缺血性脑卒中静脉溶栓治疗研究进展
Research Progress on Intravenous Thrombolytic Therapy for Ischemic Stroke
摘要: 卒中是一种有着高致残率、高复发率、高死亡率的常见疾病,静脉溶栓是急性缺血性卒中患者目前最容易获得和最有效的再灌注疗法,尽快开通血管、恢复血流、挽救缺血半暗带,尽可能地减少缺血性卒中的致残率和死亡率,静脉溶栓治疗提高了良好功能结局的比例,且出血并发症的风险极低。随着新型溶栓药物的出现,治疗从时间窗逐渐向组织窗过渡,在特殊患者是否溶栓中权衡利弊,因此本论文对急性缺血性卒中的应用及最新进展进行综述讨论。
Abstract: Stroke is a common disease characterized by high disability, recurrence, and mortality rates. Intravenous thrombolysis (IVT) is currently the most accessible and effective reperfusion therapy for acute ischemic stroke (AIS). It aims to rapidly restore blood flow, salvage the ischemic penumbra, and minimize disability and mortality. IVT improves the likelihood of favorable functional outcomes with a low risk of hemorrhagic complications. With the emergence of novel thrombolytic agents, the treatment paradigm is gradually shifting from a strict time window to a tissue window approach, requiring careful risk-benefit assessment in specific patient populations. This review discusses the application and latest advances in IVT for AIS.
文章引用:刘素妮, 易黎. 缺血性脑卒中静脉溶栓治疗研究进展[J]. 临床医学进展, 2025, 15(5): 1433-1439. https://doi.org/10.12677/acm.2025.1551511

1. 缺血性脑卒中的流行病学及病理生理

卒中是一种脑血管疾病,其特点是残疾率高、复发率高。它在全球所有死亡原因中排名第二[1],缺血性卒中占所有卒中的62% [2]。任何疾病的病因、发病机制以及潜在的分子、生化和结构变化构成了其病理生理学。缺血性中风多是由于心房颤动形成的血凝块栓塞、动脉粥样硬化斑块形成、小动脉闭塞导致了脑部供血动脉阻塞引起[3]。受影响的脑区域通常被称为缺血核心区。在此区域,大多数细胞在神经保护剂发挥作用前就已发生不可逆死亡。围绕缺血核心区的是可挽救细胞的区域,称为缺血半暗带,通常是治疗干预的目标。复杂的分子和细胞机制相互作用导致了一些表型表现,包括偏瘫、截瘫、构音障碍和轻瘫。其他表现可能因被阻塞动脉供血的脑区不同而异[4]。与许多其他神经退行性疾病类似,缺血性中风的特点是在受影响的缺血核心区和周围半暗带内发生多重变化。这些宏观和微观变化通常归类为五个主要病理过程:神经炎症、兴奋性毒性、氧化应激、细胞凋亡和自噬。缺血性中风中的细胞死亡是由于这些独立但相互强化的病理事件之间的复杂相互作用所致。

2. 静脉溶栓的应用

自1990年代以来,静脉溶栓一直是急性缺血性卒中患者再灌注治疗的主要手段。阿替普酶或重组组织纤溶酶原激活剂(rt-PA)自1995年发表具有里程碑意义的NINDS试验后首次获批以来,一直是急性缺血性脑卒中患者再灌注的一线治疗[5]。根据《中国急性缺血性卒中诊治指南2023》[6],阿替普酶(rt-PA)在发病4.5小时内应用标准治疗方案,其再通率可达30%~40% [7]。其作用机制由血管内皮细胞分泌的rt-PA在血液循环中对纤溶酶原的激活作用微弱,其活性主要受到其生理抑制剂——纤溶酶原激活剂抑制剂1 (PAI-1)和PAI-2抑制。当血管损伤时,rt-PA结合到血栓表面,其激活纤溶酶原生成纤溶酶的活性大增。纤溶酶一方面将单链rt-PA裂解成活性更高的双链rt-PA,进一步激活纤溶酶原生成更多的纤溶酶;另一方面,纤溶酶将血栓中的高分子纤维蛋白裂解成可溶性的低分子质量产物,最终引起整个血栓的连续溶解[8]

3. 移动卒中中心

时间及大脑,黄金时间溶栓可以明显改善急性缺血性卒中的预后[9],然而常规医疗环境下黄金小时溶栓率极低,只有少数患者在阿替普酶临床试验中在60分钟内接受了治疗[10]。Get With The Guidelines-Stroke (GWTG-Stroke)和SITS-EAST注册表的数据表明,“黄金一小时”的溶栓率分别低至1.3%和0.8% [11] [12]。法斯本德教授及其团队率先开创了急性卒中的院前治疗模式。他于2000年首次提出这一理念,并在2008年成功将其整合到临床实践中[13]该创新的核心在于使用配备多模式CT扫描仪、床旁实验室和急救药物的专用救护车——移动卒中单元(MSU)。通过远程医疗技术,患者的影像学检查结果、视频录像及体格检查数据可在医院与救护车之间实现双向传输,从而与电子病历无缝对接并即时获得专科会诊[14]-[16]随着移动卒中单元(MSU)的引入,静脉溶栓治疗的“黄金一小时”给药率发生了变化,导致院前早期静脉溶栓治疗的比率提高。最近的研究显示,“黄金一小时”溶栓治疗的比率增加了10倍,从而改善了预后[17]。在一项荟萃分析中显示,MSU环境中的“黄金一小时”溶栓治疗率为32.4%,而非MSU环境中的仅为1.8%,证明了MSU实施和推进的价值[9]。在2022年发布的欧洲指南中对使用移动卒中单元提出了建议:对于确认的急性缺血性中风的患者,使用MSU进行院前治疗可以改善其临床功能,提高IVT治疗率,并缩短开始溶栓治疗的时间(基于中等证据) [18]

4. 延长静脉溶栓时间窗

目前的国际指南建议AIS溶栓治疗的最佳时间是卒中发作后4.5小时内[19]。然而,以前的试验表明,只有5%至25%的AIS患者接受rt-PA [20],主要是由于对4.5小时治疗窗口的限制。既往试验显示,卒中患者在疾病进展后数小时内出现显著影像学变化,但影像学变化也可能在数天后出现,提示时间窗不是固定的,而是多种条件下的动态演变过程[21],这可能为治疗提供一个潜在的时间窗口。此外,随着现代检测技术的进步,磁共振成像(MRI)可用于评估卒中时间的开始。其主要影像学特征是通过弥散加权成像(DWI)检测到急性缺血病变,但在液体衰减反转恢复(FLAIR)成像中不可见[22] [23]。这可能是溶栓的潜在安全有效的治疗时间窗口。此外,MRI灌注加权成像(PWI)/DWI错配模式已被研究为缺血半暗带的有效标志物[22]-[25]。因此,对于PWI/DWI不匹配的患者,灌注弥散MRI似乎可以实现早期再灌注,并且可以实现更好的恢复。WAKE-UP调查员进行了一项多中心试验[26],其中所有患者在MRI、DWI上可见缺血性病变,FLAIR中没有高信号,表明中风发生在大约4.5小时内,这些患者被随机分配接受IVT治疗(n = 254)和接受安慰剂(n = 249)。结果表明,在发病时间未知的AIS患者中,通过DWI和FLAIR区域不匹配的IVT治疗可以显着获得更好的功能结果。2023年《中国急性缺血性卒中诊治指南》推荐,对于发病时间未明或超过IVT时间窗的急性AIS患者,如果不能实施或不适合机械取栓,可结合多模影像学评估能否予以IVT治疗(II级推荐,B级证据)。

5. 新型溶栓药物

5.1. 替奈普酶

具有更长的半衰期,更高的纤维蛋白特异性,更低的颅内出血率,这可能使其成为比阿替普酶更好的溶栓药物[27]-[29]。与阿替普酶相比,替奈普酶更容易给药,它是一种经基因改良的组织型纤溶酶原激活剂(tPA),给药方式是单次静脉推注给药,而非持续输注,这种推注给药方式可使血栓快速暴露于高浓度酶环境,从而加速纤溶过程,实现更早的血管再通和血流恢复[30],这减少了药物错误、剂量中断和时间延迟的潜在风险。这种改进的给药便利性也有助于医院间的转运。替奈普酶被建议可以改善再通和再灌注,不会增加出血风险,并且可能更有效地溶解大血管血栓[31] [32]。基于这些发现,一些国家指南委员会支持在适合进行血栓切除术的颅内大血管闭塞(LVOS)患者中使用替奈普酶代替阿替普酶进行静脉溶栓,但将这些推荐评为证据强度较弱和证据质量较低[33] [34]。关于替奈普酶的研究正在不断涌现,全球范围内已有超过20项试验完成或正在进行。第三阶段的试验AcT (加拿大急性缺血性卒中静脉注射替奈普酶与阿替普酶比较) [35]、TRACE-2 (急性缺血性脑血管事件中替奈普酶与阿替普酶比较-2) [36]和ATTEST-2 (阿替普酶–替奈普酶卒中溶栓试验评估-2) [37]最近提供了有力的结果,表明在症状发作后4.5小时内,0.25 mg/kg的替奈普酶在疗效上不逊于阿替普酶,并具有相似的安全性概况。最新的2023年欧洲卒中组织指南[38]强烈推荐,在症状发作后4.5小时内,对于急性缺血性卒中(AIS)或由大血管闭塞(LVO)引起的卒中患者,可以使用0.25 mg/kg的替奈普酶作为0.9 mg/kg阿替普酶的替代药物。2023年《中国急性缺血性卒中诊治指南》推荐发病4.5 h内的AIS患者予以阿替普酶或替奈普酶IVT治疗(I级推荐,A级证据)。在大血管闭塞(LVO)和目标不匹配的患者中,替奈普酶的使用总体上明显优于阿替普酶,但在轻度卒中患者、年老患者和延长的时间窗口中,其效果尚不确定。

5.2. 瑞替普酶

瑞替普酶是一种重组纤溶酶原激活剂,其特点是以双剂量(两个剂量间隔30分钟)的方式进行固定剂量治疗[39]-[42]。在一项2期随机对照试验中,与两次12毫克剂量相比,两次18毫克剂量的瑞替普酶治疗急性缺血性卒中患者的功能良好结局比例更高,且高剂量的瑞替普酶并未增加致命性出血的风险[43]。RAISE试验[44]对瑞替普酶与标准剂量阿替普酶在急性缺血性卒中患者中进行比较研究,以评估在症状发作后4.5小时内适合静脉溶栓的患者中,双剂量的瑞替普酶(18 mg + 18 mg,间隔30分钟)与标准剂量的阿替普酶在功能结局方面的差异。该研究显示,与阿替普酶相比,瑞替普酶在改善急性缺血性中风患者的功能结局方面更为优越,且不会增加有症状的颅内出血和死亡的发生率。此外,使用瑞替普酶的患者在24小时内NIHSS评分显著改善的比例比使用阿替普酶的患者高出10个百分点,瑞替普酶组在90天时功能结局优异的患者百分比比阿替普酶组高9.4个百分点,这说明瑞替普酶的益处可能涉及更高的再通率。但不足的是瑞替普酶组在90天时颅内出血和不良事件的发生率高于阿替普酶组。

5.3. 重组非免疫源性葡萄激酶

在最近的一项治疗急性缺血性中风的临床试验中,重组非免疫源性葡萄激酶(一种链激酶的变体)不劣于阿替普酶[45]。这种非免疫源性葡萄激酶因其高度的纤维蛋白选择性和低成本(来源于细菌且分子量小)而具有作为新型溶栓药物开发的潜力。这种非免疫源性葡萄激酶在2020年被注册为治疗急性缺血性中风患者的药物。在一项针对急性缺血性中风患者治疗的随机试验中,非免疫源性葡萄激酶(10毫克单次推注)与阿替普酶相比并不逊色。在非免疫源性葡萄激酶组中,84名(50%)患者在第90天达到了良好结局,而阿替普酶组有68名(40%)患者达到了良好结局。两组之间的死亡率、有症状的颅内出血或严重不良事件没有显著差异[45]

6. 轻型卒中是否溶栓

轻型卒中是否溶栓,一项多中心、前瞻性、随机、开放标签、盲终点对照试验,比较了替奈普酶与标准治疗在预防轻度缺血性中风患者(NIHSS ≤ 5)在急性症状性闭塞后3个月残疾的疗效(TEMPO-2)最近已发表[46]。该试验将轻度缺血性中风患者(NIHSS ≤ 5)随机分配接受替奈普酶0.25 mg/kg或最佳医疗治疗,这些患者在卒中发作后12小时内有颅内动脉闭塞或局灶性灌注异常。试验因无效而提前终止,共纳入886名患者(替奈普酶369人,非溶栓治疗454人)。主要结局是恢复到基线功能的改良Rankin量表评分,替奈普酶组与非溶栓治疗组之间无差异(71.5% vs. 74.8%, RR 0.96, 95% CI 0.88~1.04, p = 0.2882)。

7. 卒中合并大血管闭塞的治疗选择

大血管闭塞的患者在进行血管内血栓切除术前是否溶栓,在几项临床试验中,研究了静脉溶栓(使用rt-PA或TNK)是否提供了比血管内血栓切除术更有益的任何额外益处,但没有明确的答案。一项纳入了49项研究的Meta分析显示静脉溶栓联合机械取栓在以下方面显著优于单独机械取栓:成功再通率(RR 1.06, 95% CI 1.03~1.09)、死亡率(RR 0.75, 95% CI 0.68~0.82)、良好功能预后(RR 1.21, 95% CI 1.13~1.29)以及完全再通率(RR 1.06, 95% CI 1.00~1.11)。然而,两组在24小时或出院时NIHSS评分的改善方面无显著差异(p > 0.05)。此外,两组在并发症方面(包括症状性颅内出血、症状性脑出血、手术相关并发症以及脑实质血肿)也无显著差异(p > 0.05) [47]

8. 结论

静脉溶栓是急性缺血性脑卒中治疗的重要手段,能够显著改善患者的预后。未来进一步优化诊治流程,借助多模式影像学检查识别组织窗来扩大溶栓获益人群,移动卒中中心的应用,新型溶栓药物的研发及应用,联合治疗策略的选择都将对缺血性脑卒中的再灌注治疗提供有效帮助;另一方面,加强脑卒中的健康科普,提高民众对脑卒中的认知,时间即大脑,从而缩短发病到就医的时间,尽可能地减少脑卒中的致残率及死亡率。

参考文献

[1] Stinear, C.M., Lang, C.E., Zeiler, S. and Byblow, W.D. (2020) Advances and Challenges in Stroke Rehabilitation. The Lancet Neurology, 19, 348-360.
https://doi.org/10.1016/s1474-4422(19)30415-6
[2] Tadi, P. and Lui, F. (2023) Acute Stroke. StatPearls Publishing.
[3] Feske, S.K. (2021) Ischemic Stroke. The American Journal of Medicine, 134, 1457-1464.
https://doi.org/10.1016/j.amjmed.2021.07.027
[4] Salaudeen, M.A., Allan, S. and Pinteaux, E. (2024) Hypoxia and Interleukin-1-Primed Mesenchymal Stem/Stromal Cells as Novel Therapy for Stroke. Human Cell, 37, 154-166.
https://doi.org/10.1007/s13577-023-00997-1
[5] The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue Plasminogen Activator for Acute Ischemic Stroke. The New England Journal of Medicine, 333, 1581-1588.
https://doi.org/10.1056/NEJM199512143332401
[6] 李光硕, 赵性泉.《中国急性缺血性卒中诊治指南2023》解读[J]. 中国卒中杂志, 2024, 19(8): 956-961.
[7] 黄文立, 宫淑杰, 吴志生, 等. 急性脑梗死合并前循环大血管闭塞患者桥接治疗和机械取栓临床的效果分析[J].中风与神经疾病杂志, 2019, 36(2): 147-149.
[8] 郑斯莉, 缪朝玉. 组织型纤溶酶原激活剂治疗急性缺血性脑卒中的作用机制及临床应用[J]. 中国药理学与毒理学杂志, 2018, 32(8): 595-606.
[9] Al‐Ajlan, F.S., Alkhiri, A., Alamri, A.F., Alghamdi, B.A., Almaghrabi, A.A., Alharbi, A.R., et al. (2024) Golden Hour Intravenous Thrombolysis for Acute Ischemic Stroke: A Systematic Review and Meta‐Analysis. Annals of Neurology, 96, 582-590.
https://doi.org/10.1002/ana.27007
[10] Grotta, J.C. (2014) tPA for Stroke: Important Progress in Achieving Faster Treatment. JAMA, 311, 1615-1617.
https://doi.org/10.1001/jama.2014.3322
[11] Kim, H., Kim, J., Lee, J.S., Kim, B.J., Park, J., Kang, K., et al. (2021) Golden Hour Thrombolysis in Acute Ischemic Stroke: The Changing Pattern in South Korea. Journal of Stroke, 23, 135-138.
https://doi.org/10.5853/jos.2020.04658
[12] Tsivgoulis, G., Katsanos, A.H., Kadlecová, P., Czlonkowska, A., Kobayashi, A., Brozman, M., et al. (2017) Intravenous Thrombolysis for Ischemic Stroke in the Golden Hour: Propensity-Matched Analysis from the SITS-EAST Registry. Journal of Neurology, 264, 912-920.
https://doi.org/10.1007/s00415-017-8461-8
[13] Keen, C.E. (2021) Mobile Stroke Units: When Emergency Medicine Hits the Road.
https://healthcare-in-europe.com/
[14] Fassbender, K., Merzou, F., Lesmeister, M., Walter, S., Grunwald, I.Q., Ragoschke-Schumm, A., et al. (2021) Impact of Mobile Stroke Units. Journal of Neurology, Neurosurgery & Psychiatry, 92, 815-822.
https://doi.org/10.1136/jnnp-2020-324005
[15] Yperzeele, L., Van Hooff, R., De Smedt, A., Valenzuela Espinoza, A., Van de Casseye, R., Hubloue, I., et al. (2014) Prehospital Stroke Care: Limitations of Current Interventions and Focus on New Developments. Cerebrovascular Diseases, 38, 1-9.
https://doi.org/10.1159/000363617
[16] Röhrs, K.J. and Audebert, H. (2024) Pre-Hospital Stroke Care Beyond the MSU. Current Neurology and Neuroscience Reports, 24, 315-322.
https://doi.org/10.1007/s11910-024-01351-0
[17] Ebinger, M., Kunz, A., Wendt, M., Rozanski, M., Winter, B., Waldschmidt, C., et al. (2015) Effects of Golden Hour Thrombolysis: A Prehospital Acute Neurological Treatment and Optimization of Medical Care in Stroke (PHANTOM-S) Substudy. JAMA Neurology, 72, 25.
https://doi.org/10.1001/jamaneurol.2014.3188
[18] Walter, S., Audebert, H.J., Katsanos, A.H., Larsen, K., Sacco, S., Steiner, T., et al. (2022) European Stroke Organisation (ESO) Guidelines on Mobile Stroke Units for Prehospital Stroke Management. European Stroke Journal, 7, XXVII-LIX.
https://doi.org/10.1177/23969873221079413
[19] Emberson, J., Lees, K.R., Lyden, P., Blackwell, L., Albers, G., Bluhmki, E., et al. (2014) Effect of Treatment Delay, Age, and Stroke Severity on the Effects of Intravenous Thrombolysis with Alteplase for Acute Ischaemic Stroke: A Meta-Analysis of Individual Patient Data from Randomised Trials. The Lancet, 384, 1929-1935.
https://doi.org/10.1016/s0140-6736(14)60584-5
[20] Khaja, A.M. and Grotta, J.C. (2007) Established Treatments for Acute Ischaemic Stroke. The Lancet, 369, 319-330.
https://doi.org/10.1016/s0140-6736(07)60154-8
[21] Rimmele, D.L. and Thomalla, G. (2014) Wake-Up Stroke: Clinical Characteristics, Imaging Findings, and Treatment Option—An Update. Frontiers in Neurology, 5, Article 35.
https://doi.org/10.3389/fneur.2014.00035
[22] Thomalla, G., Rossbach, P., Rosenkranz, M., Siemonsen, S., Krützelmann, A., Fiehler, J., et al. (2009) Negative Fluid‐Attenuated Inversion Recovery Imaging Identifies Acute Ischemic Stroke at 3 Hours or Less. Annals of Neurology, 65, 724-732.
https://doi.org/10.1002/ana.21651
[23] Petkova, M., Rodrigo, S., Lamy, C., Oppenheim, G., Touzé, E., Mas, J., et al. (2010) MR Imaging Helps Predict Time from Symptom Onset in Patients with Acute Stroke: Implications for Patients with Unknown Onset Time. Radiology, 257, 782-792.
https://doi.org/10.1148/radiol.10100461
[24] Albers, G.W., Marks, M.P., Kemp, S., Christensen, S., Tsai, J.P., Ortega-Gutierrez, S., et al. (2018) Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine, 378, 708-718.
https://doi.org/10.1056/nejmoa1713973
[25] Chemmanam, T., Campbell, B.C.V., Christensen, S., Nagakane, Y., Desmond, P.M., Bladin, C.F., et al. (2010) Ischemic Diffusion Lesion Reversal Is Uncommon and Rarely Alters Perfusion-Diffusion Mismatch. Neurology, 75, 1040-1047.
https://doi.org/10.1212/wnl.0b013e3181f39ab6
[26] Thomalla, G., Simonsen, C.Z., Boutitie, F., Andersen, G., Berthezene, Y., Cheng, B., et al. (2018) MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. New England Journal of Medicine, 379, 611-622.
https://doi.org/10.1056/nejmoa1804355
[27] Logallo, N., Kvistad, C.E., Nacu, A. and Thomassen, L. (2016) Novel Thrombolytics for Acute Ischemic Stroke: Challenges and Opportunities. CNS Drugs, 30, 101-108.
https://doi.org/10.1007/s40263-015-0307-2
[28] Baruah, D.B., Dash, R.N., Chaudhari, M.R. and Kadam, S.S. (2006) Plasminogen Activators: A Comparison. Vascular Pharmacology, 44, 1-9.
https://doi.org/10.1016/j.vph.2005.09.003
[29] Li, G., Wang, C., Wang, S., Xiong, Y. and Zhao, X. (2022) Tenecteplase in Ischemic Stroke: Challenge and Opportunity. Neuropsychiatric Disease and Treatment, 18, 1013-1026.
https://doi.org/10.2147/ndt.s360967
[30] Keyt, B.A., Paoni, N.F., Refino, C.J., Berleau, L., Nguyen, H., Chow, A., et al. (1994) A Faster-Acting and More Potent Form of Tissue Plasminogen Activator. Proceedings of the National Academy of Sciences, 91, 3670-3674.
https://doi.org/10.1073/pnas.91.9.3670
[31] Campbell, B.C.V., Mitchell, P.J., Churilov, L., Yassi, N., Kleinig, T.J., Dowling, R.J., et al. (2018) Tenecteplase versus Alteplase before Thrombectomy for Ischemic Stroke. New England Journal of Medicine, 378, 1573-1582.
https://doi.org/10.1056/nejmoa1716405
[32] Campbell, B.C.V., Mitchell, P.J., Kleinig, T.J., Dewey, H.M., Churilov, L., Yassi, N., et al. (2015) Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection. New England Journal of Medicine, 372, 1009-1018.
https://doi.org/10.1056/nejmoa1414792
[33] Berge, E., Whiteley, W., Audebert, H., De Marchis, G., Fonseca, A.C., Padiglioni, C., et al. (2021) European Stroke Organisation (ESO) Guidelines on Intravenous Thrombolysis for Acute Ischaemic Stroke. European Stroke Journal, 6, I-LXII.
https://doi.org/10.1177/2396987321989865
[34] Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bambakidis, N.C., Becker, K., et al. (2019) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 50, e344-e418.
https://doi.org/10.1161/str.0000000000000211
[35] Menon, B.K., Buck, B.H., Singh, N., Deschaintre, Y., Almekhlafi, M.A., Coutts, S.B., et al. (2022) Intravenous Tenecteplase Compared with Alteplase for Acute Ischaemic Stroke in Canada (AcT): A Pragmatic, Multicentre, Open-Label, Registry-Linked, Randomised, Controlled, Non-Inferiority Trial. The Lancet, 400, 161-169.
https://doi.org/10.1016/s0140-6736(22)01054-6
[36] Wang, Y., Li, S., Pan, Y., Li, H., Parsons, M.W., Campbell, B.C.V., et al. (2023) Tenecteplase versus Alteplase in Acute Ischaemic Cerebrovascular Events (TRACE-2): A Phase 3, Multicentre, Open-Label, Randomised Controlled, Non-Inferiority Trial. The Lancet, 401, 645-654.
https://doi.org/10.1016/s0140-6736(22)02600-9
[37] Muir, G.F.K., Ford, I., Wardlaw, J.M., Mcconnachie, A., Greenlaw, N., Mair, G., Sprigg, N., Price, C. and Macleod, M.J. (2023) Tenectplase versus Alteplase for Acute Stroke Within 4.5H of Onset: The Second Alteplase‐Tenecteplase Trial Evaluation for Stroke Thrombolysis (ATTEST‐2). 15th World Stroke Congress, 10-12 October 2023, Toronto, 422-423.
[38] Alamowitch, S., Turc, G., Palaiodimou, L., Bivard, A., Cameron, A., De Marchis, G.M., et al. (2023) European Stroke Organisation (ESO) Expedited Recommendation on Tenecteplase for Acute Ischaemic Stroke. European Stroke Journal, 8, 8-54.
https://doi.org/10.1177/23969873221150022
[39] Noble, S. and McTavish, D. (1996) Reteplase. A Review of Its Pharmacological Properties and Clinical Efficacy in the Management of Acute Myocardial Infarction. Drugs, 52, 589-605.
https://doi.org/10.2165/00003495-199652040-00012
[40] Smalling, R.W. (1996) Molecular Biology of Plasminogen Activators: What Are the Clinical Implications of Drug Design? The American Journal of Cardiology, 78, 2-7.
https://doi.org/10.1016/s0002-9149(96)00736-9
[41] Smalling, R.W., Bode, C., Kalbfleisch, J., Sen, S., Limbourg, P., Forycki, F., et al. (1995) More Rapid, Complete, and Stable Coronary Thrombolysis with Bolus Administration of Reteplase Compared with Alteplase Infusion in Acute Myocardial Infarction. Circulation, 91, 2725-2732.
https://doi.org/10.1161/01.cir.91.11.2725
[42] Bode, C., Smalling, R.W., Berg, G., Burnett, C., Lorch, G., Kalbfleisch, J.M., et al. (1996) Randomized Comparison of Coronary Thrombolysis Achieved with Double-Bolus Reteplase (Recombinant Plasminogen Activator) and Front-Loaded, Accelerated Alteplase (Recombinant Tissue Plasminogen Activator) in Patients with Acute Myocardial Infarction. Circulation, 94, 891-898.
https://doi.org/10.1161/01.cir.94.5.891
[43] Li, S., Wang, X., Jin, A., Liu, G., Gu, H., Li, H., et al. (2023) Safety and Efficacy of Reteplase versus Alteplase for Acute Ischemic Stroke: A Phase 2 Randomized Controlled Trial. Stroke, 55, 366-375.
https://doi.org/10.1161/strokeaha.123.045193
[44] Li, S., Gu, H., Li, H., Wang, X., Jin, A., Guo, S., et al. (2024) Reteplase versus Alteplase for Acute Ischemic Stroke. New England Journal of Medicine, 390, 2264-2273.
https://doi.org/10.1056/nejmoa2400314
[45] Gusev, E.I., Martynov, M.Y., Nikonov, A.A., Shamalov, N.A., Semenov, M.P., Gerasimets, E.A., et al. (2021) Non-Immunogenic Recombinant Staphylokinase versus Alteplase for Patients with Acute Ischaemic Stroke 4·5 H after Symptom Onset in Russia (FRIDA): A Randomised, Open Label, Multicentre, Parallel-Group, Non-Inferiority Trial. The Lancet Neurology, 20, 721-728.
https://doi.org/10.1016/s1474-4422(21)00210-6
[46] Coutts, S.B., Ankolekar, S., Appireddy, R., Arenillas, J.F., Assis, Z., Bailey, P., et al. (2024) Tenecteplase versus Standard of Care for Minor Ischaemic Stroke with Proven Occlusion (TEMPO-2): A Randomised, Open Label, Phase 3 Superiority Trial. The Lancet, 403, 2597-2605.
https://doi.org/10.1016/s0140-6736(24)00921-8
[47] Ghaith, H.S., Elfil, M., Gabra, M.D., Nawar, A.A., Abd-Alkhaleq, M.S., Hamam, K.M., et al. (2022) Intravenous Thrombolysis before Mechanical Thrombectomy for Acute Ischemic Stroke Due to Large Vessel Occlusion; Should We Cross That Bridge? A Systematic Review and Meta-Analysis of 36,123 Patients. Neurological Sciences, 43, 6243-6269.
https://doi.org/10.1007/s10072-022-06283-6