|
[1]
|
Herrmann, J., Kaski, J.C. and Lerman, A. (2012) Coronary Microvascular Dysfunction in the Clinical Setting: From Mystery to Reality. European Heart Journal, 33, 2771-2783. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kaski, J., Crea, F., Gersh, B.J. and Camici, P.G. (2018) Reappraisal of Ischemic Heart Disease. Circulation, 138, 1463-1480. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Crea, F., Camici, P.G. and Bairey Merz, C.N. (2013) Coronary Microvascular Dysfunction: An Update. European Heart Journal, 35, 1101-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Del Buono, M.G., Montone, R.A., Camilli, M., Carbone, S., Narula, J., Lavie, C.J., et al. (2021) Coronary Microvascular Dysfunction across the Spectrum of Cardiovascular Diseases. Journal of the American College of Cardiology, 78, 1352-1371. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Camici, P.G. and Crea, F. (2007) Coronary Microvascular Dysfunction. New England Journal of Medicine, 356, 830-840. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Horinaka, S. (2011) Use of Nicorandil in Cardiovascular Disease and Its Optimization. Drugs, 71, 1105-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ota, S., Nishikawa, H., Takeuchi, M., Nakajima, K., Nakamura, T., Okamoto, S., et al. (2006) Impact of Nicorandil to Prevent Reperfusion Injury in Patients with Acute Myocardial Infarction Sigmart Multicenter Angioplasty Revascularization Trial (Smart). Circulation Journal, 70, 1099-1104. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Markham, A., Plosker, G.L. and Goa, K.L. (2000) Nicorandil. An Updated Review of Its Use in Ischaemic Heart Disease with Emphasis on Its Cardioprotective Effects. Drugs, 60, 955-974. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chinushi, M., Kasai, H., Tagawa, M., Washizuka, T., Hosaka, Y., Chinushi, Y., et al. (2002) Triggers of Ventricular Tachyarrhythmias and Therapeutic Effects of Nicorandil in Canine Models of LQT2 and LQT3 Syndromes. Journal of the American College of Cardiology, 40, 555-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gomma, A.H., Purcell, H.J. and Fox, K.M. (2001) Potassium Channel Openers in Myocardial Ischaemia: Therapeutic Potential of Nicorandil. Drugs, 61, 1705-1710. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Gvishiani, M., Gabunia, L., Makharadze, T. and Gongadze, N. (2018) Nicorandil Efficacy in the Treatment of Ischemic Heart Disease (Review). Georgian Medical News, 280-281, 152-155.
|
|
[12]
|
Dankar, R., Wehbi, J., Atasi, M.M., Alam, S. and Refaat, M.M. (2024) Coronary Microvascular Dysfunction, Arrythmias, and Sudden Cardiac Death: A Literature Review. American Heart Journal Plus: Cardiology Research and Practice, 41, Article ID: 100389. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dörge, H., Schulz, R., Belosjorow, S., Post, H., van de Sand, A., Konietzka, I., et al. (2002) Coronary Microembolization: The Role of TNF-α in Contractile Dysfunction. Journal of Molecular and Cellular Cardiology, 34, 51-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Skyschally, A., Erbel, R. and Heusch, G. (2003) Coronary Microembolization. Circulation Journal, 67, 279-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Su, Q., Li, L., Zhao, J., Sun, Y. and Yang, H. (2017) MiRNA Expression Profile of the Myocardial Tissue of Pigs with Coronary Microembolization. Cellular Physiology and Biochemistry, 43, 1012-1024. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Su, Q., Li, L., Wang, J., Zhou, Y. and Liu, Y. (2015) Mechanism of Programmed Cell Death Factor 4/Nuclear Factor-κB Signaling Pathway in Porcine Coronary Micro-Embolization-Induced Cardiac Dysfunction. Experimental Biology and Medicine, 240, 1426-1433. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Suryapranata, H. (1993) Coronary Haemodynamics and Vasodilatory Profile of a Potassium Channel Opener in Patients with Coronary Artery Disease. European Heart Journal, 14, 16-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yoneyama, F., Satoh, K. and Taira, N. (1990) Nicorandil Increases Coronary Blood Flow Predominantly by K-Channel Opening Mechanism. Cardiovascular Drugs and Therapy, 4, 1119-1126. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Loubani, M. and Galiñanes, M. (2002) Long-Term Administration of Nicorandil Abolishes Ischemic and Pharmacologic Preconditioning of the Human Myocardium: Role of Mitochondrial Adenosine Triphosphate-Dependent Potassium Channels. The Journal of Thoracic and Cardiovascular Surgery, 124, 750-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Iwamoto, T., Miura, T., Urabe, K., Itoya, M., Shimamoto, K. and Iimura, O. (1993) Effect of Nicorandil on Post-Ischaemic Contractile Dysfunction in the Heart: Roles of Its ATP-Sensitive K+ Channel Opening Property and Nitrate Property. Clinical and Experimental Pharmacology and Physiology, 20, 595-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Minamiyama, Y., Takemura, S., Hai, S., Suehiro, S., Okada, S. and Funae, Y. (2007) Nicorandil Elevates Tissue cGMP Levels in a Nitric-Oxide-Independent Manner. Journal of Pharmacological Sciences, 103, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Singh, D., Singh, R. and Akindele, A.J. (2024) Therapeutic Potential of Nicorandil Beyond Anti-Anginal Drug: A Review on Current and Future Perspectives. Heliyon, 10, e28922. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tarkin, J.M. and Kaski, J.C. (2016) Vasodilator Therapy: Nitrates and Nicorandil. Cardiovascular Drugs and Therapy, 30, 367-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, Y., Wang, X., Liu, R., Li, Q., Tian, W., Lei, H., et al. (2021) The Effectiveness and Safety of Nicorandil in the Treatment of Patients with Microvascular Angina: A Protocol for Systematic Review and Meta-Analysis. Medicine, 100, e23888. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Patel, D. (1999) Cardioprotection by Opening of the K(ATP) Channel in Unstable Angina Is This a Clinical Manifestation of Myocardial Preconditioning? Results of a Randomized Study with Nicorandil. CESAR 2 Investigation. Clinical European Studies in Angina and Revascularization. European Heart Journal, 20, 51-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sugimoto, K., Ito, H., Iwakura, K., Ikushima, M., Kato, A., Kimura, R., et al. (2003) Intravenous Nicorandil in Conjunction with Coronary Reperfusion Therapy Is Associated with Better Clinical and Functional Outcomes in Patients with Acute Myocardial Infarction. Circulation Journal, 67, 295-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Novakovic, A., Pavlovic, M., Stojanovic, I., Milojevic, P., Babic, M., Ristic, S., et al. (2011) Different K+ Channels Are Involved in Relaxation of Arterial and Venous Graft Induced by Nicorandil. Journal of Cardiovascular Pharmacology, 58, 602-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Marinko, M., Novakovic, A., Nenezic, D., Stojanovic, I., Milojevic, P., Jovic, M., et al. (2015) Nicorandil Directly and Cyclic Gmp-Dependently Opens K+ Channels in Human Bypass Grafts. Journal of Pharmacological Sciences, 128, 59-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lu, C., Minatoguchi, S., Arai, M., Wang, N., Chen, X., Bao, N., et al. (2006) Nicorandil Improves Post-Ischemic Myocardial Dysfunction in Association with Opening the Mitochondrial K (ATP) Channels and Decreasing Hydroxyl Radicals in Isolated Rat Hearts. Circulation Journal, 70, 1650-1654. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Heusch, G., Kleinbongard, P., Böse, D., Levkau, B., Haude, M., Schulz, R., et al. (2009) Coronary Microembolization. From Bedside to Bench and Back to Bedside. Circulation, 120, 1822-1836. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bahrmann, P., Werner, G.S., Heusch, G., Ferrari, M., Poerner, T.C., Voss, A., et al. (2007) Detection of Coronary Microembolization by Doppler Ultrasound in Patients with Stable Angina Pectoris Undergoing Elective Percutaneous Coronary Interventions. Circulation, 115, 600-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pang, Z., Zhao, W. and Yao, Z. (2017) Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Medical Science Monitor, 23, 2924-2930. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
He, W.K., Su, Q., Liang, J.B., et al. (2018) Nicorandil Pretreatment Inhibits Myocardial Apoptosis and Improves Cardiac Function after Coronary Microembolization in Rats. Journal of Geriatric Cardiology, 15, 591-597.
|
|
[34]
|
Su, Q., Li, L., Zhao, J., Sun, Y. and Yang, H. (2017) Effects of Nicorandil on PI3K/Akt Signaling Pathway and Its Anti-Apoptotic Mechanisms in Coronary Microembolization in Rats. Oncotarget, 8, 99347-99358. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, X., Pan, J., Liu, D., Zhang, M., Li, X., Tian, J., et al. (2019) Nicorandil Alleviates Apoptosis in Diabetic Cardiomyopathy through PI3K/Akt Pathway. Journal of Cellular and Molecular Medicine, 23, 5349-5359. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Wu, M., Huang, Z., Xie, H. and Zhou, Z. (2013) Nicorandil in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. PLOS ONE, 8, e78231. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shi, L., Chen, L., Qi, G., Tian, W. and Zhao, S. (2019) Effects of Intracoronary Nicorandil on Myocardial Microcirculation and Clinical Outcomes in Patients with Acute Myocardial Infarction: A Meta-Analysis of Randomized Controlled Trials. American Journal of Cardiovascular Drugs, 20, 191-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Geng, N., Ren, L., Xu, L., Zou, D. and Pang, W. (2021) Clinical Outcomes of Nicorandil Administration in Patients with Acute ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Cardiovascular Disorders, 21, Article No. 488. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wen, X. and Li, L. (2019) Research Progress on the Mechanism and Clinical Application of Nicorandil in the Treatment of Coronary Microvascular Disease. Shandong Medical Journal, 59, 107-110.
|