|
[1]
|
费良军, 朱秀荣, 童文俊, 等. 纤维增强铝基复合材料及其应用[J]. 特种铸造及有色金属, 2001(S1):150-152.
|
|
[2]
|
Zhu, C., Su, Y., Wang, X., Sun, H., Ouyang, Q. and Zhang, D. (2021) Process Optimization, Microstructure Characterization and Thermal Properties of Mesophase Pitch-Based Carbon Fiber Reinforced Aluminum Matrix Composites Fabricated by Vacuum Hot Pressing. Composites Part B: Engineering, 215, Article 108746. [Google Scholar] [CrossRef]
|
|
[3]
|
Lalet, G., Kurita, H., Miyazaki, T., Kawasaki, A. and Silvain, J. (2014) Thermomechanical Stability of a Carbon Fiber-Reinforced Aluminum Matrix Composite Fabricated by Spark Plasma Sintering in Various Pulse Conditions. Materials Letters, 130, 32-35. [Google Scholar] [CrossRef]
|
|
[4]
|
Zhang, J., Liu, S., Lu, Y., Jiang, L., Zhang, Y. and Li, T. (2017) Semisolid-Rolling and Annealing Process of Woven Carbon Fibers Reinforced Al-Matrix Composites. Journal of Materials Science & Technology, 33, 623-629. [Google Scholar] [CrossRef]
|
|
[5]
|
Oh, S., Lim, J., Kim, Y., Yoon, J., Kim, G., Lee, J., et al. (2012) Fabrication of Carbon Nanofiber Reinforced Aluminum Alloy Nanocomposites by a Liquid Process. Journal of Alloys and Compounds, 542, 111-117. [Google Scholar] [CrossRef]
|
|
[6]
|
陈辉辉. 活塞用碳纤维铝基复合材料的制备方案研究[J]. 昆明冶金高等专科学校学报, 2005, 21(3): 15-17.
|
|
[7]
|
Dong, Z.J., Li, X.K., Yuan, G.M., Cui, Z.W., Cong, Y. and Westwood, A. (2013) Tensile Strength, Oxidation Resistance and Wettability of Carbon Fibers Coated with a TiC Layer Using a Molten Salt Method. Materials & Design, 50, 156-164. [Google Scholar] [CrossRef]
|
|
[8]
|
Lee, C., Kim, I., Lee, W., Ko, S., Jang, J., Lee, T., et al. (2010) Formation and Analysis of SiC Coating Layer on Carbon Short Fiber. Surface and Interface Analysis, 42, 1231-1234. [Google Scholar] [CrossRef]
|
|
[9]
|
Sha, J., Lü, Z., Sha, R., Zu, Y., Dai, J., Xian, Y., et al. (2021) Improved Wettability and Mechanical Properties of Metal Coated Carbon Fiber-Reinforced Aluminum Matrix Composites by Squeeze Melt Infiltration Technique. Transactions of Nonferrous Metals Society of China, 31, 317-330. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, Q., Liu, J., Li, S., Wang, F. and Wu, T. (2014) Fabrication and Mechanical Properties of Cu-Coatedwoven Carbon Fibers Reinforced Aluminum Alloy Composite. Materials & Design, 57, 442-448. [Google Scholar] [CrossRef]
|
|
[11]
|
Bhav Singh, B. and Balasubramanian, M. (2009) Processing and Properties of Copper-Coated Carbon Fibre Reinforced Aluminium Alloy Composites. Journal of Materials Processing Technology, 209, 2104-2110. [Google Scholar] [CrossRef]
|
|
[12]
|
刘连涛, 孙勇. 纤维增强铝基复合材料研究进展[J]. 南方金属, 2008(6): 1-4, 47.
|
|
[13]
|
Qu, X., Wang, F., Shi, C., Zhao, N., Liu, E., He, C., et al. (2018) In Situ Synthesis of a Gamma-Al2O3 Whisker Reinforced Aluminium Matrix Composite by Cold Pressing and Sintering. Materials Science and Engineering: A, 709, 223-231. [Google Scholar] [CrossRef]
|
|
[14]
|
Li, J., Wang, F., Shi, C., Liu, E., He, C. and Zhao, N. (2021) High Strength-Ductility Synergy of MgAlB4 Whisker Reinforced Aluminum Matrix Composites Achieved by in Situ Synthesis. Materials Science and Engineering: A, 799, Article 140127. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhou, Y., Yu, Z., Zhao, N., Shi, C., Liu, E., Du, X., et al. (2013) Microstructure and Properties of in Situ Generated MgAl2O4 Spinel Whisker Reinforced Aluminum Matrix Composites. Materials & Design (1980-2015), 46, 724-730. [Google Scholar] [CrossRef]
|
|
[16]
|
郝保红, 向兰, 方克明. 氧化铝晶须增强铝基复合材料的应用前景[J]. 新技术新工艺, 2006(6): 42-45.
|
|
[17]
|
Li, Z., Fei, W., Yue, H. and Wang, L. (2007) Hot Deformation Behaviors of Bi2O3-Coated Al18B4O33 Whisker Reinforced Aluminum Matrix Composite with High Formability. Composites Science and Technology, 67, 963-973. [Google Scholar] [CrossRef]
|
|
[18]
|
Pandey, N., Chakrabarty, I., Barkane, K., Mehta, N.S. and Majhi, M.R. (2020) Microstructure, Mechanical and Wear Properties of Aluminum Borate Whisker Reinforced Aluminum Matrix Composites. Transactions of Nonferrous Metals Society of China, 30, 1731-1742. [Google Scholar] [CrossRef]
|
|
[19]
|
Dhulipalla, A., Uday Kumar, B., Akhil, V., Zhang, J., Lu, Z., Park, H., et al. (2020) Synthesis and Machining Characteristics of Novel TiC Ceramic and MoS2 Soft Particulate Reinforced Aluminium Alloy 7075 Matrix Composites. Manufacturing Letters, 24, 82-86. [Google Scholar] [CrossRef]
|
|
[20]
|
Rahman, M.H. and Rashed, H.M.M.A. (2014) Characterization of Silicon Carbide Reinforced Aluminum Matrix Composites. Procedia Engineering, 90, 103-109. [Google Scholar] [CrossRef]
|
|
[21]
|
Sert, A., Celik, O. and Wear, N. (2014) Behavior of SiC-Reinforced Surface Composite Al7075-T651 Aluminum Alloy Produced Using Friction Stir Processing. Indian Journal of Engineering and Materials Sciences, 21, 35-43.
|
|
[22]
|
Pugazhenthi, A., Kanagaraj, G., Dinaharan, I. and David Raja Selvam, J. (2018) Turning Characteristics of in Situ Formed TiB2 Ceramic Particulate Reinforced AA7075 Aluminum Matrix Composites Using Polycrystalline Diamond Cutting Tool. Measurement, 121, 39-46. [Google Scholar] [CrossRef]
|
|
[23]
|
Du, X., Gao, T., Li, D., Wu, Y. and Liu, X. (2014) A Novel Approach to Synthesize Sic Particles by in Situ Reaction in Al-Si-C Alloys. Journal of Alloys and Compounds, 588, 374-377. [Google Scholar] [CrossRef]
|
|
[24]
|
Niteesh Kumar, S.J., Keshavamurthy, R., Haseebuddin, M.R. and Koppad, P.G. (2017) Mechanical Properties of Aluminium-Graphene Composite Synthesized by Powder Metallurgy and Hot Extrusion. Transactions of the Indian Institute of Metals, 70, 605-613. [Google Scholar] [CrossRef]
|
|
[25]
|
Tiwari, J.K., Mandal, A., Rudra, A., Mukherjee, D. and Sathish, N. (2019) Evaluation of Mechanical and Thermal Properties of Bilayer Graphene Reinforced Aluminum Matrix Composite Produced by Hot Accumulative Roll Bonding. Journal of Alloys and Compounds, 801, 49-59. [Google Scholar] [CrossRef]
|
|
[26]
|
李岳, 杜晓明, 刘凤国. 石墨烯增强6061铝基复合材料的组织与力学性能研究[J]. 沈阳理工大学学报, 2023, 42(2): 49-55.
|
|
[27]
|
高博, 王成辉, 余申卫. 石墨烯增强铝基复合材料制备方法及效果研究进展[J]. 热加工工艺, 2023, 52(24): 5-14.
|
|
[28]
|
Yang, X., Yang, L., Zhu, D., Wang, H., Chen, T., Chu, C., et al. (2024) Effect of Graphene Sheet Diameter on the Microstructure and Properties of Copper-Plated Graphene-Reinforced 6061-Aluminum Matrix Composites. Journal of Materials Research and Technology, 28, 3286-3296. [Google Scholar] [CrossRef]
|
|
[29]
|
曹子林, 张林慧, 仲斌年, 等. 铝基复合材料的制备和研究现状[J]. 金属功能材料, 2023, 30(2): 29-39.
|
|
[30]
|
Bodukuri, A.K., Eswaraiah, K., Rajendar, K. and Sampath, V. (2016) Fabrication of Al-SiC-B4C Metal Matrix Composite by Powder Metallurgy Technique and Evaluating Mechanical Properties. Perspectives in Science, 8, 428-431. [Google Scholar] [CrossRef]
|
|
[31]
|
Zhang, J., Liu, Q., Yang, S., Chen, Z., Liu, Q. and Jiang, Z. (2020) Microstructural Evolution of Hybrid Aluminum Matrix Composites Reinforced with Sic Nanoparticles and Graphene/Graphite Prepared by Powder Metallurgy. Progress in Natural Science: Materials International, 30, 192-199. [Google Scholar] [CrossRef]
|
|
[32]
|
Jia, C., Zhang, P., Xu, W. and Wang, W. (2021) Neutron Shielding and Mechanical Properties of Short Carbon Fiber Reinforced Aluminium 6061-Boron Carbide Hybrid Composite. Ceramics International, 47, 10193-10196. [Google Scholar] [CrossRef]
|
|
[33]
|
Yang, S., Gao, X., Li, W., Dai, Y., Zhang, J., Zhang, X., et al. (2024) Corrigendum to Effects of the Graphene Content on Mechanical Properties and Corrosion Resistance of Aluminum Matrix Composite. Journal of Materials Research and Technology, 30, Article 1056. [Google Scholar] [CrossRef]
|
|
[34]
|
Sharma, P., Khanduja, D. and Sharma, S. (2014) Tribological and Mechanical Behavior of Particulate Aluminum Matrix Composites. Journal of Reinforced Plastics and Composites, 33, 2192-2202. [Google Scholar] [CrossRef]
|
|
[35]
|
Akbar, H.I., Surojo, E., Ariawan, D., Putra, G.A. and Wibowo, R.T. (2020) Effect of Reinforcement Material on Properties of Manufactured Aluminum Matrix Composite Using Stir Casting Route. Procedia Structural Integrity, 27, 62-68. [Google Scholar] [CrossRef]
|
|
[36]
|
Li, G., Qu, Y., Yang, Y., Zhou, Q., Liu, X. and Li, R. (2020) Improved Multi-Orientation Dispersion of Short Carbon Fibers in Aluminum Matrix Composites Prepared with Square Crucible by Mechanical Stirring. Journal of Materials Science & Technology, 40, 81-87. [Google Scholar] [CrossRef]
|
|
[37]
|
Yin, Z., Tao, S., Zhou, X. and Ding, C. (2008) Microstructure and Mechanical Properties of Al2O3-Al Composite Coatings Deposited by Plasma Spraying. Applied Surface Science, 254, 1636-1643. [Google Scholar] [CrossRef]
|
|
[38]
|
Ozherelkov, D.Y., Pelevin, I.A., Nalivaiko, A.Y., Zotov, B.O., Fedorenko, L.V. and Gromov, A.A. (2023) Use of Carbon Nanofibers in the Additive Manufacturing of Aluminum Matrix Composites. Russian Metallurgy (Metally), 2023, 1374-1381. [Google Scholar] [CrossRef]
|
|
[39]
|
Zhang, Z., Shi, Z., Yang, B., Ge, B., Zhang, X. and Guo, Y. (2019) Preparation and Anisotropic Thermophysical Properties of Sic Honeycomb/Al-Mg-Si Composite via Spontaneous Infiltration. Progress in Natural Science: Materials International, 29, 177-183. [Google Scholar] [CrossRef]
|
|
[40]
|
Liu, Y.J., Zhang, Y.S. and Zhang, L.C. (2019) Transformation-Induced Plasticity and High Strength in Beta Titanium Alloy Manufactured by Selective Laser Melting. Materialia, 6, Article 100299. [Google Scholar] [CrossRef]
|
|
[41]
|
Wang, P., Eckert, J., Prashanth, K., Wu, M., Kaban, I., Xi, L., et al. (2020) A Review of Particulate-Reinforced Aluminum Matrix Composites Fabricated by Selective Laser Melting. Transactions of Nonferrous Metals Society of China, 30, 2001-2034. [Google Scholar] [CrossRef]
|
|
[42]
|
Koli, D.K., Agnihotri, G. and Purohit, R. (2015) Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Materials Today: Proceedings, 2, 3032-3041. [Google Scholar] [CrossRef]
|
|
[43]
|
樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展[J]. 宇航材料工艺, 2012, 42(1): 1-7.
|
|
[44]
|
Miracle, D.B. (2001) Aeronautical Applications of Metal-Matrix Composites. In: Miracle, D.B. and Donaldson, S.L., Eds., Composites, ASM International, 1043-1049. [Google Scholar] [CrossRef]
|
|
[45]
|
Lino Alves, F.J., Baptista, A.M. and Marques, A.T. (2016) Metal and Ceramic Matrix Composites in Aerospace Engineering. In: Rana, S. and Fangueiro, R., Eds., Advanced Composite Materials for Aerospace Engineering, Elsevier, 59-99. [Google Scholar] [CrossRef]
|
|
[46]
|
Haghshenas, M. (2016) Metal-Matrix Composites. In: Reference Module in Materials Science and Materials Engineering, Elsevier, 99-117. [Google Scholar] [CrossRef]
|
|
[47]
|
Kumar Sharma, A., Bhandari, R., Aherwar, A., Rimašauskienė, R. and Pinca-Bretotean, C. (2020) A Study of Advancement in Application Opportunities of Aluminum Metal Matrix Composites. Materials Today: Proceedings, 26, 2419-2424. [Google Scholar] [CrossRef]
|
|
[48]
|
乔文明, 李颖. 铝基复合材料的制备及应用[J]. 热加工工艺, 2013, 42(4): 126-128, 130.
|
|
[49]
|
吕刚磊, 朱永刚, 张静, 等. Al-TiO2-Gr复合材料冷镦过程中的致密化与变形研究[J]. 粉末冶金工业, 2022, 32(6): 41-46.
|
|
[50]
|
付永红, 何源, 张冉阳, 等. 颗粒增强铝基复合材料制备及成型技术研究现状[J]. 热加工工艺, 2010, 39(14): 75-79.
|
|
[51]
|
李云平, 李溪滨, 刘如铁, 等. 多次锻造SIC颗粒增强耐热铝合金的研制与性能[J]. 粉末冶金技术, 2000, 18(4): 247-251.
|
|
[52]
|
吴渝玲. 锻造对建筑铝基复合材料性能的影响[J]. 轻合金加工技术, 2017, 45(9): 50-53.
|