[1]
|
Aoki, A., Hirahara, K., Kiuchi, M. and Nakayama, T. (2021) Eosinophils: Cells Known for over 140 Years with Broad and New Functions. Allergology International, 70, 3-8. https://doi.org/10.1016/j.alit.2020.09.002
|
[2]
|
Muniz, V.S., Weller, P.F. and Neves, J.S. (2012) Eosinophil Crystalloid Granules: Structure, Function, and Beyond. Journal of Leukocyte Biology, 92, 281-288. https://doi.org/10.1189/jlb.0212067
|
[3]
|
Matucci, A., Maggi, E. and Vultaggio, A. (2019) Eosinophils, the IL-5/IL-5Rα Axis, and the Biologic Effects of Benralizumab in Severe Asthma. Respiratory Medicine, 160, Article ID: 105819. https://doi.org/10.1016/j.rmed.2019.105819
|
[4]
|
Farahi, N., Loutsios, C., Simmonds, R.P., Porter, L., Gillett, D., Heard, S., et al. (2014) Measurement of Eosinophil Kinetics in Healthy Volunteers. In: Walsh, G., Ed., Eosinophils, Springer, 165-176. https://doi.org/10.1007/978-1-4939-1016-8_15
|
[5]
|
Wechsler, M.E., Munitz, A., Ackerman, S.J., Drake, M.G., Jackson, D.J., Wardlaw, A.J., et al. (2021) Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 96, 2694-2707. https://doi.org/10.1016/j.mayocp.2021.04.025
|
[6]
|
Choi, Y., Luu, Q.Q. and Park, H. (2022) Extracellular Traps: A Novel Therapeutic Target for Severe Asthma. Journal of Asthma and Allergy, 15, 803-810. https://doi.org/10.2147/jaa.s366014
|
[7]
|
Al Duhailib, Z., Farooqi, M., Piticaru, J., Alhazzani, W. and Nair, P. (2021) The Role of Eosinophils in Sepsis and Acute Respiratory Distress Syndrome: A Scoping Review. Canadian Journal of Anesthesia/Journal Canadien d’Anesthésie, 68, 715-726. https://doi.org/10.1007/s12630-021-01920-8
|
[8]
|
Pant, H., Hercus, T.R., Tumes, D.J., Yip, K.H., Parker, M.W., Owczarek, C.M., et al. (2023) Translating the Biology of Β Common Receptor-Engaging Cytokines into Clinical Medicine. Journal of Allergy and Clinical Immunology, 151, 324-344. https://doi.org/10.1016/j.jaci.2022.09.030
|
[9]
|
Morjaria, J.B., Emma, R., Fuochi, V., Polosa, R. and Caruso, M. (2019) An Evaluation of Mepolizumab for the Treatment of Severe Asthma. Expert Opinion on Biological Therapy, 19, 491-500. https://doi.org/10.1080/14712598.2019.1610382
|
[10]
|
Johnston, L.K., Hsu, C., Krier-Burris, R.A., Chhiba, K.D., Chien, K.B., McKenzie, A., et al. (2016) IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. The Journal of Immunology, 197, 3445-3453. https://doi.org/10.4049/jimmunol.1600611
|
[11]
|
Dolitzky, A., Grisaru‐Tal, S., Avlas, S., Hazut, I., Gordon, Y., Itan, M., et al. (2022) Mouse Resident Lung Eosinophils Are Dependent on IL‐5. Allergy, 77, 2822-2825. https://doi.org/10.1111/all.15362
|
[12]
|
Mümmler, C., Suhling, H., Walter, J., Kneidinger, N., Buhl, R., Kayser, M.Z., et al. (2022) Overall Response to Anti-IL-5/Anti-IL5-Rα Treatment in Severe Asthma Does Not Depend on Initial Bronchodilator Responsiveness. The Journal of Allergy and Clinical Immunology: In Practice, 10, 3174-3183. https://doi.org/10.1016/j.jaip.2022.07.007
|
[13]
|
Komlósi, Z.I., van de Veen, W., Kovács, N., Szűcs, G., Sokolowska, M., O’Mahony, L., et al. (2022) Cellular and Molecular Mechanisms of Allergic Asthma. Molecular Aspects of Medicine, 85, Article ID: 100995. https://doi.org/10.1016/j.mam.2021.100995
|
[14]
|
Ferrante, G., Tenero, L., Piazza, M. and Piacentini, G. (2022) Severe Pediatric Asthma Therapy: Dupilumab. Frontiers in Pediatrics, 10, Article 963610. https://doi.org/10.3389/fped.2022.963610
|
[15]
|
Matucci, A., Bormioli, S., Nencini, F., Maggi, E. and Vultaggio, A. (2020) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 17, 63-71. https://doi.org/10.1080/1744666x.2020.1860755
|
[16]
|
Pelaia, C., Pelaia, G., Crimi, C., Maglio, A., Armentaro, G., Calabrese, C., et al. (2022) Biological Therapy of Severe Asthma with Dupilumab, a Dual Receptor Antagonist of Interleukins 4 and 13. Vaccines, 10, Article 974. https://doi.org/10.3390/vaccines10060974
|
[17]
|
Tu, L., Chen, J., Zhang, H. and Duan, L. (2017) Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells. Frontiers in Immunology, 8, Article 214. https://doi.org/10.3389/fimmu.2017.00214
|
[18]
|
Rosenberg, H.F., Phipps, S. and Foster, P.S. (2007) Eosinophil Trafficking in Allergy and Asthma. Journal of Allergy and Clinical Immunology, 119, 1303-1310. https://doi.org/10.1016/j.jaci.2007.03.048
|
[19]
|
Komiya, A., Nagase, H., Yamada, H., Sekiya, T., Yamaguchi, M., Sano, Y., et al. (2003) Concerted Expression of Eotaxin-1, Eotaxin-2, and Eotaxin-3 in Human Bronchial Epithelial Cells. Cellular Immunology, 225, 91-100. https://doi.org/10.1016/j.cellimm.2003.10.001
|
[20]
|
Busse, W.W., Kraft, M., Rabe, K.F., Deniz, Y., Rowe, P.J., Ruddy, M., et al. (2021) Understanding the Key Issues in the Treatment of Uncontrolled Persistent Asthma with Type 2 Inflammation. European Respiratory Journal, 58, Article ID: 2003393. https://doi.org/10.1183/13993003.03393-2020
|
[21]
|
Steelant, B., Wawrzyniak, P., Martens, K., Jonckheere, A., Pugin, B., Schrijvers, R., et al. (2019) Blocking Histone Deacetylase Activity as a Novel Target for Epithelial Barrier Defects in Patients with Allergic Rhinitis. Journal of Allergy and Clinical Immunology, 144, 1242-1253.e7. https://doi.org/10.1016/j.jaci.2019.04.027
|
[22]
|
Corren, J. (2013) Role of Interleukin-13 in Asthma. Current Allergy and Asthma Reports, 13, 415-420. https://doi.org/10.1007/s11882-013-0373-9
|
[23]
|
徐庆雷, 周红, 马小波, 等. 哮喘患儿支气管肺泡灌洗液GM-CSF和MPO水平的变化及意义[J]. 检验医学, 2017, 32(7): 603-606.
|
[24]
|
Wicks, I.P. and Roberts, A.W. (2015) Targeting GM-CSF in Inflammatory Diseases. Nature Reviews Rheumatology, 12, 37-48. https://doi.org/10.1038/nrrheum.2015.161
|
[25]
|
Acciani, T.H., Suzuki, T., Trapnell, B.C. and Le Cras, T.D. (2016) Epidermal Growth Factor Receptor Signalling Regulates Granulocyte-Macrophage Colony‐Stimulating Factor Production by Airway Epithelial Cells and Established Allergic Airway Disease. Clinical & Experimental Allergy, 46, 317-328. https://doi.org/10.1111/cea.12612
|
[26]
|
Esnault, S., Kelly, E.A.B., Shen, Z., Johansson, M.W., Malter, J.S. and Jarjour, N.N. (2015) IL-3 Maintains Activation of the P90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils. The Journal of Immunology, 195, 2529-2539. https://doi.org/10.4049/jimmunol.1500871
|
[27]
|
Willebrand, R. and Voehringer, D. (2016) IL-33-Induced Cytokine Secretion and Survival of Mouse Eosinophils Is Promoted by Autocrine GM-CSF. PLOS ONE, 11, e0163751. https://doi.org/10.1371/journal.pone.0163751
|
[28]
|
Nobs, S.P., Kayhan, M. and Kopf, M. (2019) GM-CSF Intrinsically Controls Eosinophil Accumulation in the Setting of Allergic Airway Inflammation. Journal of Allergy and Clinical Immunology, 143, 1513-1524.e2. https://doi.org/10.1016/j.jaci.2018.08.044
|
[29]
|
Smith, R.J., et al. (2023) TNF-α-TNFR2 Axis Reprograms Mitochondrial Metabolism via mTORC1 in Eosinophils. Nature Immunology, 24, 234-245.
|
[30]
|
陈青云. MicroRNA223通过靶向STAT3调控Toll样受体触发的巨噬细胞IL-6和IL-1β的分泌[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
|
[31]
|
Huang, Q., et al. (2023) IL-6/JAK1/STAT3/miR-155 Axis Suppresses Eosinophil Apoptosis via Bim Downregulation. Journal of Allergy and Clinical Immunology, 151, 225-238.
|
[32]
|
Chen, S., Chen, Z., Deng, Y., Zha, S., Yu, L., Li, D., et al. (2022) Prevention of IL-6 Signaling Ameliorates Toluene Diisocyanate-Induced Steroid-Resistant Asthma. Allergology International, 71, 73-82. https://doi.org/10.1016/j.alit.2021.07.004
|
[33]
|
Pilette, C., Canonica, G.W., Chaudhuri, R., Chupp, G., Lee, F.E., Lee, J.K., et al. (2022) REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 10, 2646-2656. https://doi.org/10.1016/j.jaip.2022.05.042
|
[34]
|
Kelly, E.A., Esnault, S., Liu, L.Y., Evans, M.D., Johansson, M.W., Mathur, S., et al. (2017) Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. American Journal of Respiratory and Critical Care Medicine, 196, 1385-1395. https://doi.org/10.1164/rccm.201611-2234oc
|
[35]
|
Korn, S., Cook, B., Simpson, L.J., Llanos, J. and Ambrose, C.S. (2023) Efficacy of Biologics in Severe, Uncontrolled Asthma Stratified by Blood Eosinophil Count: A Systematic Review. Advances in Therapy, 40, 2944-2964. https://doi.org/10.1007/s12325-023-02514-0
|
[36]
|
Nair, P., Bardin, P., Humbert, M., Murphy, K.R., Hickey, L., Garin, M., et al. (2020) Efficacy of Intravenous Reslizumab in Oral Corticosteroid-Dependent Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 8, 555-564. https://doi.org/10.1016/j.jaip.2019.09.036
|
[37]
|
Pérez de Llano, L., Cosío, B., Lobato Astiárraga, I., Soto Campos, G., Tejedor Alonso, M., Marina Malanda, N., et al. (2023) First-Line versus Second-Line Use of Reslizumab in Severe Uncontrolled Asthma. Journal of Investigational Allergy and Clinical Immunology, 33, 220-222. https://doi.org/10.18176/jiaci.0839
|
[38]
|
Dagher, R., Kumar, V., Copenhaver, A.M., Gallagher, S., Ghaedi, M., Boyd, J., et al. (2021) Novel Mechanisms of Action Contributing to Benralizumab’s Potent Anti-Eosinophilic Activity. European Respiratory Journal, 59, Article ID: 2004306. https://doi.org/10.1183/13993003.04306-2020
|
[39]
|
Menzella, F., Biava, M., Bagnasco, D., Galeone, C., Simonazzi, A., Ruggiero, P., et al. (2019) Efficacy and Steroid-Sparing Effect of Benralizumab: Has It an Advantage over Its Competitors? Drugs in Context, 8, 1-11. https://doi.org/10.7573/dic.212580
|
[40]
|
Vultaggio, A., Aliani, M., Altieri, E., Bracciale, P., Brussino, L., Caiaffa, M.F., et al. (2023) Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma Patients Treated for 96-Weeks: Data from the ANANKE Study. Respiratory Research, 24, Article No. 135. https://doi.org/10.1186/s12931-023-02439-w
|
[41]
|
Bergantini, L., d’Alessandro, M., Pianigiani, T., Cekorja, B., Bargagli, E. and Cameli, P. (2023) Benralizumab Affects NK Cell Maturation and Proliferation in Severe Asthmatic Patients. Clinical Immunology, 253, Article ID: 109680. https://doi.org/10.1016/j.clim.2023.109680
|
[42]
|
Le Floc’h, A., Allinne, J., Nagashima, K., Scott, G., Birchard, D., Asrat, S., et al. (2020) Dual Blockade of IL‐4 and IL‐13 with Dupilumab, an IL‐4Rα Antibody, Is Required to Broadly Inhibit Type 2 Inflammation. Allergy, 75, 1188-1204. https://doi.org/10.1111/all.14151
|
[43]
|
Freeman, C.M., Curtis, J.L. and Hastie, A.T. (2023) Finding the Right Biological: Eosinophil Subset Differences in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 121-123. https://doi.org/10.1164/rccm.202305-0811ed
|
[44]
|
褚小娟, 杨文婷, 唐连涛, 等. 新型抗嗜酸性粒细胞药物在哮喘中应用的研究进展[J]. 中国医药, 2024, 19(6): 924-927.
|
[45]
|
Szefler, S.J., Roberts, G., Rubin, A.S., Zielen, S., Kuna, P., Alpan, O., et al. (2022) Efficacy, Safety, and Tolerability of Lebrikizumab in Adolescent Patients with Uncontrolled Asthma (Acoustics). Clinical and Translational Allergy, 12, e12176. https://doi.org/10.1002/clt2.12176
|
[46]
|
Corren, J., Szefler, S.J., Sher, E., Korenblat, P., Soong, W., Hanania, N.A., et al. (2024) Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. The Journal of Allergy and Clinical Immunology: In Practice, 12, 1215-1224.e3. https://doi.org/10.1016/j.jaip.2024.02.007
|
[47]
|
Tollenaere, M., Litman, T., Moebus, L., Rodriguez, E., Stölzl, D., Drerup, K., et al. (2021) Skin Barrier and Inflammation Genes Associated with Atopic Dermatitis Are Regulated by Interleukin-13 and Modulated by Tralokinumab in Vitro. Acta Dermato Venereologica, 101, adv00447. https://doi.org/10.2340/00015555-3810
|
[48]
|
Russell, R.J., Chachi, L., FitzGerald, J.M., Backer, V., Olivenstein, R., Titlestad, I.L., et al. (2018) Effect of Tralokinumab, an Interleukin-13 Neutralising Monoclonal Antibody, on Eosinophilic Airway Inflammation in Uncontrolled Moderate-to-Severe Asthma (MESOS): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Trial. The Lancet Respiratory Medicine, 6, 499-510. https://doi.org/10.1016/s2213-2600(18)30201-7
|
[49]
|
黄宝萱, 林晓彤, 张颖琳, 等. 基于ERK1/2信号通路的加味过敏煎对过敏性哮喘小鼠影响的机制研究[J]. 时珍国医国药, 2025, 36(2): 246-252.
|
[50]
|
Cremer, P.C., Abbate, A., Hudock, K., McWilliams, C., Mehta, J., Chang, S.Y., et al. (2021) Mavrilimumab in Patients with Severe COVID-19 Pneumonia and Systemic Hyperinflammation (MASH-COVID): An Investigator Initiated, Multicentre, Double-Blind, Randomised, Placebo-Controlled Trial. The Lancet Rheumatology, 3, e410-e418. https://doi.org/10.1016/s2665-9913(21)00070-9
|