[1]
|
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
|
[2]
|
Thai, A.A., Solomon, B.J., Sequist, L.V., Gainor, J.F. and Heist, R.S. (2021) Lung Cancer. The Lancet, 398, 535-554. https://doi.org/10.1016/s0140-6736(21)00312-3
|
[3]
|
Luo, G., Zhang, Y., Etxeberria, J., Arnold, M., Cai, X., Hao, Y., et al. (2023) Projections of Lung Cancer Incidence by 2035 in 40 Countries Worldwide: Population-Based Study. JMIR Public Health and Surveillance, 9, e43651. https://doi.org/10.2196/43651
|
[4]
|
Li, C., Lei, S., Ding, L., Xu, Y., Wu, X., Wang, H., et al. (2023) Global Burden and Trends of Lung Cancer Incidence and Mortality. Chinese Medical Journal, 136, 1583-1590. https://doi.org/10.1097/cm9.0000000000002529
|
[5]
|
Li, Y., Yan, B. and He, S. (2023) Advances and Challenges in the Treatment of Lung Cancer. Biomedicine & Pharmacotherapy, 169, Article ID: 115891. https://doi.org/10.1016/j.biopha.2023.115891
|
[6]
|
Kirby, T.J. and Rice, T.W. (1993) Thoracoscopic Lobectomy. The Annals of Thoracic Surgery, 56, 784-786. https://doi.org/10.1016/0003-4975(93)90980-v
|
[7]
|
Melfi, F.M., Menconi, G.F., Mariani, A.M., et al. (2002) Early Experience with Robotic Technology for Thoracoscopic Surgery. European Journal of Cardio-Thoracic Surgery, 21, 864-868. https://doi.org/10.1016/s1010-7940(02)00102-1
|
[8]
|
Oh, D.S., Tisol, W.B., Cesnik, L., Crosby, A. and Cerfolio, R.J. (2019) Port Strategies for Robot-Assisted Lobectomy by High-Volume Thoracic Surgeons: A Nationwide Survey. Innovations: Technology and Techniques in Cardiothoracic and Vascular Surgery, 14, 545-552. https://doi.org/10.1177/1556984519883643
|
[9]
|
Cerfolio, R.J., Bryant, A.S., Skylizard, L. and Minnich, D.J. (2011) Initial Consecutive Experience of Completely Portal Robotic Pulmonary Resection with 4 Arms. The Journal of Thoracic and Cardiovascular Surgery, 142, 740-746. https://doi.org/10.1016/j.jtcvs.2011.07.022
|
[10]
|
Park, B.J., Flores, R.M. and Rusch, V.W. (2006) Robotic Assistance for Video-Assisted Thoracic Surgical Lobectomy: Technique and Initial Results. The Journal of Thoracic and Cardiovascular Surgery, 131, 54-59. https://doi.org/10.1016/j.jtcvs.2005.07.031
|
[11]
|
Yang, Y., Song, L., Huang, J., Cheng, X. and Luo, Q. (2021) A Uniportal Right Upper Lobectomy by Three-Arm Robotic-Assisted Thoracoscopic Surgery Using the Da Vinci (XI) Surgical System in the Treatment of Early-Stage Lung Cancer. Translational Lung Cancer Research, 10, 1571-1575. https://doi.org/10.21037/tlcr-21-207
|
[12]
|
Liu, L., Che, G., Pu, Q., Ma, L., Wu, Y., Kan, Q., et al. (2010) A New Concept of Endoscopic Lung Cancer Resection: Single-Direction Thoracoscopic Lobectomy. Surgical Oncology, 19, e71-e77. https://doi.org/10.1016/j.suronc.2009.04.005
|
[13]
|
Vidanapathirana, C.P., Papoulidis, P., Nardini, M., Trevis, J., Bayliss, C. and Dunning, J. (2019) Subxiphoid Robotic-Assisted Right Pneumonectomy. Journal of Thoracic Disease, 11, 1629-1631. https://doi.org/10.21037/jtd.2019.03.63
|
[14]
|
Jayakumar, S., Nardini, M., Papoulidis, P. and Dunning, J. (2018) Robotic Right Middle Lobectomy with a Subxiphoid Utility Port. Interactive CardioVascular and Thoracic Surgery, 26, 1049-1050. https://doi.org/10.1093/icvts/ivx436
|
[15]
|
Zhang, O., Alzul, R., Carelli, M., Melfi, F., Tian, D. and Cao, C. (2022) Complications of Robotic Video-Assisted Thoracoscopic Surgery Compared to Open Thoracotomy for Resectable Non-Small Cell Lung Cancer. Journal of Personalized Medicine, 12, Article No. 1311. https://doi.org/10.3390/jpm12081311
|
[16]
|
Duggan, M., Kavanagh, B.P. and Warltier, D.C. (2005) Pulmonary Atelectasis: A Pathogenic Perioperative Entity. Anesthesiology, 102, 838-854. https://doi.org/10.1097/00000542-200504000-00021
|
[17]
|
Peroni, D.G. and Boner, A.L. (2000) Atelectasis: Mechanisms, Diagnosis and Management. Paediatric Respiratory Reviews, 1, 274-278. https://doi.org/10.1053/prrv.2000.0059
|
[18]
|
Zeng, C., Lagier, D. and Vidal Melo, M.F. (2022) Perioperative Pulmonary Atelectasis: Reply. Anesthesiology, 137, 126-127. https://doi.org/10.1097/aln.0000000000004232
|
[19]
|
Leivaditis, V., Skevis, K., Mulita, F., Tsalikidis, C., Mitsala, A., Dahm, M., et al. (2024) Advancements in the Management of Postoperative Air Leak Following Thoracic Surgery: From Traditional Practices to Innovative Therapies. Medicina, 60, Article No. 802. https://doi.org/10.3390/medicina60050802
|
[20]
|
Filosso, P.L., Nigra, V.A., Lanza, G., et al. (2015) Digital versus Traditional Air Leak Evaluation after Elective Pulmonary Resection: A Prospective and Comparative Mono-Institutional Study. Journal of Thoracic Disease, 7, 1719-1724.
|
[21]
|
Campisi, A., Dell’Amore, A., Gabryel, P., Ciarrocchi, A.P., Sielewicz, M., Zhang, Y., et al. (2022) Autologous Blood Patch Pleurodesis: A Large Retrospective Multicenter Cohort Study. The Annals of Thoracic Surgery, 114, 273-279. https://doi.org/10.1016/j.athoracsur.2021.06.089
|
[22]
|
Jabłoński, S., Kordiak, J., Wcisło, S., Terlecki, A., Misiak, P., Santorek‐Strumiłło, E., et al. (2016) Outcome of Pleurodesis Using Different Agents in Management Prolonged Air Leakage Following Lung Resection. The Clinical Respiratory Journal, 12, 183-192. https://doi.org/10.1111/crj.12509
|
[23]
|
Passman, R.S., Gingold, D.S., Amar, D., Lloyd-Jones, D., Bennett, C.L., Zhang, H., et al. (2005) Prediction Rule for Atrial Fibrillation after Major Noncardiac Thoracic Surgery. The Annals of Thoracic Surgery, 79, 1698-1703. https://doi.org/10.1016/j.athoracsur.2004.10.058
|
[24]
|
Zhang, L. and Gao, S. (2016) Systematic Review and Meta-Analysis of Atrial Fibrillation Prophylaxis after Lung Surgery. Journal of Cardiovascular Pharmacology, 67, 351-357. https://doi.org/10.1097/fjc.0000000000000351
|
[25]
|
Frendl, G., Sodickson, A.C., Chung, M.K., Waldo, A.L., Gersh, B.J., Tisdale, J.E., et al. (2014) 2014 AATS Guidelines for the Prevention and Management of Perioperative Atrial Fibrillation and Flutter for Thoracic Surgical Procedures. The Journal of Thoracic and Cardiovascular Surgery, 148, e153-e193. https://doi.org/10.1016/j.jtcvs.2014.06.036
|
[26]
|
Hindricks, G., Potpara, T., Dagres, N., Arbelo, E., Bax, J.J., Blomström-Lundqvist, C., et al. (2020) 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal, 42, 373-498. https://doi.org/10.1093/eurheartj/ehaa612
|
[27]
|
Zhiqiang, W. and Shaohua, M. (2023) Perioperative Outcomes of Robotic‐Assisted versus Video‐Assisted Thoracoscopic Lobectomy: A Propensity Score Matched Analysis. Thoracic Cancer, 14, 1921-1931. https://doi.org/10.1111/1759-7714.14938
|
[28]
|
Kent, M.S., Hartwig, M.G., Vallières, E., Abbas, A.E., Cerfolio, R.J., Dylewski, M.R., et al. (2021) Pulmonary Open, Robotic, and Thoracoscopic Lobectomy (PORTaL) Study: An Analysis of 5721 Cases. Annals of Surgery, 277, 528-533. https://doi.org/10.1097/sla.0000000000005115
|
[29]
|
Gu, Z., Huang, J., Tian, Y., Jiang, L. and Luo, Q. (2022) A Retrospective Comparative Cohort Study on the Efficacy and Safety of Bi-Port Robotic-Assisted Lobectomy and Multi-Port Robotic-Assisted Lobectomy. Journal of Thoracic Disease, 14, 2970-2976. https://doi.org/10.21037/jtd-22-1003
|
[30]
|
Manolache, V., Motas, N., Bosinceanu, M.L., de la Torre, M., Gallego-Poveda, J., Dunning, J., et al. (2023) Comparison of Uniportal Robotic-Assisted Thoracic Surgery Pulmonary Anatomic Resections with Multiport Robotic-Assisted Thoracic Surgery: A Multicenter Study of the European Experience. Annals of Cardiothoracic Surgery, 12, 102-109. https://doi.org/10.21037/acs-2022-urats-27
|
[31]
|
Huang, J., Zhu, H., Lu, P., Li, J., Tian, Y., Takase, Y., et al. (2023) Comparison of Lobectomy Performed through Toumai® Surgical Robot and Da Vinci Surgical Robot in Early-Stage Non-Small Cell Lung Cancer: A Retrospective Study of Early Perioperative Results. Translational Lung Cancer Research, 12, 2219-2228. https://doi.org/10.21037/tlcr-23-603
|
[32]
|
Suda, T., Morota, M., Negi, T., Tochii, D. and Tochii, S. (2024) First Case of Major Lung Resection Using the Hinotori™ Surgical Robot System. General Thoracic and Cardiovascular Surgery, 72, 810-813. https://doi.org/10.1007/s11748-024-02082-2
|
[33]
|
Aresu, G., Dunning, J., Routledge, T., Bagan, P. and Slack, M. (2022) Preclinical Evaluation of Versius, an Innovative Device for Use in Robot-Assisted Thoracic Surgery. European Journal of Cardio-Thoracic Surgery, 62, ezac178. https://doi.org/10.1093/ejcts/ezac178
|
[34]
|
Al-Mufarrej, F., Margolis, M., Tempesta, B., Strother, E., Najam, F. and Gharagozloo, F. (2010) From Jacobeaus to the Da Vinci: Thoracoscopic Applications of the Robot. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 20, 1-9. https://doi.org/10.1097/sle.0b013e3181cdb9e5
|
[35]
|
Shahin, G.M.M., Vos, P.W.K., Hutteman, M., Stigt, J.A. and Braun, J. (2023) Robot-Assisted Thoracic Surgery for Stages IIB-IVA Non-Small Cell Lung Cancer: Retrospective Study of Feasibility and Outcome. Journal of Robotic Surgery, 17, 1587-1598. https://doi.org/10.1007/s11701-023-01549-3
|
[36]
|
Marescaux, J., Leroy, J., Rubino, F., Smith, M., Vix, M., Simone, M., et al. (2002) Transcontinental Robot-Assisted Remote Telesurgery: Feasibility and Potential Applications. Annals of Surgery, 235, 487-492. https://doi.org/10.1097/00000658-200204000-00005
|
[37]
|
Moustris, G., Tzafestas, C. and Konstantinidis, K. (2023) A Long Distance Telesurgical Demonstration on Robotic Surgery Phantoms over 5G. International Journal of Computer Assisted Radiology and Surgery, 18, 1577-1587. https://doi.org/10.1007/s11548-023-02913-2
|
[38]
|
Tian, W., Fan, M., Zeng, C., Liu, Y., He, D. and Zhang, Q. (2020) Telerobotic Spinal Surgery Based on 5G Network: The First 12 Cases. Neurospine, 17, 114-120. https://doi.org/10.14245/ns.1938454.227
|
[39]
|
Hung, A.J., Chen, J., Shah, A. and Gill, I.S. (2018) Telementoring and Telesurgery for Minimally Invasive Procedures. Journal of Urology, 199, 355-369. https://doi.org/10.1016/j.juro.2017.06.082
|
[40]
|
Reddy, K., Gharde, P., Tayade, H., Patil, M., Reddy, L.S. and Surya, D. (2023) Advancements in Robotic Surgery: A Comprehensive Overview of Current Utilizations and Upcoming Frontiers. Cureus, 15, e50415. https://doi.org/10.7759/cureus.50415
|
[41]
|
Pfennig, M., Lee, A. and Mi, M. (2022) How Does Telementoring Impact Medical Education within the Surgical Field? A Scoping Review. The American Journal of Surgery, 224, 869-880. https://doi.org/10.1016/j.amjsurg.2022.04.038
|
[42]
|
Augustin, F. and Bodner, J. (2017) Robotic-assisted Thoracic Surgery: A Helpful Tool or Just Another Expensive Gadget? Journal of Thoracic Disease, 9, 2881-2883. https://doi.org/10.21037/jtd.2017.08.85
|
[43]
|
Ehrampoosh, A., Shirinzadeh, B., Pinskier, J., Smith, J., Moshinsky, R. and Zhong, Y. (2022) A Force-Feedback Methodology for Teleoperated Suturing Task in Robotic-Assisted Minimally Invasive Surgery. Sensors, 22, Article No. 7829. https://doi.org/10.3390/s22207829
|
[44]
|
Rao, P.P. (2018) Robotic Surgery: New Robots and Finally Some Real Competition! World Journal of Urology, 36, 537-541. https://doi.org/10.1007/s00345-018-2213-y
|