嗜酸性粒细胞及其相关细胞因子在支气管哮喘中的研究进展
Research Advances in Eosinophils and Associated Cytokines in Bronchial Asthma
DOI: 10.12677/acm.2025.1551509, PDF, HTML, XML,   
作者: 李 娅, 谭尧轩, 杨 艺:成都中医药大学临床医学院,四川 成都;王 慧*:成都市第一人民医院呼吸科,四川 成都
关键词: 支气管哮喘嗜酸性粒细胞细胞因子气道炎症靶向治疗Bronchial Asthma Eosinophils Cytokines Airway Inflammation Targeted Therapy
摘要: 哮喘是一种以慢性气道炎症为特征的异质性疾病。临床表现为喘息、气促、胸闷和咳嗽等症状,这些症状随时间和强度而变化,且哮喘的气流受限是可逆的。哮喘的发病率呈逐年上升趋势,因此如何精准有效地控制及治疗是我们应该关注的重点。嗜酸性粒细胞作为核心成分参与了多种类型哮喘发病全过程,对其水平的监测能够充分反映患者气道炎症变化情况,对于患者病情评估具有重要的临床价值。现对嗜酸性粒细胞及其相关因子在支气管哮喘的国内外研究进展作一概述,为支气管哮喘的治疗提供理论依据。
Abstract: Asthma is a heterogeneous disease characterized by chronic airway inflammation. Its clinical manifestations include wheezing, shortness of breath, chest tightness, and cough, with symptoms varying in intensity and duration over time. Notably, asthma-associated airflow limitation is reversible. The escalating global prevalence of asthma underscores the urgency to prioritize precise and effective disease management and treatment strategies. Eosinophils, as a central component, are involved throughout the pathogenesis of various asthma subtypes. Monitoring eosinophil levels provides critical insights into dynamic changes in airway inflammation, offering substantial clinical value for disease assessment and therapeutic decision-making. This article synthesizes current domestic and international research advancements on eosinophils and their related factors in bronchial asthma, aiming to establish a theoretical foundation for optimizing asthma treatment protocols.
文章引用:李娅, 王慧, 谭尧轩, 杨艺. 嗜酸性粒细胞及其相关细胞因子在支气管哮喘中的研究进展[J]. 临床医学进展, 2025, 15(5): 1415-1422. https://doi.org/10.12677/acm.2025.1551509

1. 嗜酸性粒细胞的活化与募集

1.1. 嗜酸性粒细胞的活化

嗜酸性粒细胞(Eosinophil, EOS)是人体中来源于骨髓造血干细胞中的一种含有嗜酸性颗粒的细胞,也是白细胞的一种,其细胞核分叶呈眼镜状。其分化受转录因子GATA蛋白1 (GATA-1)、PU.1和CCAAT增强结合蛋白(c/EBP)家族的调控。EOS以成熟表型状态从骨髓释放到外周血中,在适当的刺激(主要是IL-5和EOS趋化因子)下被激活。活化的嗜酸性粒细胞含有大量能引起炎症或组织损伤的介质,而EOS的效应器功能和释放与存在特定颗粒中的介质息息相关。这些介质包括基本蛋白质、细胞因子、趋化因子、酶等,都能够诱发炎症和组织损伤。胞质中含有四种细胞毒性蛋白质,包括主要碱性蛋白(major basic protein, MBP)、嗜酸性粒细胞阳离子蛋白(eosinophil cationic protein, ECP)、嗜酸性粒细胞衍生的神经毒素(eosinophil-derived neurotoxin, EDN)和嗜酸性粒细胞过氧化物酶(eosinophil peroxidase, EPX) [1]。颗粒通过三种不同的脱离过程释放:1) 胞外作用(释放的特定颗粒与嗜酸性粒细胞膜融合);2) 细胞分解:释放所有细胞内容物;3) 分段脱颗粒(零星脱粒):其中特定颗粒的囊泡在细胞的细胞溶胶中释放,并通过嗜酸性粒细胞膜传播,最终达到细胞外环境[2]。零星脱粒已被接受为最常观察到的EOS脱粒的生理形式[3]。正常情况下,进入胸腺或胃肠道之前,EOS在外周血中的停留时间很短暂(半衰期约为18小时) [4]。但其存活时间可在炎症刺激下延长。

1.2. 嗜酸性粒细胞的募集

EOS多存在于机体的血液、组织液中,可参与Th2细胞的免疫应答,并在细胞因子的作用下产生促炎因子与免疫调节因子。EOS活化后通过脱颗粒释放MBP、ECP、EDN、EPX、以及其他炎性介质而参与上皮损伤、组织修复等多种病理过程,诱导炎性细胞的黏附聚集、刺激炎性因子的分泌等[5] [6]。并且在趋化因子配体5 (chemokine ligand 5, CCL5)、CCL7、CCL11等因子的趋化作用下,EOS到达肺部的炎症部位发挥生物学作用,通过脱颗粒产生EPO引起氧化应激,还可释放颗粒蛋白如ECP和形成胞外诱捕网而产生细胞毒性,从而导致组织炎症损伤,包括肺泡损伤、毛细血管渗漏、间质水肿等[7]

2. 嗜酸性粒细胞相关细胞因子在哮喘中的病理生理作用

2.1. IL-5

白介素-5 (Interleukin 5, IL-5)也被称为EOS分化因子或B细胞生长因子-2,主要由激活的TH2淋巴细胞和2型先天淋巴细胞产生,部分可由肥大细胞和EOS产生[8]。IL-5的受体是异二聚体,由特定于IL-5 (IL5Ra)的αβ2个不同亚基组成的多肽链,IL-5可以特异性结合IL-5受体的α亚基,通过JAK/STAT、Btk和Ras/Raf-ERK信号通路转导,对EOS在血液及局部组织中的分化、成熟、迁移以及预防嗜酸性粒细胞凋亡发挥重要作用[9]。IL-5在哮喘病免疫学机制中发挥重要作用,早在20世纪80年代就已经证实IL-5在迟发相哮喘反应的EOS浸润中起重要作用,主要促进EOS在气道内的聚集和浸润。而后又有研究证实IL-5作为一种EOS分化因子,可以诱导EOS前体的生长和分化,能激活和选择性趋化成熟的EOS,是气道变应性炎症中引起EOS数目增多和活性增强的主要细胞因子[10]。在小鼠模型中,IL-5保持了肺类EOS的存活,显著降低了肺和外周血EOS的百分比和总数以及降低哮喘豚鼠对组胺的气道高反应性,从而提示IL-5与哮喘病的EOS浸润和气道高反应性有关[11]。EOS表面高度表达IL-5Ra,一旦EOS从骨髓和血库转移到气道,就会发生气道炎症和损伤。

IL-5还增强内皮细胞上黏附分子的表达,从而允许EOS的附着。一旦被激活,EOS释放的蛋白质和酶可以通过直接接触或通过产生具有细胞毒性的反应性氧化剂物质对细胞造成损伤。随后,修复途径被激活,导致组织的结构变化[12]。通过抑制该途径,抗IL-5生物制剂减少EOS气道炎症。因此IL-5是嗜酸性粒细胞哮喘的理想靶点。

2.2. IL-4和IL-13

白细胞介素-4 (IL-4)和白介素-13 (IL-13)主要由Th2细胞、T滤泡辅助(Tfh)淋巴细胞和ILC2产生[13]。IL-4、IL-13是参与哮喘潜在免疫炎症和结构变化的病理学的关键细胞因子。IL-4能促进Th2细胞分化、免疫球蛋白E (IgE)的合成、EOS进入呼吸道。IIL-13主要负责气道高反应性、粘液产生、IgE合成的重要调控和支气管结构改变[14] [15]。L-13与IL-4共同诱导IgE产生,其他功能包括促进一氧化氮(NO)合成、EOS趋化、支气管过度反应和粘液分泌,以及气道常驻细胞的增殖。研究发现,IL-4和IL-13的生物效应由细胞因子与IL-4受体(IL-4Rα)的α亚基结合触发的受体二聚化激活的复杂信号机制介导。人IgG4单克隆抗体-杜皮鲁单抗与IL-4Rα结合,从而防止IL-4和IL-13的相互作用,阻断二者的信号通路[16]。IL-4的这一基本病理生物学功能主要在于IL-4具有抑制Treg淋巴细胞介导的免疫调节过程的能力[17]。IL-4能通过向上调节血管细胞粘附分子-1 (VCAM-1)的内皮表达来促进EOS边缘化,而IL-13则通过从支气管上皮细胞中释放eotaxin-3 (CCL26)来刺激嗜酸性粒细胞的趋化,共同促进EOS向靶组织迁移[18] [19]。研究发现,IL-13还能促进气道平滑肌细胞的收缩和增生[20]。此外,IL-4和IL-13增加了组蛋白脱乙酰酶1和9 (HDAC 1和9)的表达,其生物活性与支气管上皮的完整性成反比[21]。因此,哮喘发病机制的基调在于IL-4和IL-13诱导了气道上皮的损伤。在从哮喘患者获得的外周血、支气管粘膜、诱导痰和支气管肺泡灌洗液(BALF)中可以检测到大量IL-4和IL-13 [22]。总而言之,IL-4与IL-13在哮喘气道重塑中发挥重要作用。

2.3. GM-CSF

粒细胞巨噬细胞集落刺激因子(GM-CSF)是一种在细菌脂多糖、白细胞介素和肿瘤坏死因子α等炎症因子刺激下,由内皮细胞等多种细胞分泌的相对分子质量为24~33 kDa的糖蛋白[23]。是一种具有多向和多效性质的细胞因子,参与了嗜酸性粒细胞分化、成熟、激活和合成毒性蛋白以及凋亡等调节过程[24]。有研究发现,GM-CSF在中、重度哮喘患者痰液中明显升高,且与疾病严重程度密切相关[25]。说明GM-CSF在中重度哮喘的急性发作期中起重要调节作用。研究证实GM-CSF可以刺激EOS的增殖和延长EOS的寿命,有效诱导EOS化学运动,改善EOS的体外存活率[26] [27]。GM-CSF等细胞因子的启动可以促进EOS的迁移,并加强肺部炎症中EOS的积累[28]。深入研究GM-CSF与气道变应性炎症的关系将对阐明哮喘病的免疫学发病机制和临床治疗有重要指导意义。

2.4. 其他细胞因子:如TNF-α、IL-1β、IL-6等

2.4.1. TNF-α (肿瘤坏死因子-α)

TNF-α主要由巨噬细胞、肥大细胞等产生,能够激活内皮细胞,促进炎症细胞(如嗜酸性粒细胞)向气道迁移。但最新研究发现TNF-α可以通过激活内皮细胞Notch信号通路显著增强CCL17/CCL22介导的嗜酸性粒细胞跨内皮迁移效率,这表明其作用机制已超越传统促炎功能。此外有报道提出TNF-α-TNFR2轴通过激活mTORC1信号能促进嗜酸性粒细胞线粒体代谢重编程,使其获得长期存活能力,这为慢性气道炎症提供了新的解释机制[29]。并且针对这一发现的新型双靶点抑制剂已进入Ⅱ期临床试验,为调节炎症环境的治疗又加了一种选择。

2.4.2. IL-1β (白细胞介素-1β)

IL-1β主要是由一种巨噬细胞、气道上皮细胞及中性粒细胞等产生的关键促炎细胞因子,通过激活炎症信号通路和调控免疫细胞功能,在嗜酸性粒细胞介导的气道炎症(如哮喘、慢性鼻窦炎伴鼻息肉)中发挥强效促炎作用,能够促进嗜酸性粒细胞的活化和聚集。IL-1β的调控机制研究近年取得突破性进展。除经典NLRP3炎症小体激活途径外,新发现的气道上皮细胞源性外泌体miR-223可通过靶向NLRP3 mRNA 3’UTR抑制IL-1β成熟,这为外泌体疗法提供了理论依据[30]。IL-1β能通过激活Gasdermin D介导的焦亡途径,促使嗜酸性粒细胞释放线粒体DNA形成胞外陷阱(EETs),直接损伤气道上皮屏障功能。而针对这一机制,特异性阻断IL-1β诱导的Gasdermin D寡聚化的小分子抑制剂GBD-9已在动物模型中显示出显著疗效。

2.4.3. IL-6 (白细胞介素-6)

IL-6 (白介素-6)是一种多效性细胞因子,主要由巨噬细胞、Th2细胞、气道上皮细胞及成纤维细胞等产生,参与调节免疫和炎症反应,促进嗜酸性粒细胞的存活和功能。IL-6的信号转导机制研究已从经典途径扩展到新型调控模式。最新发现IL-6通过激活JAK1/STAT3/miR-155轴,抑制嗜酸性粒细胞中促凋亡蛋白Bim表达,且该效应可被sIL-6R介导的反式信号增强[31]。有研究数据表明,IL-6单克隆抗体可以有效的废除TDI (甲苯二异氰酸酯)引起的气道炎症和重塑,这可以作为严重哮喘患者的临床潜在疗法[32]

3. 针对嗜酸性粒细胞及其相关细胞因子的靶向治疗

3.1. 抗IL-5及抗IL-5R单克隆抗体:如美泊利单抗、瑞利珠单抗、贝那利珠单抗等,可有效降低哮喘患者外周血和痰液中嗜酸性粒细胞计数,改善哮喘控制

3.1.1. 美泊利珠单抗

美泊利珠单抗(Mepolizumab)是一种抗IL-5单克隆抗体,该抗体通过抑制IL-5与EOS上表达的IL-5受体的α链的结合来使其失活,从而阻断EOS的存活、活化、增值[33]。KeIIy等研究证明了美泊利珠单抗具有强大的抗EOS作用,可显著减少循环和气道中EOS的数量,尽管美泊利珠单抗不能将循环中的EOS完全消除,但可以影响嗜酸性粒细胞源性神经毒素mRNA表达的激活[34]。Korn等研究表明,在患有严重嗜酸性粒细胞增多症的参与者中,美泊利珠单抗可以提高患者的生活质量,并将哮喘的急性发作率降低约50% [35]

3.1.2. 瑞利珠单抗

瑞利珠单抗(Reslizumab)是一种针对IL-5的IgG亚类4K单克隆抗体,通过中和IL-5,来阻止其与EOS之间的结合。一项现实世界研究利用随机对照试验证实瑞利珠单抗可以减少哮喘恶化率和口服糖皮质激素(OCS)的使用,并改善哮喘症状、肺功能和降低救援药物的使用率[36]。在荷兰哮喘专家中进行的一项匿名调查证实了瑞利珠单抗具有优于其他2型生物制剂的额外有益效果。并且这些有益效果不仅在使用瑞利珠单抗作为首选附加生物治疗的患者中表现明显,在先前另一种2型生物治疗失败后转而使用瑞利珠单抗的患者中也表现明显。当从另一种生物制剂切换至瑞利珠单抗后,即使是针对的相同细胞因子,瑞利珠单抗也会产生额外的临床改善效果[37]

3.1.3. 贝那利珠单抗

贝那利珠单抗(Benralizumab)是一种被批准用于治疗SEA的单克隆抗体[38]。它是一种人源化的聚焦免疫球蛋白(Ig) G1/k抗体,与白细胞介素5受体α (IL-5Rα)和Fcγ受体IIIa (Fcγ RIIIa)结合,分别由EOS和自然杀伤细胞大量表达,进而触发由抗体依赖性细胞介导的细胞毒性(antibody dependent cell mediated cytotoxicity, ADCC)操作的EOS凋亡[39]。而EOS几乎完全耗尽这一特点,则是贝那利珠单抗与美泊利珠单抗和瑞利珠单抗的重要区分点[40],并决定了贝那利珠单抗在SEA患者中的疗效[41]。据国外一项回顾性的长期研究结果显示,贝那利珠单抗能迅速降低恶化率,部分基线患者亚组中急性加重的表型其AER降低范围从112个月的95%到36个月的89%,结合在整个治疗期间观察到的广泛效果,可进行推测,贝那利珠单抗可以减少所有类型的急性加重,包括感染性和非感染性。

3.2. 抗IL-4、IL-13单克隆抗体:如度匹鲁单抗,可阻断IL-4和IL-13的信号传导,抑制Th2型免疫反应

3.2.1. 度普利尤单抗

度普利尤单抗(Dupilumab)是一种针对白细胞介素(IL)-4受体α亚基的IgG单克隆抗体[42],作为对IL-4和IL-13的拮抗剂,可抑制IL-4和IL-13的信号传导。度普利尤单抗通过在IL-13受体共享的亚基水平上与IL-4受体的亚基结合,阻断这两种细胞因子的炎症级联和Th2炎症途径的进展[43]。无论基线EOS水平如何,在哮喘方面使用度普利尤单抗均可降低病情恶化率,从而改善肺功能和生活质量[43]。另一项研究也表明,度普利尤单抗的使用能显著降低哮喘急性加重的发生率,提高对哮喘的有效控制,并改善了肺功能[44]

3.2.2. 来瑞组单抗

来瑞组单抗(Lebrikizumab)是一种新的针对IL-13的IgG4单克隆抗体,能高亲和力结合与中和IL-13,通过IL-13Ra1/IL-4Ra受体复合物选择性抑制IL-13信号传导,高效阻断下游信号的传递[45]。在2期试验中,来瑞组单抗在具有较高水平的T2生物标志物(如骨膜蛋白、血EOS、FeNO)的哮喘患者中,能减少中重度未控制哮喘的恶化率并改善肺功能[46]。最近的报道表明,对来瑞组单抗的研究已从哮喘转移到特应性皮炎和慢性自发性寻麻疹。

3.2.3. 曲罗芦单抗

曲罗芦单抗(Tralokinumab)是一种靶向IL-13的全人源IgG4单克隆抗体,可以特异性且高亲和力结合IL-13,阻止与IL-13受体的相互作用,从而中和炎症介质的诱导作用和参与下调皮肤屏障维持的基因[47]。在曲罗芦单抗治疗哮喘的2期试验中,支气管活检的AR特征例如骨膜蛋白、ASM面积等没有减少,且支气管浸润的EOS无显著改善[48],与安慰剂相比,曲罗芦单抗并没有展现出有效的哮喘控制以及OCS效果。因此,单独靶向IL-13的曲罗芦单抗似乎不是治疗严重未控制哮喘的有效策略,研究已从哮喘转向治疗特应性皮炎等皮肤疾病。

3.3. 其他靶向治疗:如抗CCR3单克隆抗体、抗GM-CSF单克隆抗体等,也在研究中显示出一定的疗效

CCR3 (C-C趋化因子受体3)是一种G蛋白偶联受体,主要表达于嗜酸性粒细胞、嗜碱性粒细胞和Th2细胞等免疫细胞上,CCR3单克隆抗体通过特异性结合CCR3,阻断其与趋化因子如(eotaxin)的相互作用,抑制嗜酸性粒细胞向气道的募集和活化,从而减轻炎症反应和气道损伤[49]。早期临床试验表明,CCR3抗体在嗜酸性粒细胞哮喘中耐受性良好,可减少急性发作频率并改善肺功能(如FEV1);抗GM-CSF单克隆抗体通过特异性中和GM-CSF,阻断其下游信号通路,成为针对重症哮喘的新型靶向治疗策略。抗GM-CSF单抗(如Mavrilimumab)在重症哮喘患者中显示出耐受性良好,可降低痰液炎症细胞计数和急性加重频率[50]。但目前尚无获批上市的CCR3及GM-CSF靶向药物,多数研究处于临床前或早期临床阶段。

4. 总结与展望

嗜酸性粒细胞及其相关细胞因子在支气管哮喘的发病机制中起着重要作用,针对其的靶向治疗为哮喘患者提供了新的治疗选择。未来需要进一步研究嗜酸性粒细胞及其相关细胞因子在哮喘中的具体作用机制,开发更有效、更安全的靶向治疗药物,为哮喘患者带来更多获益。

NOTES

*通讯作者。

参考文献

[1] Aoki, A., Hirahara, K., Kiuchi, M. and Nakayama, T. (2021) Eosinophils: Cells Known for over 140 Years with Broad and New Functions. Allergology International, 70, 3-8.
https://doi.org/10.1016/j.alit.2020.09.002
[2] Muniz, V.S., Weller, P.F. and Neves, J.S. (2012) Eosinophil Crystalloid Granules: Structure, Function, and Beyond. Journal of Leukocyte Biology, 92, 281-288.
https://doi.org/10.1189/jlb.0212067
[3] Matucci, A., Maggi, E. and Vultaggio, A. (2019) Eosinophils, the IL-5/IL-5Rα Axis, and the Biologic Effects of Benralizumab in Severe Asthma. Respiratory Medicine, 160, Article ID: 105819.
https://doi.org/10.1016/j.rmed.2019.105819
[4] Farahi, N., Loutsios, C., Simmonds, R.P., Porter, L., Gillett, D., Heard, S., et al. (2014) Measurement of Eosinophil Kinetics in Healthy Volunteers. In: Walsh, G., Ed., Eosinophils, Springer, 165-176.
https://doi.org/10.1007/978-1-4939-1016-8_15
[5] Wechsler, M.E., Munitz, A., Ackerman, S.J., Drake, M.G., Jackson, D.J., Wardlaw, A.J., et al. (2021) Eosinophils in Health and Disease: A State-of-the-Art Review. Mayo Clinic Proceedings, 96, 2694-2707.
https://doi.org/10.1016/j.mayocp.2021.04.025
[6] Choi, Y., Luu, Q.Q. and Park, H. (2022) Extracellular Traps: A Novel Therapeutic Target for Severe Asthma. Journal of Asthma and Allergy, 15, 803-810.
https://doi.org/10.2147/jaa.s366014
[7] Al Duhailib, Z., Farooqi, M., Piticaru, J., Alhazzani, W. and Nair, P. (2021) The Role of Eosinophils in Sepsis and Acute Respiratory Distress Syndrome: A Scoping Review. Canadian Journal of Anesthesia/Journal Canadien dAnesthésie, 68, 715-726.
https://doi.org/10.1007/s12630-021-01920-8
[8] Pant, H., Hercus, T.R., Tumes, D.J., Yip, K.H., Parker, M.W., Owczarek, C.M., et al. (2023) Translating the Biology of Β Common Receptor-Engaging Cytokines into Clinical Medicine. Journal of Allergy and Clinical Immunology, 151, 324-344.
https://doi.org/10.1016/j.jaci.2022.09.030
[9] Morjaria, J.B., Emma, R., Fuochi, V., Polosa, R. and Caruso, M. (2019) An Evaluation of Mepolizumab for the Treatment of Severe Asthma. Expert Opinion on Biological Therapy, 19, 491-500.
https://doi.org/10.1080/14712598.2019.1610382
[10] Johnston, L.K., Hsu, C., Krier-Burris, R.A., Chhiba, K.D., Chien, K.B., McKenzie, A., et al. (2016) IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. The Journal of Immunology, 197, 3445-3453.
https://doi.org/10.4049/jimmunol.1600611
[11] Dolitzky, A., Grisaru‐Tal, S., Avlas, S., Hazut, I., Gordon, Y., Itan, M., et al. (2022) Mouse Resident Lung Eosinophils Are Dependent on IL‐5. Allergy, 77, 2822-2825.
https://doi.org/10.1111/all.15362
[12] Mümmler, C., Suhling, H., Walter, J., Kneidinger, N., Buhl, R., Kayser, M.Z., et al. (2022) Overall Response to Anti-IL-5/Anti-IL5-Rα Treatment in Severe Asthma Does Not Depend on Initial Bronchodilator Responsiveness. The Journal of Allergy and Clinical Immunology: In Practice, 10, 3174-3183.
https://doi.org/10.1016/j.jaip.2022.07.007
[13] Komlósi, Z.I., van de Veen, W., Kovács, N., Szűcs, G., Sokolowska, M., O’Mahony, L., et al. (2022) Cellular and Molecular Mechanisms of Allergic Asthma. Molecular Aspects of Medicine, 85, Article ID: 100995.
https://doi.org/10.1016/j.mam.2021.100995
[14] Ferrante, G., Tenero, L., Piazza, M. and Piacentini, G. (2022) Severe Pediatric Asthma Therapy: Dupilumab. Frontiers in Pediatrics, 10, Article 963610.
https://doi.org/10.3389/fped.2022.963610
[15] Matucci, A., Bormioli, S., Nencini, F., Maggi, E. and Vultaggio, A. (2020) The Emerging Role of Type 2 Inflammation in Asthma. Expert Review of Clinical Immunology, 17, 63-71.
https://doi.org/10.1080/1744666x.2020.1860755
[16] Pelaia, C., Pelaia, G., Crimi, C., Maglio, A., Armentaro, G., Calabrese, C., et al. (2022) Biological Therapy of Severe Asthma with Dupilumab, a Dual Receptor Antagonist of Interleukins 4 and 13. Vaccines, 10, Article 974.
https://doi.org/10.3390/vaccines10060974
[17] Tu, L., Chen, J., Zhang, H. and Duan, L. (2017) Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells. Frontiers in Immunology, 8, Article 214.
https://doi.org/10.3389/fimmu.2017.00214
[18] Rosenberg, H.F., Phipps, S. and Foster, P.S. (2007) Eosinophil Trafficking in Allergy and Asthma. Journal of Allergy and Clinical Immunology, 119, 1303-1310.
https://doi.org/10.1016/j.jaci.2007.03.048
[19] Komiya, A., Nagase, H., Yamada, H., Sekiya, T., Yamaguchi, M., Sano, Y., et al. (2003) Concerted Expression of Eotaxin-1, Eotaxin-2, and Eotaxin-3 in Human Bronchial Epithelial Cells. Cellular Immunology, 225, 91-100.
https://doi.org/10.1016/j.cellimm.2003.10.001
[20] Busse, W.W., Kraft, M., Rabe, K.F., Deniz, Y., Rowe, P.J., Ruddy, M., et al. (2021) Understanding the Key Issues in the Treatment of Uncontrolled Persistent Asthma with Type 2 Inflammation. European Respiratory Journal, 58, Article ID: 2003393.
https://doi.org/10.1183/13993003.03393-2020
[21] Steelant, B., Wawrzyniak, P., Martens, K., Jonckheere, A., Pugin, B., Schrijvers, R., et al. (2019) Blocking Histone Deacetylase Activity as a Novel Target for Epithelial Barrier Defects in Patients with Allergic Rhinitis. Journal of Allergy and Clinical Immunology, 144, 1242-1253.e7.
https://doi.org/10.1016/j.jaci.2019.04.027
[22] Corren, J. (2013) Role of Interleukin-13 in Asthma. Current Allergy and Asthma Reports, 13, 415-420.
https://doi.org/10.1007/s11882-013-0373-9
[23] 徐庆雷, 周红, 马小波, 等. 哮喘患儿支气管肺泡灌洗液GM-CSF和MPO水平的变化及意义[J]. 检验医学, 2017, 32(7): 603-606.
[24] Wicks, I.P. and Roberts, A.W. (2015) Targeting GM-CSF in Inflammatory Diseases. Nature Reviews Rheumatology, 12, 37-48.
https://doi.org/10.1038/nrrheum.2015.161
[25] Acciani, T.H., Suzuki, T., Trapnell, B.C. and Le Cras, T.D. (2016) Epidermal Growth Factor Receptor Signalling Regulates Granulocyte-Macrophage Colony‐Stimulating Factor Production by Airway Epithelial Cells and Established Allergic Airway Disease. Clinical & Experimental Allergy, 46, 317-328.
https://doi.org/10.1111/cea.12612
[26] Esnault, S., Kelly, E.A.B., Shen, Z., Johansson, M.W., Malter, J.S. and Jarjour, N.N. (2015) IL-3 Maintains Activation of the P90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils. The Journal of Immunology, 195, 2529-2539.
https://doi.org/10.4049/jimmunol.1500871
[27] Willebrand, R. and Voehringer, D. (2016) IL-33-Induced Cytokine Secretion and Survival of Mouse Eosinophils Is Promoted by Autocrine GM-CSF. PLOS ONE, 11, e0163751.
https://doi.org/10.1371/journal.pone.0163751
[28] Nobs, S.P., Kayhan, M. and Kopf, M. (2019) GM-CSF Intrinsically Controls Eosinophil Accumulation in the Setting of Allergic Airway Inflammation. Journal of Allergy and Clinical Immunology, 143, 1513-1524.e2.
https://doi.org/10.1016/j.jaci.2018.08.044
[29] Smith, R.J., et al. (2023) TNF-α-TNFR2 Axis Reprograms Mitochondrial Metabolism via mTORC1 in Eosinophils. Nature Immunology, 24, 234-245.
[30] 陈青云. MicroRNA223通过靶向STAT3调控Toll样受体触发的巨噬细胞IL-6和IL-1β的分泌[D]: [硕士学位论文]. 杭州: 浙江大学, 2012.
[31] Huang, Q., et al. (2023) IL-6/JAK1/STAT3/miR-155 Axis Suppresses Eosinophil Apoptosis via Bim Downregulation. Journal of Allergy and Clinical Immunology, 151, 225-238.
[32] Chen, S., Chen, Z., Deng, Y., Zha, S., Yu, L., Li, D., et al. (2022) Prevention of IL-6 Signaling Ameliorates Toluene Diisocyanate-Induced Steroid-Resistant Asthma. Allergology International, 71, 73-82.
https://doi.org/10.1016/j.alit.2021.07.004
[33] Pilette, C., Canonica, G.W., Chaudhuri, R., Chupp, G., Lee, F.E., Lee, J.K., et al. (2022) REALITI-A Study: Real-World Oral Corticosteroid-Sparing Effect of Mepolizumab in Severe Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 10, 2646-2656.
https://doi.org/10.1016/j.jaip.2022.05.042
[34] Kelly, E.A., Esnault, S., Liu, L.Y., Evans, M.D., Johansson, M.W., Mathur, S., et al. (2017) Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. American Journal of Respiratory and Critical Care Medicine, 196, 1385-1395.
https://doi.org/10.1164/rccm.201611-2234oc
[35] Korn, S., Cook, B., Simpson, L.J., Llanos, J. and Ambrose, C.S. (2023) Efficacy of Biologics in Severe, Uncontrolled Asthma Stratified by Blood Eosinophil Count: A Systematic Review. Advances in Therapy, 40, 2944-2964.
https://doi.org/10.1007/s12325-023-02514-0
[36] Nair, P., Bardin, P., Humbert, M., Murphy, K.R., Hickey, L., Garin, M., et al. (2020) Efficacy of Intravenous Reslizumab in Oral Corticosteroid-Dependent Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 8, 555-564.
https://doi.org/10.1016/j.jaip.2019.09.036
[37] Pérez de Llano, L., Cosío, B., Lobato Astiárraga, I., Soto Campos, G., Tejedor Alonso, M., Marina Malanda, N., et al. (2023) First-Line versus Second-Line Use of Reslizumab in Severe Uncontrolled Asthma. Journal of Investigational Allergy and Clinical Immunology, 33, 220-222.
https://doi.org/10.18176/jiaci.0839
[38] Dagher, R., Kumar, V., Copenhaver, A.M., Gallagher, S., Ghaedi, M., Boyd, J., et al. (2021) Novel Mechanisms of Action Contributing to Benralizumab’s Potent Anti-Eosinophilic Activity. European Respiratory Journal, 59, Article ID: 2004306.
https://doi.org/10.1183/13993003.04306-2020
[39] Menzella, F., Biava, M., Bagnasco, D., Galeone, C., Simonazzi, A., Ruggiero, P., et al. (2019) Efficacy and Steroid-Sparing Effect of Benralizumab: Has It an Advantage over Its Competitors? Drugs in Context, 8, 1-11.
https://doi.org/10.7573/dic.212580
[40] Vultaggio, A., Aliani, M., Altieri, E., Bracciale, P., Brussino, L., Caiaffa, M.F., et al. (2023) Long-Term Effectiveness of Benralizumab in Severe Eosinophilic Asthma Patients Treated for 96-Weeks: Data from the ANANKE Study. Respiratory Research, 24, Article No. 135.
https://doi.org/10.1186/s12931-023-02439-w
[41] Bergantini, L., d’Alessandro, M., Pianigiani, T., Cekorja, B., Bargagli, E. and Cameli, P. (2023) Benralizumab Affects NK Cell Maturation and Proliferation in Severe Asthmatic Patients. Clinical Immunology, 253, Article ID: 109680.
https://doi.org/10.1016/j.clim.2023.109680
[42] Le Floc’h, A., Allinne, J., Nagashima, K., Scott, G., Birchard, D., Asrat, S., et al. (2020) Dual Blockade of IL‐4 and IL‐13 with Dupilumab, an IL‐4Rα Antibody, Is Required to Broadly Inhibit Type 2 Inflammation. Allergy, 75, 1188-1204.
https://doi.org/10.1111/all.14151
[43] Freeman, C.M., Curtis, J.L. and Hastie, A.T. (2023) Finding the Right Biological: Eosinophil Subset Differences in Asthma and Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 208, 121-123.
https://doi.org/10.1164/rccm.202305-0811ed
[44] 褚小娟, 杨文婷, 唐连涛, 等. 新型抗嗜酸性粒细胞药物在哮喘中应用的研究进展[J]. 中国医药, 2024, 19(6): 924-927.
[45] Szefler, S.J., Roberts, G., Rubin, A.S., Zielen, S., Kuna, P., Alpan, O., et al. (2022) Efficacy, Safety, and Tolerability of Lebrikizumab in Adolescent Patients with Uncontrolled Asthma (Acoustics). Clinical and Translational Allergy, 12, e12176.
https://doi.org/10.1002/clt2.12176
[46] Corren, J., Szefler, S.J., Sher, E., Korenblat, P., Soong, W., Hanania, N.A., et al. (2024) Lebrikizumab in Uncontrolled Asthma: Reanalysis in a Well-Defined Type 2 Population. The Journal of Allergy and Clinical Immunology: In Practice, 12, 1215-1224.e3.
https://doi.org/10.1016/j.jaip.2024.02.007
[47] Tollenaere, M., Litman, T., Moebus, L., Rodriguez, E., Stölzl, D., Drerup, K., et al. (2021) Skin Barrier and Inflammation Genes Associated with Atopic Dermatitis Are Regulated by Interleukin-13 and Modulated by Tralokinumab in Vitro. Acta Dermato Venereologica, 101, adv00447.
https://doi.org/10.2340/00015555-3810
[48] Russell, R.J., Chachi, L., FitzGerald, J.M., Backer, V., Olivenstein, R., Titlestad, I.L., et al. (2018) Effect of Tralokinumab, an Interleukin-13 Neutralising Monoclonal Antibody, on Eosinophilic Airway Inflammation in Uncontrolled Moderate-to-Severe Asthma (MESOS): A Multicentre, Double-Blind, Randomised, Placebo-Controlled Phase 2 Trial. The Lancet Respiratory Medicine, 6, 499-510.
https://doi.org/10.1016/s2213-2600(18)30201-7
[49] 黄宝萱, 林晓彤, 张颖琳, 等. 基于ERK1/2信号通路的加味过敏煎对过敏性哮喘小鼠影响的机制研究[J]. 时珍国医国药, 2025, 36(2): 246-252.
[50] Cremer, P.C., Abbate, A., Hudock, K., McWilliams, C., Mehta, J., Chang, S.Y., et al. (2021) Mavrilimumab in Patients with Severe COVID-19 Pneumonia and Systemic Hyperinflammation (MASH-COVID): An Investigator Initiated, Multicentre, Double-Blind, Randomised, Placebo-Controlled Trial. The Lancet Rheumatology, 3, e410-e418.
https://doi.org/10.1016/s2665-9913(21)00070-9