[1]
|
Kistler, S.S. (1931) Coherent Expanded Aerogels and Jellies. Nature, 127, 741. https://doi.org/10.1038/127741a0
|
[2]
|
Cheng, H., Gu, B., Pennefather, M.P., Nguyen, T.X., Phan-Thien, N. and Duong, H.M. (2017) Cotton Aerogels and Cotton-Cellulose Aerogels from Environmental Waste for Oil Spillage Cleanup. Materials & Design, 130, 452-458. https://doi.org/10.1016/j.matdes.2017.05.082
|
[3]
|
马书荣, 米勤勇, 余坚, 等. 基于纤维素的气凝胶材料[J]. 化学进展, 2014, 26(5): 796-809.
|
[4]
|
Qi, H., Liu, J., Gao, S. and Mäder, E. (2013) Multifunctional Films Composed of Carbon Nanotubes and Cellulose Regenerated from Alkaline-Urea Solution. J. Mater. Chem. A, 1, 2161-2168. https://doi.org/10.1039/c2ta00882c
|
[5]
|
Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A. and Gatenholm, P. (2010) Microporous Bacterial Cellulose as a Potential Scaffold for Bone Regeneration. Acta Biomaterialia, 6, 2540-2547. https://doi.org/10.1016/j.actbio.2010.01.004
|
[6]
|
Zhao, J., Lu, C., He, X., Zhang, X., Zhang, W. and Zhang, X. (2015) Polyethylenimine-Grafted Cellulose Nanofibril Aerogels as Versatile Vehicles for Drug Delivery. ACS Applied Materials & Interfaces, 7, 2607-2615. https://doi.org/10.1021/am507601m
|
[7]
|
Heath, L. and Thielemans, W. (2010) Cellulose Nanowhisker Aerogels. Green Chemistry, 12, 1448-1453. https://doi.org/10.1039/c0gc00035c
|
[8]
|
付哲, 苑兴洲, 韩乔, 等. 纤维素气凝胶的制备及其应用进展[J]. 石油化工高等学校学报, 2024, 37(1): 52-58.
|
[9]
|
刘昌宇, 孙永祥, 张成俊, 等. 二氧化硅气凝胶制备条件对热导率的影响[J]. 热科学与技术, 2022, 21(3): 221-226.
|
[10]
|
王美娟, 慕道炎, 侯海波, 等. 二氧化硅气凝胶的制备及应用研究进展[J]. 四川化工, 2024, 27(6): 5-9.
|
[11]
|
Bisson, A., Rigacci, A., Lecomte, D., Rodier, E. and Achard, P. (2003) Drying of Silica Gels to Obtain Aerogels: Phenomenology and Basic Techniques. Drying Technology, 21, 593-628. https://doi.org/10.1081/drt-120019055
|
[12]
|
Aravind, P.R., Shajesh, P., Soraru, G.D. and Warrier, K.G.K. (2010) Ambient Pressure Drying: A Successful Approach for the Preparation of Silica and Silica Based Mixed Oxide Aerogels. Journal of Sol-Gel Science and Technology, 54, 105-117. https://doi.org/10.1007/s10971-010-2164-2
|
[13]
|
Zhao, X., Chen, L., Su, P., Xiao, L., Zhao, H., Fu, T., et al. (2024) 4-Hydroxybenzenesulfonic Acid Triggers Rapid Preparation of Phenolic Aerogel Composites by Ambient Pressure Drying. Chemical Engineering Journal, 479, Article 147856. https://doi.org/10.1016/j.cej.2023.147856
|
[14]
|
Shao, G., Hanaor, D.A.H., Wang, J., Kober, D., Li, S., Wang, X., et al. (2020) Polymer-Derived SiOC Integrated with a Graphene Aerogel as a Highly Stable Li-Ion Battery Anode. ACS Applied Materials & Interfaces, 12, 46045-46056. https://doi.org/10.1021/acsami.0c12376
|
[15]
|
Barachini, S., Trombi, L., Danti, S., D’Alessandro, D., Battolla, B., Legitimo, A., et al. (2009) Morpho-Functional Characterization of Human Mesenchymal Stem Cells from Umbilical Cord Blood for Potential Uses in Regenerative Medicine. Stem Cells and Development, 18, 293-306. https://doi.org/10.1089/scd.2008.0017
|
[16]
|
Zhang, X., Zhao, X., Xue, T., Yang, F., Fan, W. and Liu, T. (2020) Bidirectional Anisotropic Polyimide/Bacterial Cellulose Aerogels by Freeze-Drying for Super-Thermal Insulation. Chemical Engineering Journal, 385, Article 123963. https://doi.org/10.1016/j.cej.2019.123963
|
[17]
|
Wan, J., Zhang, J., Yu, J. and Zhang, J. (2017) Cellulose Aerogel Membranes with a Tunable Nanoporous Network as a Matrix of Gel Polymer Electrolytes for Safer Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 9, 24591-24599. https://doi.org/10.1021/acsami.7b06271
|
[18]
|
Li, Y., Jiang, H., Han, B. and Zhang, Y. (2019) Drying of Cellulose Nanocrystal Gel Beads Using Supercritical Carbon Dioxide. Journal of Chemical Technology & Biotechnology, 94, 1651-1659. https://doi.org/10.1002/jctb.5936
|
[19]
|
Matsuyama, K., Morotomi, K., Inoue, S., Nakashima, M., Nakashima, H., Okuyama, T., et al. (2019) Antibacterial and Antifungal Properties of Ag Nanoparticle-Loaded Cellulose Nanofiber Aerogels Prepared by Supercritical CO2 Drying. The Journal of Supercritical Fluids, 143, 1-7. https://doi.org/10.1016/j.supflu.2018.08.008
|
[20]
|
Laitinen, O. and Liimatainen, H. (2024) Gelatin-Reinforced Cellulose Nanofiber Composite Cryogels for Effective Separation of Small Particulate Matter in Air. Materials & Design, 238, Article 112654. https://doi.org/10.1016/j.matdes.2024.112654
|
[21]
|
Xu, M., Bao, W., Xu, S., Wang, X. and Sun, R. (2015) Porous Cellulose Aerogels with High Mechanical Performance and Their Absorption Behaviors. BioResources, 11, 8-20. https://doi.org/10.15376/biores.11.1.8-20
|
[22]
|
Yifan, S., and Jing, S. (2022) Preparation and Adsorption Abilities of Biomass Carbon Aerogel Derived from Sweet Potato. Journal of Liaoning University of Petroleum & Chemical Technology, 42, 8-14. https://doi.org/10.3969/j.issn.1672-6952.2022.02.002
|
[23]
|
Zhu, J., Wang, X., He, L. and Huang, X. (2023) Preparation and Oil Absorption Performance Evaluation of Superhydrophobic Biomass Composite Aerogels. Oilfield Chemistry, 40, 143-148. https://doi.org/10.19346/j.cnki.1000-4092.2023.01.023
|
[24]
|
Mulyadi, A., Zhang, Z. and Deng, Y. (2016) Fluorine-Free Oil Absorbents Made from Cellulose Nanofibril Aerogels. ACS Applied Materials & Interfaces, 8, 2732-2740. https://doi.org/10.1021/acsami.5b10985
|
[25]
|
Wang, X., Meng, R., Zhao, S., Jing, Z., Jin, Y., Zhang, J., et al. (2024) Efficient Adsorption of Radioactive Iodine by Covalent Organic Framework/chitosan Aerogel. International Journal of Biological Macromolecules, 260, Article 129690. https://doi.org/10.1016/j.ijbiomac.2024.129690
|
[26]
|
Cao, J., Zhao, Y., Xu, Y., Zhang, Y., Zhang, B. and Peng, H. (2018) Sticky-Note Supercapacitors. Journal of Materials Chemistry A, 6, 3355-3360. https://doi.org/10.1039/c7ta10756k
|
[27]
|
Huang, Y., Zeng, Y., Yu, M., Liu, P., Tong, Y., Cheng, F., et al. (2017) Recent Smart Methods for Achieving High‐energy Asymmetric Supercapacitors. Small Methods, 2, Article ID: 1700230. https://doi.org/10.1002/smtd.201700230
|
[28]
|
Gao, K., Shao, Z., Wang, X., Zhang, Y., Wang, W. and Wang, F. (2013) Cellulose Nanofibers/Multi-Walled Carbon Nanotube Nanohybrid Aerogel for All-Solid-State Flexible Supercapacitors. RSC Advances, 3, 15058-15064. https://doi.org/10.1039/c3ra42050g
|
[29]
|
Benito-González, I., López-Rubio, A., Gómez-Mascaraque, L.G. and Martínez-Sanz, M. (2020) PLA Coating Improves the Performance of Renewable Adsorbent Pads Based on Cellulosic Aerogels from Aquatic Waste Biomass. Chemical Engineering Journal, 390, Article 124607. https://doi.org/10.1016/j.cej.2020.124607
|
[30]
|
Ye, S., He, S., Su, C., Jiang, L., Wen, Y., Zhu, Z., et al. (2018) Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules, 23, Article 2082. https://doi.org/10.3390/molecules23082082
|