso.s337986
[4] Sugahara, M., Pak, W.L.W., Tanaka, T., Tang, S.C.W. and Nangaku, M. (2021) Update on Diagnosis, Pathophysiology, and Management of Diabetic Kidney Disease. Nephrology, 26, 491-500.
https://doi.org/10.1111/nep.13860
[5] Alsharidah, A.S. (2022) Diabetes Mellitus and Diabetic Nephropathy: A Review of the Literature on Hemostatic Changes in Coagulation and Thrombosis. Blood Research, 57, 101-105.
https://doi.org/10.5045/br.2022.2021204
[6] Kitamoto, Y., Imamura, T., Taguma, Y., Iwaoka, T., Yorinaka, H. and Arizono, K. (2021) Urinary Thrombin as a Marker of Glomerular Inflammation Associated with Renal Injury in Type 2 Diabetes. The Tohoku Journal of Experimental Medicine, 253, 41-49.
https://doi.org/10.1620/tjem.253.41
[7] de Boer, I.H., Khunti, K., Sadusky, T., Tuttle, K.R., Neumiller, J.J., Rhee, C.M., et al. (2022) Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care, 45, 3075-3090.
https://doi.org/10.2337/dci22-0027
[8] Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021, Article 1497449.
https://doi.org/10.1155/2021/1497449
[9] Stratton, I.M. (2000) Association of Glycaemia with Macrovascular and Microvascular Complications of Type 2 Diabetes (UKPDS 35): Prospective Observational Study. British Medical Journal, 321, 405-412.
https://doi.org/10.1136/bmj.321.7258.405
[10] Zoungas, S., Chalmers, J., Ninomiya, T., Li, Q., Cooper, M.E., Colagiuri, S., et al. (2011) Association of Hba1c Levels with Vascular Complications and Death in Patients with Type 2 Diabetes: Evidence of Glycaemic Thresholds. Diabetologia, 55, 636-643.
https://doi.org/10.1007/s00125-011-2404-1
[11] Rossing, P., Caramori, M.L., Chan, J.C.N., Heerspink, H.J.L., Hurst, C., Khunti, K., et al. (2022) KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International, 102, S1-S127.
https://doi.org/10.1016/j.kint.2022.06.008
[12] Wiviott, S.D., Raz, I., Bonaca, M.P., Mosenzon, O., Kato, E.T., Cahn, A., et al. (2019) Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. New England Journal of Medicine, 380, 347-357.
https://doi.org/10.1056/nejmoa1812389
[13] Maruthur, N.M., Tseng, E., Hutfless, S., Wilson, L.M., Suarez-Cuervo, C., Berger, Z., et al. (2016) Diabetes Medications as Monotherapy or Metformin-Based Combination Therapy for Type 2 Diabetes. Annals of Internal Medicine, 164, 740-751.
https://doi.org/10.7326/m15-2650
[14] Gerstein, H.C., Colhoun, H.M., Dagenais, G.R., Diaz, R., Lakshmanan, M., Pais, P., et al. (2019) Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomized Placebo-Controlled Trial. The Lancet, 394, 121-130.
https://doi.org/10.1016/s0140-6736(19)31149-3
[15] Sattar, N., Lee, M.M.Y., Kristensen, S.L., Branch, K.R.H., Del Prato, S., Khurmi, N.S., et al. (2021) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Trials. The Lancet Diabetes & Endocrinology, 9, 653-662.
https://doi.org/10.1016/s2213-8587(21)00203-5
[16] de Boer, I.H., Alpers, C.E., Azeloglu, E.U., Balis, U.G.J., Barasch, J.M., Barisoni, L., et al. (2021) Rationale and Design of the Kidney Precision Medicine Project. Kidney International, 99, 498-510.
https://doi.org/10.1016/j.kint.2020.08.039
[17] Tsimihodimos, V., Dounousi, E. and Siamopoulos, K.C. (2008) Dyslipidemia in Chronic Kidney Disease: An Approach to Pathogenesis and Treatment. American Journal of Nephrology, 28, 958-973.
https://doi.org/10.1159/000144024
[18] Bjornstad, P., Cherney, D. and Maahs, D.M. (2014) Early Diabetic Nephropathy in Type 1 Diabetes. Current Opinion in Endocrinology, Diabetes & Obesity, 21, 279-286.
https://doi.org/10.1097/med.0000000000000074
[19] Wanner, C. and Tonelli, M. (2014) KDIGO Clinical Practice Guideline for Lipid Management in CKD: Summary of Recommendation Statements and Clinical Approach to the Patient. Kidney International, 85, 1303-1309.
https://doi.org/10.1038/ki.2014.31
[20] Fellström, B.C., Jardine, A.G., Schmieder, R.E., Holdaas, H., Bannister, K., Beutler, J., et al. (2009) Rosuvastatin and Cardiovascular Events in Patients Undergoing Hemodialysis. New England Journal of Medicine, 360, 1395-1407.
https://doi.org/10.1056/nejmoa0810177
[21] Zac-Varghese, S., Mark, P., Bain, S., Banerjee, D., Chowdhury, T.A., Dasgupta, I., et al. (2024) Clinical Practice Guideline for the Management of Lipids in Adults with Diabetic Kidney Disease: Abbreviated Summary of the Joint Association of British Clinical Diabetologists and UK Kidney Association (ABCD-UKKA) Guideline 2024. BMC Nephrology, 25, Article No. 216.
https://doi.org/10.1186/s12882-024-03664-1
[22] Elendu, C., John Okah, M., Fiemotongha, K.D.J., Adeyemo, B.I., Bassey, B.N., Omeludike, E.K., et al. (2023) Comprehensive Advancements in the Prevention and Treatment of Diabetic Nephropathy: A Narrative Review. Medicine, 102, e35397.
https://doi.org/10.1097/md.0000000000035397
[23] Cheung, A.K., Chang, T.I., Cushman, W.C., Furth, S.L., Hou, F.F., Ix, J.H., et al. (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney International, 99, S1-S87.
https://doi.org/10.1016/j.kint.2020.11.003
[24] American Diabetes Association Professional Practice Committee (2021) Cardiovascular Disease and Risk Management: standards of Medical Care in Diabetes 2022. Diabetes Care, 45, S144-S174.
https://doi.org/10.2337/dc22-s010
[25] Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 345, 861-869.
https://doi.org/10.1056/nejmoa011161
[26] Keane, W.F., Brenner, B.M., de Zeeuw, D., Grunfeld, J., McGill, J., Mitch, W.E., et al. (2003) The Risk of Developing End-Stage Renal Disease in Patients with Type 2 Diabetes and Nephropathy: The RENAAL Study. Kidney International, 63, 1499-1507.
https://doi.org/10.1046/j.1523-1755.2003.00885.x
[27] Ito, S., Kashihara, N., Shikata, K., Nangaku, M., Wada, T., Okuda, Y., et al. (2020) Esaxerenone (CS-3150) in Patients with Type 2 Diabetes and Microalbuminuria (ESAX-DN). Clinical Journal of the American Society of Nephrology, 15, 1715-1727.
https://doi.org/10.2215/cjn.06870520
[28] Pitt, B., Filippatos, G., Agarwal, R., Anker, S.D., Bakris, G.L., Rossing, P., et al. (2021) Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. New England Journal of Medicine, 385, 2252-2263.
https://doi.org/10.1056/nejmoa2110956
[29] Zheng, Z., Ma, T., Lian, X., Gao, J., Wang, W., Weng, W., et al. (2019) Clopidogrel Reduces Fibronectin Accumulation and Improves Diabetes-Induced Renal Fibrosis. International Journal of Biological Sciences, 15, 239-252.
https://doi.org/10.7150/ijbs.29063
[30] Tang, W., Lin, F., Lee, C., Kuo, F., Hsieh, C., Hsiao, F., et al. (2013) Cilostazol Effectively Attenuates Deterioration of Albuminuria in Patients with Type 2 Diabetes: A Randomized, Placebo-Controlled Trial. Endocrine, 45, 293-301.
https://doi.org/10.1007/s12020-013-0002-3
[31] 刘婧, 王璟, 陈颖, 等. 贝前列素钠治疗糖尿病肾病患者的临床研究[J]. 中国临床药理学杂志, 2023, 39(22): 3214-3217.
[32] Kim, S.K., Kim, G., Choi, B., Ryu, D., Ku, S. and Kwak, M. (2021) Negative Correlation of Urinary miR-199a-3p Level with Ameliorating Effects of Sarpogrelate and Cilostazol in Hypertensive Diabetic Nephropathy. Biochemical Pharmacology, 184, Article 114391.
https://doi.org/10.1016/j.bcp.2020.114391
[33] 王淮淮, 赵学慧, 王会芳, 等. 基于NF-κB信号通路探讨低分子量肝素对糖尿病肾病足细胞增殖、凋亡和炎症的影响[J]. 检验医学与临床, 2024, 21(10): 1365-1370+1376.
[34] Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J.J., Blomström-Lundqvist, C., et al. (2020) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal, 42, 373-498.
https://doi.org/10.1093/eurheartj/ehaa612
[35] Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314.
https://doi.org/10.1016/j.kint.2023.10.018
[36] Fauchier, L., Boriani, G., de Groot, J.R., Kreutz, R., Rossing, P. and Camm, A.J. (2021) Medical Therapies for Prevention of Cardiovascular and Renal Events in Patients with Atrial Fibrillation and Diabetes Mellitus. EP Europace, 23, 1873-1891.
https://doi.org/10.1093/europace/euab184
[37] Costa, O.S., O’Donnell, B., Vardar, B., Abdelgawwad, K., Brescia, C.W., Sood, N., et al. (2021) Kidney, Limb and Ophthalmic Complications, and Death in Patients with Nonvalvular Atrial Fibrillation and Type 2 Diabetes Prescribed Rivaroxaban or Warfarin: An Electronic Health Record Analysis. Current Medical Research and Opinion, 37, 1493-1500.
https://doi.org/10.1080/03007995.2021.1947217
[38] Lin, S., Chen, Y., Chiang, W., Wu, K. and Tsai, T. (2008) Effect of Pentoxifylline in Addition to Losartan on Proteinuria and GFR in CKD: A 12-Month Randomized Trial. American Journal of Kidney Diseases, 52, 464-474.
https://doi.org/10.1053/j.ajkd.2008.05.012
[39] Navarro-González, J.F., Sánchez-Niño, M.D., Donate-Correa, J., Martín-Núñez, E., Ferri, C., Pérez-Delgado, N., et al. (2018) Effects of Pentoxifylline on Soluble Klotho Concentrations and Renal Tubular Cell Expression in Diabetic Kidney Disease. Diabetes Care, 41, 1817-1820.
https://doi.org/10.2337/dc18-0078
[40] Sattarinezhad, A., Roozbeh, J., Shirazi Yeganeh, B., Omrani, G.R. and Shams, M. (2019) Resveratrol Reduces Albuminuria in Diabetic Nephropathy: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Diabetes & Metabolism, 45, 53-59.
https://doi.org/10.1016/j.diabet.2018.05.010
[41] Nangaku, M., Kanda, H., Takama, H., Ichikawa, T., Hase, H. and Akizawa, T. (2020) Randomized Clinical Trial on the Effect of Bardoxolone Methyl on GFR in Diabetic Kidney Disease Patients (TSUBAKI Study). Kidney International Reports, 5, 879-890.
https://doi.org/10.1016/j.ekir.2020.03.030
[42] Ridker, P.M., MacFadyen, J.G., Glynn, R.J., Koenig, W., Libby, P., Everett, B.M., et al. (2018) Inhibition of Interleukin-1β by Canakinumab and Cardiovascular Outcomes in Patients with Chronic Kidney Disease. Journal of the American College of Cardiology, 71, 2405-2414.
https://doi.org/10.1016/j.jacc.2018.03.490
[43] Cantero-Navarro, E., Rayego-Mateos, S., Orejudo, M., Tejedor-Santamaria, L., Tejera-Muñoz, A., Sanz, A.B., et al. (2021) Role of Macrophages and Related Cytokines in Kidney Disease. Frontiers in Medicine, 8, Article 688060.
https://doi.org/10.3389/fmed.2021.688060
[44] Tan, S.M., Snelson, M., Østergaard, J.A. and Coughlan, M.T. (2022) The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxidants & Redox Signaling, 37, 781-801.
https://doi.org/10.1089/ars.2021.0125
[45] Liu, H., Dear, A.E., Knudsen, L.B. and Simpson, R.W. (2009) A Long-Acting Glucagon-Like Peptide-1 Analogue Attenuates Induction of Plasminogen Activator Inhibitor Type-1 and Vascular Adhesion Molecules. Journal of Endocrinology, 201, 59-66.
https://doi.org/10.1677/joe-08-0468
[46] Chen, Y., Su, M., Walia, R.R., Hao, Q., Covington, J.W. and Vaughan, D.E. (1998) Sp1 Sites Mediate Activation of the Plasminogen Activator Inhibitor-1 Promoter by Glucose in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 273, 8225-8231.
https://doi.org/10.1074/jbc.273.14.8225
[47] Placencio, V.R. and DeClerck, Y.A. (2015) Plasminogen Activator Inhibitor-1 in Cancer: Rationale and Insight for Future Therapeutic Testing. Cancer Research, 75, 2969-2974.
https://doi.org/10.1158/0008-5472.can-15-0876
[48] Vaughan, D.E., Rai, R., Khan, S.S., Eren, M. and Ghosh, A.K. (2017) Plasminogen Activator Inhibitor-1 Is a Marker and a Mediator of Senescence. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1446-1452.
https://doi.org/10.1161/atvbaha.117.309451
[49] Flevaris, P. and Vaughan, D. (2016) The Role of Plasminogen Activator Inhibitor Type-1 in Fibrosis. Seminars in Thrombosis and Hemostasis, 43, 169-177.
https://doi.org/10.1055/s-0036-1586228
[50] Simone, T.M., Longmate, W.M., Law, B.K. and Higgins, P.J. (2015) Targeted Inhibition of PAI-1 Activity Impairs Epithelial Migration and Wound Closure Following Cutaneous Injury. Advances in Wound Care, 4, 321-328.
https://doi.org/10.1089/wound.2014.0611
[51] Altalhi, R., Pechlivani, N. and Ajjan, R.A. (2021) PAI-1 in Diabetes: Pathophysiology and Role as a Therapeutic Target. International Journal of Molecular Sciences, 22, Article 3170.
https://doi.org/10.3390/ijms22063170
[52] Rouch, A., Vanucci-Bacqué, C., Bedos-Belval, F. and Baltas, M. (2015) Small Molecules Inhibitors of Plasminogen Activator Inhibitor-1—An Overview. European Journal of Medicinal Chemistry, 92, 619-636.
https://doi.org/10.1016/j.ejmech.2015.01.010
[53] Miyazaki, H., Sai, H., Ohmizu, H., Murakami, J., Ohtani, A. and Ogiku, T. (2010) Synthesis and Evaluation of 1,4-Diphenylbutadiene Derivatives as Inhibitors of Plasminogen Activator Inhibitor-1 (PAI-1) Production. Bioorganic & Medicinal Chemistry, 18, 1968-1979.
https://doi.org/10.1016/j.bmc.2010.01.032
[54] Miyazaki, H., Ogiku, T., Sai, H., Ohmizu, H., Murakami, J. and Ohtani, A. (2008) Design, Synthesis, and Evaluation of Orally Active Inhibitors of Plasminogen Activator Inhibitor-1 (PAI-1) Production. Bioorganic & Medicinal Chemistry Letters, 18, 6419-6422.
https://doi.org/10.1016/j.bmcl.2008.10.067
[55] Biemond, B.J., Levi, M., Coronel, R., Janse, M.J., Cate, J.W.T. and Pannekoek, H. (1995) Thrombolysis and Reocclusion in Experimental Jugular Vein and Coronary Artery Thrombosis. Circulation, 91, 1175-1181.
https://doi.org/10.1161/01.cir.91.4.1175
[56] Vousden, K.A., Lundqvist, T., Popovic, B., Naiman, B., Carruthers, A.M., Newton, P., et al. (2019) Discovery and Characterisation of an Antibody That Selectively Modulates the Inhibitory Activity of Plasminogen Activator Inhibitor-1. Scientific Reports, 9, Article No. 1605.
https://doi.org/10.1038/s41598-019-38842-x
[57] Elokdah, H., Abou-Gharbia, M., Hennan, J.K., McFarlane, G., Mugford, C.P., Krishnamurthy, G., et al. (2004) Tiplaxtinin, a Novel, Orally Efficacious Inhibitor of Plasminogen Activator Inhibitor-1: Design, Synthesis, and Preclinical Characterization. Journal of Medicinal Chemistry, 47, 3491-3494.
https://doi.org/10.1021/jm049766q
[58] Gorlatova, N.V., Cale, J.M., Elokdah, H., Li, D., Fan, K., Warnock, M., et al. (2007) Mechanism of Inactivation of Plasminogen Activator Inhibitor-1 by a Small Molecule Inhibitor. Journal of Biological Chemistry, 282, 9288-9296.
https://doi.org/10.1074/jbc.m611642200
[59] Fortenberry, Y.M. (2013) Plasminogen Activator Inhibitor-1 Inhibitors: A Patent Review (2006-Present). Expert Opinion on Therapeutic Patents, 23, 801-815.
https://doi.org/10.1517/13543776.2013.782393
[60] Sarker, B., Cardona, S.M., Church, K.A., Vanegas, D., Velazquez, P., Rorex, C., et al. (2022) Defibrinogenation Ameliorates Retinal Microgliosis and Inflammation in a CX3CR1-Independent Manner. ASN Neuro, 14, Article 17590914221131446.
https://doi.org/10.1177/17590914221131446
[61] Tuttle, K.R., Agarwal, R., Alpers, C.E., Bakris, G.L., Brosius, F.C., Kolkhof, P., et al. (2022) Molecular Mechanisms and Therapeutic Targets for Diabetic Kidney Disease. Kidney International, 102, 248-260.
https://doi.org/10.1016/j.kint.2022.05.012
[62] Abu Seman, N. and Othman, S.H. (2023) Recent Progress in Genetics and Epigenetics Research on Diabetic Nephropathy in Malaysia. Journal of Diabetes Research, 2023, 1-8.
https://doi.org/10.1155/2023/9053580