超声诊断在前列腺疾病中的应用进展
Progress in the Application of Ultrasound Diagnosis in Prostate Diseases
DOI: 10.12677/acm.2025.1551510, PDF, HTML, XML,   
作者: 高凌燕:富顺县人民医院超声科,四川 自贡
关键词: 超声前列腺疾病诊断Ultrasound Prostatic Diseases Diagnosis
摘要: 超声诊断,一种利用超声波的物理特性和人体组织结构的声学特点密切结合的一种物理学检查方法。超声检查前列腺疾病的技术中,经直肠超声最常见。近年来,超声技术取得了显著进步,建立了多普勒超声、对比增强超声、微超声、多参数超声检查等多种模式。但超声检查对于前列腺疾病的诊断仍存在局限性,需要结合其他技术综合评估。本综述将对超声在前列腺疾病诊断中的应用进行讨论。
Abstract: Ultrasound diagnosis is a physical examination method that closely combines the physical characteristics of ultrasound and the acoustic properties of human tissue structures. Among the methods of ultrasound examination for prostate diseases, transrectal ultrasound is the most common. In recent years, ultrasound technology has made significant progress, establishing various modes such as Doppler ultrasound, contrast-enhanced ultrasound, micro-ultrasound, and multi-parameter ultrasound. However, ultrasound examination still has limitations in the diagnosis of prostate diseases, requiring comprehensive assessment with other technologies. This review will discuss the application of ultrasound in the diagnosis of prostate diseases.
文章引用:高凌燕. 超声诊断在前列腺疾病中的应用进展[J]. 临床医学进展, 2025, 15(5): 1423-1432. https://doi.org/10.12677/acm.2025.1551510

1. 引言

超声检查在前列腺疾病的诊断中占核心地位,作为一种非侵入性的医学影像技术,通过高频声波在组织内的反射,精准捕捉前列腺的形态、大小及内部回声,为医生提供直观的疾病位点[1]。超声检查不仅能明确前列腺的解剖结构,还可以识别出异常区域,尤其在检测前列腺增生、前列腺炎及前列腺癌(Prostate Cancer, PCa)等疾病时具有显著优势。具体而言,超声检查能够引导前列腺穿刺活检,这是诊断前列腺疾病的重要手段。通过实时影像引导,医生可以精准地获取病变组织样本,提高诊断的准确性。当怀疑前列腺存在囊肿或恶变可能时,超声检查可以给出初步判断,但通常需要结合其他方法如磁共振成像(Magnetic resonance imaging, MRI)来准确鉴别是否存在早期PCa [2]。超声技术在不断发展中衍生出多种新型技术,包括多普勒超声、对比增强超声(Contrast enhanced ultrasound, CEUS)、超声弹性成像和微超声[3]-[7]。更有研究证明,可以结合多种超声检查技术,提高超声成像特异性和准确性[8] [9];还可以将超声技术与MRI或其他诊断工具结合使用,更加精确地识别病变区域,并根据影像信息指导取样活检[10]

2. 用于前列腺疾病诊断的超声模式

经直肠超声(Transrectal ultrasound, TRUS)引导下的前列腺活检仍是目前诊断PCa可靠、经济且安全的手段,由其引起的并发症多为自限性,无需额外医疗干预,可用药物降低感染风险[11]-[14]。随着科技发展,涌现出更多超声技术如多普勒超声、CEUS、微超声、超声弹性成像。

2.1. 多普勒超声在前列腺疾病诊断中的应用价值

彩色多普勒超声(Color doppler ultrasound, CDUS)基于多普勒效应,当波源与红细胞有相对运动时,反射波频率改变,反映出血流速度,所以CDUS能计算并显示血流的速度和方向,形成彩色血流图像[3]。功率多普勒超声(Power Doppler ultrasonography, PDUS)是CDUS的一种模式,它主要评估血流信号的强度,能准确描述组织灌注,有效识别缓慢血流,并且其检测能力相对独立于血流角度,可以更准确地区分前列腺的生理与病理状况[4]。能量多普勒超声同样关注血流信号的能量(或功率),但它与PDUS在具体实现和算法上有所不同。

PCa血管生成,是其发生、生长的病理特征之一[15]。多普勒超声能精确识别并量化前列腺内血流的动态特性,对诊断PCa血管化程度有重要价值[3] [4]

在局部中高风险PCa的治疗中,高剂量率间质近距离放射治疗(High dose rate interstitial brachytherapy, HDR-BT)已成为一种常用的技术[16],在PCa的HDR-BT治疗中,TRUS成像指导针尖定位至关重要。但B模式超声图像伪影影响针尖可见性,可能导致剂量偏差,研究提出一种基于EDUS和新型无线机械振荡器的方法,并证明其在幻影和临床病例中能改善针尖可视化[17]。因此,往后的研究可以开发更多与多普勒超声相结合的方法,使得PCa诊断与治疗更精准。

总之,CDUS、PDUS以及能量多普勒超声在前列腺疾病的诊断与治疗中至关重要[18]。它们不仅通过测量血流速度和方向提供关键的诊断信息,还能通过评估血流信号的强度和能量更准确地描述组织灌注和血流特性[3] [4]。随着技术的不断创新,开发与多普勒超声相结合的新方法将进一步推动PCa诊断与治疗的精准化。

2.2. CEUS在前列腺疾病诊断中的应用价值

超声造影又称CEUS,是一种增强超声诊断分辨率、敏感性和特异性的技术,它通过静脉注射造影剂强化组织血流的探测能力,清晰显示正常与病变组织的细微血管结构[5]。多普勒超声虽能精确评估大血管,但受限于直径小于200微米的血管成像。随着成像技术发展,现可通过可视化技术进行靶向活检。

应用2~6微米微气泡制剂的CEUS,能显著增强前列腺微血管的可视化,为恶性病变的检测提供新的可能[19]。研究表明,CEUS能精准评估PCa中直径约40微米微小血管的灌注情况,其阳性预测值高达91.7%,灵敏度达到79.3%,整体准确率稳定在83.7% [20]。相较于传统系统活检,结合CEUS引导的靶向穿刺活检可显著提高癌症的检出率,显著减少不必要的活检数量[21],为PCa的早期发现和治疗提供了强有力的支持[22] [23]。CEUS与参数成像技术的联用更成功提高了PCa不可逆电穿孔治疗的成功率,并准确识别残留肿瘤[24]

综上所述,CEUS在PCa诊断中展现出多项优势,包括诊断的精确性、促进靶向穿刺活检的准确性[25]。这些优势共同为PCa的诊断、治疗和监测带来优化。随着技术的不断发展和完善,CEUS将在未来临床诊疗中发挥更加重要的作用。

2.3. 弹性成像在前列腺疾病诊断中的应用价值

超声弹性成像技术通过测量组织在外部压力下的变形程度来量化、可视化其弹性特性,由于在多数情况下,恶性组织相较于良性组织表现出更高的硬度[6],因此此技术特别有助于区分前列腺中的恶性组织与良性组织,进而辅助PCa的诊断。应变弹性成像(Strain Elastography, SE)和剪切波弹性成像(Shear Wave Elastography, SWE)是两大常用诊断PCa的技术[26]。SE通过测量直肠探头施加机械应力下组织应变,评估前列腺硬度;而SWE则基于机械波在组织中的传播速度评估前列腺弹性[27]。这些技术直观展示组织刚度变化,为医生提供精确评估手段。

SE在PCa检测中的准确性高于传统TRUS。一项针对508名患者的荟萃分析显示,将SE结果与根治性前列腺切除术后的组织病理学相比,PCa检测的敏感性为72%,特异性为76% [28]。另一项研究涉及1840名患者,发现当SE靶向活检与TRUS系统活检结合使用时,相较于单独系统活检,总体PCa检出率增加了7%~15% [29]

尽管超声弹性成像技术显示一定优势,但其应用仍存在局限性。僵硬的病变并非癌症的确切标志,而癌症病变也并不总呈现僵硬状态。此外,其他因素如前列腺体积增加、钙化和纤维组织等可能导致假阳性结果的产生[30]。因此,在诊断过程中需综合考虑各种因素,以确保诊断的准确性。

2.4. 微超声在前列腺疾病诊断中的应用价值

微超声是一种新型29 MHz超声技术,其分辨率比传统超声高3~4倍,有可能实现PCa的低成本、准确诊断[7]。微超声允许实时可视化,以进行准确的靶向活检[31]。尽管传统的多普勒超声可能因组织运动而产生杂乱信号,但微超声通过其独特的机器算法抑制了这些杂乱信号,从而专门检测血流信号[32]。与传统的多普勒超声相比,微超声能够可视化缓慢的血流,具备高帧率、高分辨率、高灵敏度以及更少的运动伪影[33]

在医学成像领域,精确的前列腺分割对于准确评估前列腺体积、癌症的早期诊断、指导前列腺活检以及优化治疗策略至关重要[34]。对于图像的分析,UNet以其编码器–解码器级联结构保持图像特征,成为业内广泛应用的神经网络[35]。Transformer模型,在目标检测、图像分类和语义分割等计算机视觉任务中表现出色[36]。因此,将Transformer与UNet结合,能够发挥双方优势,提升医学图像分割的效能。MicroSegNet模型利用多尺度注释的Transformer UNet解决了前列腺分割难题,结合高频微超声和光声成像技术,通过系统改进和侧射光纤,实现高精度前列腺成像并区分肿瘤内信号,为前列腺疾病治疗提供新策略[37]。深度学习模型通过微超声图像分析展现出高效检测PCa病变的潜力,其性能在大型多样化数据集上得到验证,与MRI技术相竞争,并能通过不确定性估计提高鲁棒性,有望成为靶向前列腺活检的有力工具[38]。应该进一步研究微超声深度学习作为靶向前列腺活检的途径,并将深度学习纳入基于各种超声的PCa诊断中以提高诊断效率、准确性,有望获得更好的治疗结果。

在医疗成像中,使用机器人控制可以确保精确、可重复的运动和定位,从而确保在捕获图像时保持稳定的探头位置和角度[39]。ExactVu microUS系统首次实现机器人控制下的精准3D微超声图像获取,预示其在前列腺标本和体内成像中的广泛应用前景[40],值得进一步探索机器人系统在靶向前列腺活检中的潜力。

随着技术的优化,微超声技术结合深度学习算法和机器人技术的应用,有望在PCa的诊断和治疗中发挥关键作用,为患者带来更加精准且高效的治疗效果。

2.5. 多参数超声检查在前列腺疾病诊断中的应用价值

多参数超声检查(Multiparametric ultrasound, mpUS)是一种整合了多种超声模式的技术,旨在提高超声成像的敏感度和特异性,这些模式包括CDUS、能量多普勒超声、CEUS、微超声等[8] [9]。这些技术的结合,为医生提供有关组织血管供应、僵硬度等详尽的信息,从而更精确地评估前列腺中的可疑病变,为PCa等疾病的诊断提供有力支持。还可用于选择和监测患者,以便在手术和局部治疗期间进行主动监测和治疗计划[9]

PCa诊断标准仍为系统活检,但多参数经直肠超声(Multi parameter transrectal ultrasound, mpTRUS)可辅助提升活检质量。在一项针对40名良性组织学患者和38名局部PCa为参考标准的研究中,使用了系统前列腺穿刺活检来评估这些患者的恶性特征。研究结果显示,当结合三种超声模式(即TRUS、SWE以及CEUS)时,mpTRUS展现出了高PCa检测性能,mpTRUS的灵敏度为97.4%,特异性为77.5%,阳性预测值为80.4%,阴性预测值为96.9%,准确度为87.2%,且其在受试者工作特征曲线下的面积为0.874 [41]。所以,mpTRUS在靶向活检中可以显著提高PCa检出率、预测准确率。

不仅如此,更新后期数据分析方式也可以提高疾病诊断率。研究提出结合mpUS和血清学变量的随机森林模型,能有效预测PCa和高级别PCa,显示出满意的准确度[42]。另有研究采用此模型对PCa进行定位,以48名患者的根治性前列腺切除术标本作为诊断的金标准,在评估PCa和临床显著前列腺癌(Clinically significant prostate cancer,CSPCa,定义为PCa > GG2)时,尽管单一放射学特征的最佳性能在受试者工作特征曲线下面积分别达到了0.69和0.76,但多种放射学特征的多参数组合显著提高了诊断准确性,将PCa和CSPCa的受试者工作特征曲线下面积分别提升至0.75和0.90 [43]。在构建机器学习模型时,灌注、分散和弹性相关的放射学特征被确定为PCa分类的有效参数。值得注意的是,这些参数分别来自B模式超声、SWE和CEUS三种不同的成像技术,且它们之间无显著相关性,表明这三种成像模式在PCa评估中具有互补性。

虽然,最近一项发表在《The Lancet Oncology》的研究显示,mpUS相比多参数磁共振成像(Multi-parametric MRI, mpMRI)在检测具有临床意义的PCa时灵敏度略低(减少4.3%),但在无法获得MRI的情况下,它可作为一个替代选择能显著提高PCa的检出率,并有助于降低成本[44]

综上所述,mpUS通过融合多种超声成像技术,显著丰富了前列腺疾病诊断的信息,提高了PCa的检出率。其结合CDUS、能量多普勒、CEUS等技术,能精确捕捉组织内部的血管和硬度变化,为医生提供详尽的诊断数据。在资源受限或MRI不可及的情况下,mpUS以其低成本、便携性和高诊断性能成为最佳选择。

3. MRI-TRUS融合活检技术

PCa的系统活检不依赖于特定的病变特征或影像学表现,而是对某个区域进行广泛的、系统性的检查,可能会引起患者疼痛与焦虑[45]。靶向活检是一种更为精准和有针对性的活检方法。它依赖于影像学技术(如MRI)或其他诊断工具来识别病变区域,然后直接对这些区域进行取样[10]

MRI是利用氢原子核在磁场中的共振现象,以生成高分辨率的图像,显示人体内部组织详细结构的技术[46]。双参数磁共振成像(Biparametric magnetic resonance imaging, bpMRI)是在MRI的基础上增加梯度脉冲序列,以提高MRI的空间分辨率并测量分子运动的一种技术[47]。尽管bpMRI在参数数量上可能有限,但有研究表明,bpMRI/TRUS融合活检在PCa的诊断准确性上与mpMRI相当[48],可在不到9分钟内无需造影剂完成,为PCa检测提供了一种快速、简便且经济的替代方案[49]。这意味着,在某些情况下,bpMRI可能是一种既经济又节省时间的替代方案。医生需要根据患者的具体情况和医院的设备条件来选择合适的成像技术。

mpMRI是一种基于MRI的高级成像技术,通过采集并利用T1、T2、质子密度等参数,生成更全面详细的图像,以精准评估前列腺等组织的病变情况[50]。它们的出现为进行前列腺穿刺活检的泌尿科医师开辟了一个新时代,是预测临床局限性PCa是否存在意外囊外扩展的重要成像工具之一[51]。研究显示,MRI与TRUS的融合通过结合MRI的高清晰图像和TRUS的实时引导能力,可直接靶向可疑病变,这种融合技术已被证明能够提高常规随机活检技术的性能,因为它能够增加对高风险PCa等临床相关疾病的检测,同时减少对低危癌症的检测[52],从而避免了对这些患者的不必要治疗和潜在的并发症。特别是在检测高风险PCa时,两者结合最为有效,且对于PI-RADS 5病变(即高度怀疑恶性的病变),系统活检通常仅在靶向活检结果为阴性时才需进行,以进一步确认诊断[53]

3.1. MRI-TRUS融合活检技术的应用价值

MRI-TRUS融合活检技术通过结合多参数MRI (mpMRI)的高分辨率病灶定位能力与超声实时引导的精准穿刺优势,在前列腺癌诊断中展现出显著的临床应用价值。相比于PCa的超声诊断,MRI-TRUS融合活检技术不依赖于检测者的经验以及病灶回声特性的判断,对发病位置或位置相对隐蔽的病灶检出率显著上升。众所周知,灵敏性和特异性是评价诊断准确度的两个基本指标。尽管CEUS和弹性成像技术提高了PCa诊断的准确性,但与单独的系统活检相比,其灵敏性和特异性仍低于MRI-TRUS融合活检技术显著提高了PCa的总体检出率[54]。此外,另一项研究显示,经MRI-TRUS融合活检、高分辨率纤维超声和系统经直肠超声检测的PCa病理性分级呈现出一致性[55]。这表明MRI-TRUS在检验精度相同的情况下,对诊断检测PCa的更加灵敏和准确。除技术性评估外,对临床治疗方案优化的辅助作用以及减少检测过程中患者的疼痛和感染等并发症也是MRI-TRUS融合活检技术不容忽视的优势。在无抗生素预防的局部麻醉下,经会阴的MRI-TRUS融合活检后的感染率仅为2%,且58%患者表明疼痛程度下降[56]。然而该项回顾性研究依赖于患者的主观描述,对于实际的疼痛和感染情况仍需要统一标准进行深入实验研究评估。此外,高患者组平均前列腺特异性抗原密度指导下的MRI-TRUS是前列腺活检的最佳选择,能够避免不必要的系统活检以降低并发症产生风险[57]

3.2. MRI-TRUS融合活检技术的挑战

MRI-TRUS融合活检技术在临床诊断应用中具有显著的应用价值。然而,其广泛性应用仍面临多方面的挑战。一方面,技术要求严格,MRI-TRUS融合活检需要医生需要具备MRI和TRUS的影像学知识,以及熟练的活检操作技巧。另一方面,熟练使用MRI-TRUS技术需要经过专业的培训并进行反复的练习和实践。然而,已有研究指出,不同资历和经验的外科医生在使用MRI-TRUS融合活检技术进行PCa检测时对其检出率没有影响[58]。尽管该研究受限于回顾性设计及样本量较小,可能影响结果的统计效力,但其初步探索性发现仍为评估该技术的临床应用潜力提供了有价值的参考依据。近年来,随着技术的进步,新技术辅助下的MRI-TRUS融合活检技术也显示出新的发展前景[59] [60]

3.3. MRI-TRUS融合活检技术的发展前景

MRI-TRUS融合活检技术作为PCa精准诊断的重要发展方向,其临床价值已得到广泛验证。然而,传统活检技术仍具备特定场景下的应用优势。如CEUS可为体内存在金属植入物或幽闭恐惧症患者提供替代诊断方案;弹性成像技术能够实现术中实时组织硬度评估,辅助定位高密度病变区域。临床实践中,诊断方法的选择需综合考量患者个体特征及医疗资源配置,以平衡技术和患者需求。在技术操作规范方面,经会阴穿刺联合局部麻醉与经直肠途径的预防性抗生素应用仍是推荐方案,但需根据患者耐受性及感染风险动态调整。值得注意的是,现有部分研究[55] [56] [58]基于回顾性问卷调查评估术后疼痛与感染发生率等,因患者主观表述差异可能导致数据标准化不足,未来需通过前瞻性设计及客观量化指标完善证据体系。

MRI还可与其他超声成像技术结合进行PCa的诊断,研究显示,在前列腺活检中结合经直肠彩色多普勒血流成像和风险分层列线图进行MRI引导的活检路径,能有效提高具有临床意义的PCa检出率,同时降低不必要的活检率,为PCa的早期诊断提供了一种优化策略[61]。不仅如此,MRI引导下CEUS在PCa诊断中也表现出优于传统MRI的性能,其定量特征尤其提高了诊断的特异性和准确性,为PCa的准确诊断提供了有价值的工具[62]。研究发现,在PCa风险增加且既往活检呈阴性的男性中,使用含有发酵大豆的膳食补充剂6个月后,显著降低了前列腺特异性抗原(Prostate specific antigen, PSA)水平,改善了部分患者的国际前列腺症状评分(International Prostate Symptom Score, IPSS),且对前列腺体积无显著影响,可能有助于更精准地识别隐匿性PCa高风险患者[63]

总之,PCa早期诊断至关重要,mpMRI通过精准评估前列腺组织病变情况,结合靶向活检技术,显著提高PCa检出率,降低不必要活检。MRI与TRUS结合、MRI引导下CEUS及特定饮食干预均为PCa诊断提供新策略。对先前TRUS活检阴性患者,MRI靶向活检能检测出更多高级别癌症,为PCa诊断提供优化方案。面对这一变革,泌尿外科医生必须与时俱进,不断更新知识体系,掌握最新诊疗技术,进一步优化PCa的诊疗方案[2]

4. 小结

超声诊断技术,具有高分辨率的成像能力和无创性等优点。诊断前列腺疾病最常用的是TRUS引导活检,它能够清晰显示前列腺的内部结构,发现潜在的病变区域。结合多普勒超声技术,医生还能够评估病变区域的血流情况,进一步提高诊断的准确性;CEUS技术利用注射造影剂,显著增强了超声图像的对比度,使得病变区域更加清晰;微超声技术利用微型探头实现更精细的扫描,提高了诊断的灵敏度;mpUS结合了多种超声技术的优势,为患者提供了更为全面的诊断信息。通过综合应用这些先进的超声诊断技术,能够显著提高前列腺疾病诊断的准确率和效率。

参考文献

[1] Ren, Y., Chen, W., Zhang, M., Zhang, X., Zhou, J., Li, Y., et al. (2024) Case Report: Prostatic Malakoplakia: A Rare Disease That Has a Profile Mimicking Prostate Cancer. Frontiers in Oncology, 14, Article 1348797.
https://doi.org/10.3389/fonc.2024.1348797
[2] Mehawed, G., Murray, R., Rukin, N.J. and Roberts, M.J. (2024) Prostate Tumour Visualisation with PET: Is Image Fusion with MRI the Answer? BJU International, 133, 4-6.
https://doi.org/10.1111/bju.16335
[3] Niżański, W., Ochota, M., Fontaine, C. and Pasikowska, J. (2020) B-Mode and Doppler Ultrasonographic Findings of Prostate Gland and Testes in Dogs Receiving Deslorelin Acetate or Osaterone Acetate. Animals, 10, Article 2379.
https://doi.org/10.3390/ani10122379
[4] Ashi, K., Kirkham, B., Chauhan, A., Schultz, S.M., Brake, B.J. and Sehgal, C.M. (2020) Quantitative Colour Doppler and Greyscale Ultrasound for Evaluating Prostate Cancer. Ultrasound, 29, 106-111.
https://doi.org/10.1177/1742271x20952825
[5] Zhu, Y., Sui, P., Wang, C., Wang, H. and Wen, Z. (2021) Evaluation of Contrast-Enhanced Ultrasound for Activity of Rheumatoid Arthritis: A Protocol for Systematic Review and Meta-Analysis. Medicine, 100, e24417.
https://doi.org/10.1097/md.0000000000024417
[6] Skerl, K., Cochran, S. and Evans, A. (2017) First Step to Facilitate Long-Term and Multi-Centre Studies of Shear Wave Elastography in Solid Breast Lesions Using a Computer-Assisted Algorithm. International Journal of Computer Assisted Radiology and Surgery, 12, 1533-1542.
https://doi.org/10.1007/s11548-017-1596-3
[7] Jiang, H., Imran, M., Muralidharan, P., Patel, A., Pensa, J., Liang, M., et al. (2024) Microsegnet: A Deep Learning Approach for Prostate Segmentation on Micro-Ultrasound Images. Computerized Medical Imaging and Graphics, 112, Article ID: 102326.
https://doi.org/10.1016/j.compmedimag.2024.102326
[8] Steinkohl, F., Luger, A., Bektic, J. and Aigner, F. (2017) Ultrasonography of the Prostate Gland: From BImage through Multiparametric Ultrasound to Targeted Biopsy. Der Radiologe, 57, 615-620.
https://doi.org/10.1007/s00117-017-0274-3
[9] O’Connor, L.P., Lebastchi, A.H., Horuz, R., Rastinehad, A.R., Siddiqui, M.M., Grummet, J., et al. (2020) Role of Multiparametric Prostate MRI in the Management of Prostate Cancer. World Journal of Urology, 39, 651-659.
https://doi.org/10.1007/s00345-020-03310-z
[10] Yacoub, J.H., Verma, S., Moulton, J.S., Eggener, S. and Oto, A. (2012) Imaging-Guided Prostate Biopsy: Conventional and Emerging Techniques. RadioGraphics, 32, 819-837.
https://doi.org/10.1148/rg.323115053
[11] Osama, S., Serboiu, C., Taciuc, I., Angelescu, E., Petcu, C., Priporeanu, T.A., et al. (2024) Current Approach to Complications and Difficulties during Transrectal Ultrasound-Guided Prostate Biopsies. Journal of Clinical Medicine, 13, Article 487.
https://doi.org/10.3390/jcm13020487
[12] Tsuboi, I., Matsukawa, A., Parizi, M.K., Klemm, J., Mancon, S., Chiujdea, S., et al. (2024) Infection Risk Reduction with Povidone-Iodine Rectal Disinfection Prior to Transrectal Prostate Biopsy: An Updated Systematic Review and Meta-Analysis. World Journal of Urology, 42, Article No. 252.
https://doi.org/10.1007/s00345-024-04941-2
[13] Krsakova, E., Cermak, A. and Fedorko, M. (2024) Comparison of Different Regimens of Short-Term Antibiotic Prophylaxis in Transrectal Prostate Biopsy. Journal of Hospital Infection, 145, 83-87.
https://doi.org/10.1016/j.jhin.2023.12.012
[14] Hiffa, A., Chen, M., Boghani, F., Oberle, M.D., Reed, W.C., King, S.A., et al. (2024) Prostate Biopsy Sepsis Prevention: External Validation of an Alcohol Needle Washing Protocol. World Journal of Urology, 42, Article No. 279.
https://doi.org/10.1007/s00345-024-04955-w
[15] Pan, L., Baek, S., Edmonds, P.R., Roach, M., Wolkov, H., Shah, S., et al. (2013) Vascular Endothelial Growth Factor (VEGF) Expression in Locally Advanced Prostate Cancer: Secondary Analysis of Radiation Therapy Oncology Group (RTOG) 8610. Radiation Oncology, 8, Article No. 100.
https://doi.org/10.1186/1748-717x-8-100
[16] Thomas, H., Chen, J.J., Abdul-Baki, H., Sabbagh, A., Shaheen, H., Chau, O.W., et al. (2024) Safety of High-Dose Rate (HDR) Brachytherapy for Patients with Prostate Cancer and History of Prior Chemoradiation for Rectal Cancer: A Case Series. Brachytherapy, 23, 173-178.
https://doi.org/10.1016/j.brachy.2023.11.001
[17] Dupere, J.M., Brost, E.E., Uthamaraj, S., Lee, C.U., Urban, M.W., Stish, B.J., et al. (2023) A New Way to Visualize Prostate Brachytherapy Needles Using Ultrasound Color Doppler and Needle Surface Modifications. Brachytherapy, 22, 761-768.
https://doi.org/10.1016/j.brachy.2023.07.002
[18] Jung, N., DiNatale, R.G., Frankel, J., Koenig, H., Ho, O., Flores, J.P., et al. (2022) The Role of Multiparametric Ultrasound in the Detection of Clinically Significant Prostate Cancer. World Journal of Urology, 41, 663-671.
https://doi.org/10.1007/s00345-022-04122-z
[19] Kundavaram, C.R., Halpern, E.J. and Trabulsi, E.J. (2012) Value of Contrast-Enhanced Ultrasonography in Prostate Cancer. Current Opinion in Urology, 22, 303-309.
https://doi.org/10.1097/mou.0b013e328354831f
[20] Seitz, M., Gratzke, C., Schlenker, B., Buchner, A., Karl, A., Roosen, A., et al. (2011) Contrast-Enhanced Transrectal Ultrasound (CE-TRUS) with Cadence-Contrast Pulse Sequence (CPS) Technology for the Identification of Prostate Cancer. Urologic Oncology: Seminars and Original Investigations, 29, 295-301.
https://doi.org/10.1016/j.urolonc.2009.03.032
[21] Zhao, H., Li, J., Cao, J., Lin, J., Wang, Z., Lv, J., et al. (2020) Contrast-Enhanced Transrectal Ultrasound Can Reduce Collection of Unnecessary Biopsies When Diagnosing Prostate Cancer and Is Predictive of Biochemical Recurrence Following a Radical Prostatectomy in Patients with Localized Prostate Cancer. BMC Urology, 20, Article No. 100.
https://doi.org/10.1186/s12894-020-00659-6
[22] Aigner, F., Pallwein, L., Mitterberger, M., Pinggera, G.M., Mikuz, G., Horninger, W., et al. (2009) Contrast‐Enhanced Ultrasonography Using Cadence‐contrast Pulse Sequencing Technology for Targeted Biopsy of the Prostate. BJU International, 103, 458-463.
https://doi.org/10.1111/j.1464-410x.2008.08038.x
[23] Zhao, H., Xia, C., Yin, H., Guo, N. and Zhu, Q. (2013) The Value and Limitations of Contrast-Enhanced Transrectal Ultrasonography for the Detection of Prostate Cancer. European Journal of Radiology, 82, e641-e647.
https://doi.org/10.1016/j.ejrad.2013.07.004
[24] Jung, E.M., Engel, M., Wiggermann, P., Schicho, A., Lerchbaumer, M., Stroszczynski, C., et al. (2021) Contrast Enhanced Ultrasound (CEUS) with Parametric Imaging after Irreversible Electroporation (IRE) of the Prostate to Assess the Success of Prostate Cancer Treatment. Clinical Hemorheology and Microcirculation, 77, 303-310.
https://doi.org/10.3233/ch-201000
[25] de Castro Abreu, A.L., Ashrafi, A.N., Gill, I.S., Oishi, M., Winter, M.W., Park, D., et al. (2018) Contrast‐Enhanced Transrectal Ultrasound for Follow‐Up after Focal HIFU Ablation for Prostate Cancer. Journal of Ultrasound in Medicine, 38, 811-819.
https://doi.org/10.1002/jum.14765
[26] Gandhi, J., Zaidi, S., Shah, J., Joshi, G. and Khan, S.A. (2018) The Evolving Role of Shear Wave Elastography in the Diagnosis and Treatment of Prostate Cancer. Ultrasound Quarterly, 34, 245-249.
https://doi.org/10.1097/ruq.0000000000000385
[27] Bucci, R., Del Signore, F., Vignoli, M., Felici, A., Russo, M., Maresca, C., et al. (2023) Canine Prostatic Serum Esterase and Strain and 2D‐Shear Wave Sonoelastography for Evaluation of Normal Prostate in Dogs: Preliminary Results. Reproduction in Domestic Animals, 58, 1311-1319.
https://doi.org/10.1111/rda.14435
[28] Zhang, B., Ma, X., Zhan, W., Zhu, F., Li, M., Huang, J., et al. (2014) Real-Time Elastography in the Diagnosis of Patients Suspected of Having Prostate Cancer: A Meta-Analysis. Ultrasound in Medicine & Biology, 40, 1400-1407.
https://doi.org/10.1016/j.ultrasmedbio.2014.02.020
[29] van Hove, A., Savoie, P., Maurin, C., Brunelle, S., Gravis, G., Salem, N., et al. (2014) Comparison of Image-Guided Targeted Biopsies versus Systematic Randomized Biopsies in the Detection of Prostate Cancer: A Systematic Literature Review of Well-Designed Studies. World Journal of Urology, 32, 847-858.
https://doi.org/10.1007/s00345-014-1332-3
[30] Egevad, L., Delahunt, B., Furusato, B., Tsuzuki, T., Yaxley, J. and Samaratunga, H. (2021) Benign Mimics of Prostate Cancer. Pathology, 53, 26-35.
https://doi.org/10.1016/j.pathol.2020.08.006
[31] Rakauskas, A., Peters, M., Martel, P., van Rossum, P.S.N., La Rosa, S., Meuwly, J., et al. (2023) Do Cancer Detection Rates Differ between Transperineal and Transrectal Micro-Ultrasound mpMRI-Fusion-Targeted Prostate Biopsies? A Propensity Score-Matched Study. PLOS ONE, 18, e0280262.
https://doi.org/10.1371/journal.pone.0280262
[32] Matsugasumi, T., Iwata, T., Yamada, Y., Shiraishi, T., Fujihara, A., Okihara, K., et al. (2022) Intraoperative Ultrasound Monitoring with Superb Microvascular Imaging in Focal Cryotherapy for Prostate Cancer. Journal of Medical Ultrasonics, 49, 497-498.
https://doi.org/10.1007/s10396-022-01206-6
[33] Zhu, Y., Shan, J., Zhang, Y., Jiang, Q., Wang, Y., Deng, S., et al. (2019) Prostate Cancer Vascularity: Superb Microvascular Imaging Ultrasonography with Histopathology Correlation. Medical Science Monitor, 25, 8571-8578.
https://doi.org/10.12659/msm.918318
[34] Li, X., Li, C., Fedorov, A., Kapur, T. and Yang, X. (2016) Segmentation of Prostate from Ultrasound Images Using Level Sets on Active Band and Intensity Variation across Edges. Medical Physics, 43, 3090-3103.
https://doi.org/10.1118/1.4950721
[35] Liang, B., Tang, C., Zhang, W., Xu, M. and Wu, T. (2023) N-Net: An UNet Architecture with Dual Encoder for Medical Image Segmentation. Signal, Image and Video Processing, 17, 3073-3081.
https://doi.org/10.1007/s11760-023-02528-9
[36] Zhang, H., Mao, F., Xue, M., Fang, G., Feng, Z., Song, J., et al. (2023) Knowledge Amalgamation for Object Detection with Transformers. IEEE Transactions on Image Processing, 32, 2093-2106.
https://doi.org/10.1109/tip.2023.3263105
[37] Singh, N., Chérin, E., Roa, C., Soenjaya, Y., Wodlinger, B., Zheng, G., et al. (2024) Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-Clinical Demonstration. Ultrasound in Medicine & Biology, 50, 457-466.
https://doi.org/10.1016/j.ultrasmedbio.2023.11.010
[38] Wilson, P.F.R., Harmanani, M., To, M.N.N., Gilany, M., Jamzad, A., Fooladgar, F., et al. (2024) Toward Confident Prostate Cancer Detection Using Ultrasound: A Multi-Center Study. International Journal of Computer Assisted Radiology and Surgery, 19, 841-849.
https://doi.org/10.1007/s11548-024-03119-w
[39] Victorova, M., Lee, M.K., Navarro-Alarcon, D. and Zheng, Y. (2022) Follow the Curve: Robotic Ultrasound Navigation with Learning-Based Localization of Spinous Processes for Scoliosis Assessment. IEEE Access, 10, 40216-40229.
https://doi.org/10.1109/access.2022.3165936
[40] Vassallo, R., Aleef, T.A., Zeng, Q., Wodlinger, B., Black, P.C. and Salcudean, S.E. (2023) Robotically Controlled Three-Dimensional Micro-Ultrasound for Prostate Biopsy Guidance. International Journal of Computer Assisted Radiology and Surgery, 18, 1093-1099.
https://doi.org/10.1007/s11548-023-02869-3
[41] Zhang, M., Tang, J., Luo, Y., Wang, Y., Wu, M., Memmott, B., et al. (2018) Diagnostic Performance of Multiparametric Transrectal Ultrasound in Localized Prostate Cancer: A Comparative Study with Magnetic Resonance Imaging. Journal of Ultrasound in Medicine, 38, 1823-1830.
https://doi.org/10.1002/jum.14878
[42] Li, J., Zhu, C., Yang, S., Mao, Z., Lin, S., Huang, H., et al. (2024) Non-invasive Diagnosis of Prostate Cancer and High-Grade Prostate Cancer Using Multiparametric Ultrasonography and Serological Examination. Ultrasound in Medicine & Biology, 50, 600-609.
https://doi.org/10.1016/j.ultrasmedbio.2024.01.003
[43] Wildeboer, R.R., Mannaerts, C.K., van Sloun, R.J.G., Budäus, L., Tilki, D., Wijkstra, H., et al. (2019) Automated Multiparametric Localization of Prostate Cancer Based on B-Mode, Shear-Wave Elastography, and Contrast-Enhanced Ultrasound Radiomics. European Radiology, 30, 806-815.
https://doi.org/10.1007/s00330-019-06436-w
[44] O’Rourke, K. (2022) Can Multiparametric Ultrasound Be Used for Prostate Cancer? Cancer, 128, 2399-2399.
https://doi.org/10.1002/cncr.34277
[45] Deivasigamani, S., Adams, E.S., Kotamarti, S., Mottaghi, M., Taha, T., Aminsharifi, A., et al. (2023) Comparison of Procedural Anxiety and Pain Associated with Conventional Transrectal Ultrasound Prostate Biopsy to Magnetic Resonance Imaging-Ultrasound Fusion-Guided Biopsy: A Prospective Cohort Trial. Prostate Cancer and Prostatic Diseases, 27, 294-299.
https://doi.org/10.1038/s41391-023-00760-5
[46] Ahmadian, K. and Reza-Alikhani, H. (2021) Self-Organized Maps and High-Frequency Image Detail for MRI Image Enhancement. IEEE Access, 9, 145662-145682.
https://doi.org/10.1109/access.2021.3123119
[47] Wetterauer, C., Matthias, M., Pueschel, H., et al. (2024) Opportunistic Prostate Cancer Screening with Biparametric Magnetic Resonance Imaging (VISIONING). European Urology Focus, 10, 332-338.
[48] Shimizu, R., Morizane, S., Yamamoto, A., Yamane, H., Nishikawa, R., Kimura, Y., et al. (2024) Assessment of the Accuracy of Biparametric MRI/TRUS Fusion-Guided Biopsy for Index Tumor Evaluation Using Postoperative Pathology Specimens. BMC Urology, 24, Article No. 79.
https://doi.org/10.1186/s12894-024-01473-0
[49] Kuhl, C.K., Bruhn, R., Krämer, N., Nebelung, S., Heidenreich, A. and Schrading, S. (2017) Abbreviated Biparametric Prostate MR Imaging in Men with Elevated Prostate-Specific Antigen. Radiology, 285, 493-505.
https://doi.org/10.1148/radiol.2017170129
[50] Pandey, S., Snider, A.D., Moreno, W.A., Ravi, H., Bilgin, A. and Raghunand, N. (2021) Joint Total Variation‐Based Reconstruction of Multiparametric Magnetic Resonance Images for Mapping Tissue Types. NMR in Biomedicine, 34, e4597.
https://doi.org/10.1002/nbm.4597
[51] Kobayashi, M., Matsuoka, Y., Uehara, S., Tanaka, H., Fujiwara, M., Nakamura, Y., et al. (2024) Utility of Positive Core Number on MRI‐Ultrasound Fusion Targeted Biopsy in Combination with PI‐Rads Scores for Predicting Unexpected Extracapsular Extension of Clinically Localized Prostate Cancer. International Journal of Urology, 31, 739-746.
https://doi.org/10.1111/iju.15451
[52] Boesen, L. (2019) Magnetic Resonance Imaging—Transrectal Ultrasound Image Fusion Guidance of Prostate Biopsies: Current Status, Challenges and Future Perspectives. Scandinavian Journal of Urology, 53, 89-96.
https://doi.org/10.1080/21681805.2019.1600581
[53] in de Braekt, T., van Rooij, S.B.T., Daniels-Gooszen, A.W., Scheepens, W.A., de Jongh, R., Bosch, S.L., et al. (2024) Accuracy of MRI-Ultrasound Fusion-Guided and Systematic Biopsy of the Prostate. British Journal of Radiology, 97, 1132-1138.
https://doi.org/10.1093/bjr/tqae080
[54] Smrkolj, T., Taskovska, M., Ditz, I., Cernelc, K. and Hawlina, S. (2024) The Initial Results of MRI-TRUS Fusion Prostate Biopsy in High Volume Tertiary Center. Radiology and Oncology, 58, 501-508.
https://doi.org/10.2478/raon-2024-0060
[55] Lokeshwar, S.D., Choksi, A.U., Smani, S., Kong, V., Sundaresan, V., Sutherland, R., et al. (2024) Pathologic Prostate Cancer Grade Concordance among High-Resolution Micro-Ultrasound, Systematic Transrectal Ultrasound and MRI Fusion Biopsy. Urologic Oncology: Seminars and Original Investigations.
https://doi.org/10.1016/j.urolonc.2024.10.018
[56] Günzel, K., Magheli, A., Baco, E., Cash, H., Heinrich, S., Neubert, H., et al. (2021) Infection Rate and Complications after 621 Transperineal MRI-TRUS Fusion Biopsies in Local Anesthesia without Standard Antibiotic Prophylaxis. World Journal of Urology, 39, 3861-3866.
https://doi.org/10.1007/s00345-021-03699-1
[57] Lv, Z., Wang, J., Wang, M., Hou, H., Song, L., Li, H., et al. (2023) Is It Necessary for All Patients with Suspicious Lesions Undergo Systematic Biopsy in the Era of MRI-TRUS Fusion Targeted Biopsy? International braz j urol, 49, 359-371.
https://doi.org/10.1590/s1677-5538.ibju.2023.0060
[58] Taha, F., Larre, S., Branchu, B., Kumble, A., Saffarini, M. and Ramos-Pascual, S. (2024) Surgeon Seniority and Experience Have No Effect on Cap Detection Rates Using MRI/TRUS Fusion-Guided Targeted Biopsies. Urologic Oncology: Seminars and Original Investigations, 42, 67.e1-67.e7.
https://doi.org/10.1016/j.urolonc.2023.11.007
[59] Derigs, F., Doryumu, S., Tollens, F., Nörenberg, D., Neuberger, M., von Hardenberg, J., et al. (2021) A Prospective Study on Inter-Operator Variability in Semi-Robotic Software-Based MRI/Trus-Fusion Targeted Prostate Biopsies. World Journal of Urology, 40, 427-433.
https://doi.org/10.1007/s00345-021-03891-3
[60] Erbin, A., Caglar, U. and Turkay, R. (2024) Evaluating the Effectiveness and Safety of Robotic-Assisted MRI/TRUS Fusion Transperineal Prostate Biopsy Systems: A Narrative Review Based on Current Literature. The Eurasian Journal of Medicine, 55, 125-130.
https://doi.org/10.5152/eurasianjmed.2023.23370
[61] Guo, Y., Su, K., Lu, M. and Liu, X. (2023) Incorporation of Trans-Rectal Color Doppler Flow Imaging and Risk-Stratification Nomogram Reduce Unnecessary Prostate Biopsies in Suspected Prostate Cancer Patients: A Bi-Centered Retrospective Validation Study. BMC Urology, 23, Article No. 81.
https://doi.org/10.1186/s12894-023-01245-2
[62] Liu, Y., Lu, D., Xu, G., Wang, S., Zhou, B., Zhang, Y., et al. (2024) Diagnostic Accuracy of Qualitative and Quantitative Magnetic Resonance Imaging-Guided Contrast-Enhanced Ultrasound (MRI-Guided CEUS) for the Detection of Prostate Cancer: A Prospective and Multicenter Study. La radiologia medica, 129, 585-597.
https://doi.org/10.1007/s11547-024-01758-2
[63] Van Der Eecken, H., Vansevenant, B., Devos, G., Roussel, E., Giesen, A., Darras, J., et al. (2024) Nutritional Supplement with Fermented Soy in Men with an Elevated Risk of Prostate Cancer and Negative Prostate Biopsies: General and Oncological Results from the Prospective PRAECAP Trial. Urology, 188, 131-137.
https://doi.org/10.1016/j.urology.2024.04.028