| [1] | Kumar, M. and Turner, S. (2015) Plant Cellulose Synthesis: CESA Proteins Crossing Kingdoms. Phytochemistry, 112, 91-99. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. and Stalker, D.M. (1996) Higher Plants Contain Homologs of the Bacterial Cela Genes Encoding the Catalytic Subunit of Cellulose Synthase. Proceedings of the National Academy of Sciences, 93, 12637-12642. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Nawaz, M.A., Lin, X., Chan, T., Imtiaz, M., Rehman, H.M., Ali, M.A., et al. (2019) Characterization of Cellulose Synthase a (CESA) Gene Family in Eudicots. Biochemical Genetics, 57, 248-272. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Qiao, Z., Lampugnani, E.R., Yan, X., Khan, G.A., Saw, W.G., Hannah, P., et al. (2021) Structure of Arabidopsis CESA3 Catalytic Domain with Its Substrate UDP-Glucose Provides Insight into the Mechanism of Cellulose Synthesis. Proceedings of the National Academy of Sciences, 118, e2024015118. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Ramírez-Rodríguez, E.A. and McFarlane, H.E. (2021) Insights from the Structure of a Plant Cellulose Synthase Trimer. Trends in Plant Science, 26, 4-7. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Daras, G., Templalexis, D., Avgeri, F., Tsitsekian, D., Karamanou, K. and Rigas, S. (2021) Updating Insights into the Catalytic Domain Properties of Plant Cellulose synthase (CesA) and Cellulose synthase-like (Csl) Proteins. Molecules, 26, Article 4335. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Zhao, H., Li, Z., Wang, Y., Wang, J., Xiao, M., Liu, H., et al. (2021) Cellulose Synthase‐Like Protein OsCSLD4 Plays an Important Role in the Response of Rice to Salt Stress by Mediating Abscisic Acid Biosynthesis to Regulate Osmotic Stress Tolerance. Plant Biotechnology Journal, 20, 468-484. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Li, Z., Li, Z., Ji, Y., Wang, C., Wang, S., Shi, Y., et al. (2024) The Heat Shock Factor 20-HSF4-Cellulose Synthase A2 Module Regulates Heat Stress Tolerance in Maize. The Plant Cell, 36, 2652-2667. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Suzuki, S., Li, L., Sun, Y. and Chiang, V.L. (2006) The Cellulose Synthase Gene Superfamily and Biochemical Functions of Xylem-Specific Cellulose Synthase-Like Genes in Populus trichocarpa. Plant Physiology, 142, 1233-1245. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Balakrishnan, S., Bhasker, R., Ramasamy, Y. and Dev, S.A. (2024) Genome-Wide Analysis of Cellulose Synthase Gene Superfamily in Tectona grandis L.f. 3 Biotech, 14, Article No. 86. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Yin, Y., Johns, M.A., Cao, H. and Rupani, M. (2014) A Survey of Plant and Algal Genomes and Transcriptomes Reveals New Insights into the Evolution and Function of the Cellulose Synthase Superfamily. BMC Genomics, 15, Article No. 260. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Wilson, L.F.L., Neun, S., Yu, L., Tryfona, T., Stott, K., Hollfelder, F., et al. (2023) The Biosynthesis, Degradation, and Function of Cell Wall β-Xylosylated Xyloglucan Mirrors That of Arabinoxyloglucan. New Phytologist, 240, 2353-2371. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Yu, L., Wilson, L.F.L., Terrett, O.M., Wurman‐Rodrich, J., Łyczakowski, J.J., Yu, X., et al. (2024) Evolution of Glucuronoxylan Side Chain Variability in Vascular Plants and the Compensatory Adaptations of Cell Wall-Degrading Hydrolases. New Phytologist, 244, 1024-1040. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Liu, D., Tang, W., Huang, X., Hu, J., Wang, J., Yin, J., et al. (2022) Structural Characteristic of Pectin-Glucuronoxylan Complex from Dolichos lablab L. Hull. Carbohydrate Polymers, 298, Article ID: 120023. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Sterling, J.D., Atmodjo, M.A., Inwood, S.E., Kumar Kolli, V.S., Quigley, H.F., Hahn, M.G., et al. (2006) Functional Identification of an Arabidopsis Pectin Biosynthetic Homogalacturonan Galacturonosyltransferase. Proceedings of the National Academy of Sciences, 103, 5236-5241. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Julian, J.D. and Zabotina, O.A. (2022) Xyloglucan Biosynthesis: From Genes to Proteins and Their Functions. Frontiers in Plant Science, 13, Article 920494. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Drula, E., Garron, M., Dogan, S., Lombard, V., Henrissat, B. and Terrapon, N. (2021) The Carbohydrate-Active Enzyme Database: Functions and Literature. Nucleic Acids Research, 50, D571-D577. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Fu, W., Wang, Z., Liusui, Y., Zhang, X., Han, A., Zhong, X., et al. (2024) Genome-Wide Analysis of the Cotton Cobra-Like Gene Family and Functional Characterization of GhCOBL22 in Relation to Drought Tolerance. BMC Plant Biology, 24, Article No. 1242. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | He, C., Wu, K., Zhang, J., Liu, X., Zeng, S., Yu, Z., et al. (2017) Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of Docsla6 in the Synthesis of Mannan Polysaccharides. Frontiers in Plant Science, 8, Article 173. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Wang, Y., Zhao, K., Chen, Y., Wei, Q., Chen, X., Wan, H., et al. (2022) Species-Specific Gene Expansion of the Cellulose synthase Gene Superfamily in the Orchidaceae Family and Functional Divergence of Mannan Synthesis-Related Genes in Dendrobium officinale. Frontiers in Plant Science, 13, Article 777332. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Verhertbruggen, Y., Yin, L., Oikawa, A. and Scheller, H.V. (2011) Mannan Synthase Activity in the CSLD Family. Plant Signaling & Behavior, 6, 1620-1623. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Xiang, T., Yang, R., Li, L., Lin, H. and Kai, G. (2024) Research Progress and Application of Pectin: A Review. Journal of Food Science, 89, 6985-7007. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Caffall, K.H. and Mohnen, D. (2009) The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides. Carbohydrate Research, 344, 1879-1900. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Zablackis, E., Huang, J., Muller, B., Darvill, A.G. and Albersheim, P. (1995) Characterization of the Cell-Wall Polysaccharides of Arabidopsis Thaliana Leaves. Plant Physiology, 107, 1129-1138. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Harholt, J., Suttangkakul, A. and Vibe Scheller, H. (2010) Biosynthesis of Pectin. Plant Physiology, 153, 384-395. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) The Carbohydrate-Active Enzymes Database (CAZy): An Expert Resource for Glycogenomics. Nucleic Acids Research, 37, D233-D238. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Anderson, C.T. (2016) We Be Jammin’: An Update on Pectin Biosynthesis, Trafficking and Dynamics. Journal of Experimental Botany, 67, 495-502. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Yin, Y., Chen, H., Hahn, M.G., Mohnen, D. and Xu, Y. (2010) Evolution and Function of the Plant Cell Wall Synthesis-Related Glycosyltransferase Family 8. Plant Physiology, 153, 1729-1746. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Mohnen, D. (2008) Pectin Structure and Biosynthesis. Current Opinion in Plant Biology, 11, 266-277. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Atmodjo, M.A., Sakuragi, Y., Zhu, X., Burrell, A.J., Mohanty, S.S., Atwood, J.A., et al. (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 Are the Core of a Plant Cell Wall Pectin Biosynthetic Homogalacturonan: Galacturonosyltransferase Complex. Proceedings of the National Academy of Sciences, 108, 20225-20230. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Wang, L., Wang, W., Wang, Y., Liu, Y., Wang, J., Zhang, X., et al. (2013) Arabidopsis Galacturonosyltransferase (GAUT) 13 and GAUT14 Have Redundant Functions in Pollen Tube Growth. Molecular Plant, 6, 1131-1148. | 
                     
                                
                                    
                                        | [33] | Pu, Y., Walley, J.W., Shen, Z., Lang, M.G., Briggs, S.P., Estelle, M., et al. (2019) Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. Molecular & Cellular Proteomics, 18, 1157-1170. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Dash, L., Swaminathan, S., Šimura, J., Gonzales, C.L.P., Montes, C., Solanki, N., et al. (2023) Changes in Cell Wall Composition Due to a Pectin Biosynthesis Enzyme GAUT10 Impact Root Growth. Plant Physiology, 193, 2480-2497. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | de Godoy, F., Bermúdez, L., Lira, B.S., de Souza, A.P., Elbl, P., Demarco, D., et al. (2013) Galacturonosyltransferase 4 Silencing Alters Pectin Composition and Carbon Partitioning in Tomato. Journal of Experimental Botany, 64, 2449-2466. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Xie, H., Ying, R., Tang, Z., Wu, C. and Huang, M. (2023) Effects of Cereal Grain Cell Wall Composition and Structure on Starch Digestion. Journal of the Science of Food and Agriculture, 103, 5831-5838. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Seung, D. (2020) Amylose in Starch: Towards an Understanding of Biosynthesis, Structure and Function. New Phytologist, 228, 1490-1504. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Pfister, B. and Zeeman, S.C. (2016) Formation of Starch in Plant Cells. Cellular and Molecular Life Sciences, 73, 2781-2807. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Waterschoot, J., Gomand, S.V., Fierens, E. and Delcour, J.A. (2014) Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch-Stärke, 67, 14-29. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | Brust, H., Orzechowski, S., Fettke, J. and Steup, M. (2013) Starch Synthesizing Reactions and Paths: In Vitro and in Vivo Studies. Journal of Applied Glycoscience, 60, 3-20. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [41] | Cheng, J., Khan, M.A., Qiu, W., Li, J., Zhou, H., Zhang, Q., et al. (2012) Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events. PLOS ONE, 7, e30088. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Dian, W., Jiang, H., Chen, Q., Liu, F. and Wu, P. (2003) Cloning and Characterization of the Granule-Bound Starch Synthase II Gene in Rice: Gene Expression Is Regulated by the Nitrogen Level, Sugar and Circadian Rhythm. Planta, 218, 261-268. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Vrinten, P.L. and Nakamura, T. (2000) Wheat Granule-Bound Starch Synthase I and II Are Encoded by Separate Genes That Are Expressed in Different Tissues. Plant Physiology, 122, 255-264. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Edwards, A., Vincken, J., Suurs, L.C.J.M., Visser, R.G.F., Zeeman, S., Smith, A., et al. (2002) Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in Pea. The Plant Cell, 14, 1767-1785. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Wang, L., Liu, L., Wu, H., Li, C., Zhao, H. and Wu, Q. (2023) Evolutionary and Expression Analysis of Starch Synthase Genes from Tartary Buckwheat Revealed the Potential Function of FtGBSSII‐4 and FtGBSSII‐5 in Seed Amylose Biosynthesis. Crop Science, 63, 2925-2940. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | Xiao, R., Zhang, C., Guo, X., Li, H. and Lu, H. (2021) MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. International Journal of Molecular Sciences, 22, Article 3560. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Katiyar, A., Smita, S., Lenka, S.K., Rajwanshi, R., Chinnusamy, V. and Bansal, K.C. (2012) Genome-Wide Classification and Expression Analysis of MYB Transcription Factor Families in Rice and Arabidopsis. BMC Genomics, 13, Article No. 544. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A. and Saedler, H. (1987) The Regulatory C1 Locus of Zea Mays Encodes a Protein with Homology to MYB Proto-Oncogene Products and with Structural Similarities to Transcriptional Activators. The EMBO Journal, 6, 3553-3558. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [49] | Wang, R., Meng, R., Chen, X. and Meng, Y. (2023) Key Genes for Polysaccharide Synthesis Pathway from Polygonatum Based on WGCNA. Journal of Jishou University (Natural Sciences Edition), 44, 64-71. | 
                     
                                
                                    
                                        | [50] | Zhao, S., Mo, L., Li, W., Jiang, L., Meng, Y., Ou, J., et al. (2023) Arginine Methyltransferases PRMT2 and PRMT3 Are Essential for Biosynthesis of Plant-Polysaccharide-Degrading Enzymes in Penicillium oxalicum. PLOS Genetics, 19, e1010867. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [51] | Wang, J., Zhang, H., Wang, Y., Meng, S., Liu, Q., Li, Q., et al. (2024) Regulatory Loops between Rice Transcription Factors OsNAC25 and OsNAC20/26 Balance Starch Synthesis. Plant Physiology, 195, 1365-1381. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Yung, W., Chan, T., Kong, F. and Lam, H. (2023) The Plant Genome Special Section: Epigenome and Epitranscriptome in Plant-Environment Interactions. The Plant Genome, 16, e20404. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Liu, S., He, M., Lin, X. and Kong, F. (2023) Epigenetic Regulation of Photoperiodic Flowering in Plants. The Plant Genome, 16, e20320. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [54] | Yang, L., Zhao, X., Tao, Y., Yang, Y. and Li, D. (2025) Comparative Transcriptomics Analysis-Guided Metabolic Engineering Improved Exopolysaccharide Yield by Bacillus subtilis HJ-1 and Its Characteristics. Food Bioscience, 65, Article ID: 106055. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [55] | Lucibelli, F., Valoroso, M.C. and Aceto, S. (2022) Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution. International Journal of Molecular Sciences, 23, Article 8299. [Google Scholar] [CrossRef] [PubMed] |