[1]
|
Ciresan, D., Giusti, A., Gambardella, L., et al. (2012) Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. Advances in Neural Information Processing Systems, Lake Tahoe, 3-6 December 2012, 2843-2851.
|
[2]
|
Sutskever, I., Martens, J. and Hinton, G.E. (2016) Generating Text with Recurrent Neural Networks. Proceedings of International Conference on Machine Learning, Bellevue, 19-24 June 2016, 1017-1024.
|
[3]
|
Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W. and Frangi, A., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Springer, 234-241. https://doi.org/10.1007/978-3-319-24574-4_28
|
[4]
|
张欢, 刘静, 冯毅博, 等. U-Net及其在肝脏和肝脏肿瘤分割中的应用综述[J]. 计算机工程与应用, 2022, 58(2): 1-14.
|
[5]
|
Wehrend, J., Silosky, M., Xing, F. and Chin, B.B. (2021) Automated Liver Lesion Detection in 68Ga DOTATATE PET/CT Using a Deep Fully Convolutional Neural Network. EJNMMI Research, 11, Article No. 98. https://doi.org/10.1186/s13550-021-00839-x
|
[6]
|
Wang, J., Lv, P., Wang, H. and Shi, C. (2021) Sar-U-Net: Squeeze-And-Excitation Block and Atrous Spatial Pyramid Pooling Based Residual U-Net for Automatic Liver Segmentation in Computed Tomography. Computer Methods and Programs in Biomedicine, 208, Article ID: 106268. https://doi.org/10.1016/j.cmpb.2021.106268
|
[7]
|
Liu, J., Yan, Z., Zhou, C., Shao, L., Han, Y. and Song, Y. (2023) mfeeU-Net: A Multi-Scale Feature Extraction and Enhancement U-Net for Automatic Liver Segmentation from CT Images. Mathematical Biosciences and Engineering, 20, 7784-7801. https://doi.org/10.3934/mbe.2023336
|
[8]
|
Wu, J., Zhou, S., Zuo, S., Chen, Y., Sun, W., Luo, J., et al. (2021) U-Net Combined with Multi-Scale Attention Mechanism for Liver Segmentation in CT Images. BMC Medical Informatics and Decision Making, 21, Article No. 283. https://doi.org/10.1186/s12911-021-01649-w
|
[9]
|
Chen, Y., Zheng, C., Zhou, T., Feng, L., Liu, L., Zeng, Q., et al. (2023) A Deep Residual Attention-Based U-Net with a Biplane Joint Method for Liver Segmentation from CT Scans. Computers in Biology and Medicine, 152, Article ID: 106421. https://doi.org/10.1016/j.compbiomed.2022.106421
|
[10]
|
Ayalew, Y.A., Fante, K.A. and Mohammed, M.A. (2021) Modified U-Net for Liver Cancer Segmentation from Computed Tomography Images with a New Class Balancing Method. BMC Biomedical Engineering, 3, Article No. 4. https://doi.org/10.1186/s42490-021-00050-y
|
[11]
|
Özcan, F., Uçan, O., Karaçam, S. and Tunçman, D. (2023) Fully Automatic Liver and Tumor Segmentation from CT Image Using an Aim-UNet. Bioengineering, 10, Article 215. https://doi.org/10.3390/bioengineering10020215
|
[12]
|
Jiang, L., Ou, J., Liu, R., Zou, Y., Xie, T., Xiao, H., et al. (2023) RMAU-Net: Residual Multi-Scale Attention U-Net for Liver and Tumor Segmentation in CT Images. Computers in Biology and Medicine, 158, Article ID: 106838. https://doi.org/10.1016/j.compbiomed.2023.106838
|
[13]
|
Wang, F., Cheng, X., Luo, N. and Su, D. (2024) Attention-Guided Context Asymmetric Fusion Networks for the Liver Tumor Segmentation of Computed Tomography Images. Quantitative Imaging in Medicine and Surgery, 14, 4825-4839. https://doi.org/10.21037/qims-23-1747
|
[14]
|
Wang, Z., Zou, Y. and Liu, P.X. (2021) Hybrid Dilation and Attention Residual U-Net for Medical Image Segmentation. Computers in Biology and Medicine, 134, Article ID: 104449. https://doi.org/10.1016/j.compbiomed.2021.104449
|
[15]
|
Liu, H., Fu, Y., Zhang, S., Liu, J., Wang, Y., Wang, G., et al. (2023) GCHA-Net: Global Context and Hybrid Attention Network for Automatic Liver Segmentation. Computers in Biology and Medicine, 152, Article ID: 106352. https://doi.org/10.1016/j.compbiomed.2022.106352
|
[16]
|
Hettihewa, K., Kobchaisawat, T., Tanpowpong, N. and Chalidabhongse, T.H. (2023) Manet: A Multi-Attention Network for Automatic Liver Tumor Segmentation in Computed Tomography (CT) Imaging. Scientific Reports, 13, Article No. 20098. https://doi.org/10.1038/s41598-023-46580-4
|
[17]
|
Saumiya, S. and Franklin, S.W. (2023) Residual Deformable Split Channel and Spatial U-Net for Automated Liver and Liver Tumour Segmentation. Journal of Digital Imaging, 36, 2164-2178. https://doi.org/10.1007/s10278-023-00874-1
|
[18]
|
Ester, O., Hörst, F., Seibold, C., Keyl, J., Ting, S., Vasileiadis, N., et al. (2023) Valuing Vicinity: Memory Attention Framework for Context-Based Semantic Segmentation in Histopathology. Computerized Medical Imaging and Graphics, 107, Article ID: 102238. https://doi.org/10.1016/j.compmedimag.2023.102238
|
[19]
|
Gupta, A.C., Cazoulat, G., Al Taie, M., Yedururi, S., Rigaud, B., Castelo, A., et al. (2024) Fully Automated Deep Learning Based Auto-Contouring of Liver Segments and Spleen on Contrast-Enhanced CT Images. Scientific Reports, 14, Article No. 4678. https://doi.org/10.1038/s41598-024-53997-y
|
[20]
|
Lv, P., Wang, J., Zhang, X., Ji, C., Zhou, L. and Wang, H. (2021) An Improved Residual U-Net with Morphological-Based Loss Function for Automatic Liver Segmentation in Computed Tomography. Mathematical Biosciences and Engineering, 19, 1426-1447. https://doi.org/10.3934/mbe.2022066
|
[21]
|
Chen, Y., Hu, F., Wang, Y. and Zheng, C. (2022) Hybrid‐Attention Densely Connected U‐net with GAP for Extracting Livers from CT Volumes. Medical Physics, 49, 1015-1033. https://doi.org/10.1002/mp.15435
|
[22]
|
Li, L. and Ma, H. (2022) Rdctrans U-Net: A Hybrid Variable Architecture for Liver CT Image Segmentation. Sensors, 22, Article 2452. https://doi.org/10.3390/s22072452
|
[23]
|
Guo, X., Wang, Z., Wu, P., Li, Y., Alsaadi, F.E. and Zeng, N. (2024) ELTS-Net: An Enhanced Liver Tumor Segmentation Network with Augmented Receptive Field and Global Contextual Information. Computers in Biology and Medicine, 169, Article ID: 107879. https://doi.org/10.1016/j.compbiomed.2023.107879
|
[24]
|
王国刚, 李泽欣, 董志豪. 基于注意力机制和多空间金字塔池化的实时目标检测算法[J]. 计算机测量与控制, 2024, 32(2): 56-64.
|
[25]
|
Song, Z., Wu, H., Chen, W. and Slowik, A. (2024) Improving Automatic Segmentation of Liver Tumor Images Using a Deep Learning Model. Heliyon, 10, e28538. https://doi.org/10.1016/j.heliyon.2024.e28538
|
[26]
|
Gao, Q. and Almekkawy, M. (2021) ASU-Net++: A Nested U-Net with Adaptive Feature Extractions for Liver Tumor Segmentation. Computers in Biology and Medicine, 136, Article ID: 104688. https://doi.org/10.1016/j.compbiomed.2021.104688
|
[27]
|
Lee, Z., Qi, S., Fan, C., Xie, Z. and Meng, J. (2022) RA V-Net: Deep Learning Network for Automated Liver Segmentation. Physics in Medicine & Biology, 67, Article ID: 125022. https://doi.org/10.1088/1361-6560/ac7193
|
[28]
|
Sun, L., Jiang, L., Wang, M., Wang, Z. and Xin, Y. (2024) A Multi-Scale Liver Tumor Segmentation Method Based on Residual and Hybrid Attention Enhanced Network with Contextual Integration. Sensors, 24, Article 5845. https://doi.org/10.3390/s24175845
|
[29]
|
Sheela, K.S., Justus, V., Asaad, R.R. and Kumar, R.L. (2025) Enhancing Liver Tumor Segmentation with UNet-Resnet: Leveraging Resnet’s Power. Technology and Health Care, 33, 1-15. https://doi.org/10.3233/thc-230931
|
[30]
|
Li, Q., Song, H., Wei, Z., Yang, F., Fan, J., Ai, D., et al. (2023) Densely Connected U-Net with Criss-Cross Attention for Automatic Liver Tumor Segmentation in CT Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 20, 3399-3410. https://doi.org/10.1109/tcbb.2022.3198425
|
[31]
|
Li, R., Xu, L., Xie, K., Song, J., Ma, X., Chang, L., et al. (2023) DHT-Net: Dynamic Hierarchical Transformer Network for Liver and Tumor Segmentation. IEEE Journal of Biomedical and Health Informatics, 27, 3443-3454. https://doi.org/10.1109/jbhi.2023.3268218
|
[32]
|
魏公正. 基于改进V-Net的3D医学图像分割方法研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2023.
|
[33]
|
Sahli, H., Ben Slama, A. and Labidi, S. (2022) U-Net: A Valuable Encoder-Decoder Architecture for Liver Tumors Segmentation in CT Images. Journal of X-Ray Science and Technology, 30, 45-56. https://doi.org/10.3233/xst-210993
|
[34]
|
Park, S., Kim, J.H., Kim, J., Joseph, W., Lee, D. and Park, S.J. (2022) Development of a Deep Learning-Based Auto-Segmentation Algorithm for Hepatocellular Carcinoma (HCC) and Application to Predict Microvascular Invasion of HCC Using CT Texture Analysis: Preliminary Results. Acta Radiologica, 64, 907-917. https://doi.org/10.1177/02841851221100318
|
[35]
|
Vo, V.T., Yang, H.J., Lee, G.S., Kang, S.R. and Kim, S.H. (2021) Effects of Multiple Filters on Liver Tumor Segmentation from CT Images. Frontiers in Oncology, 11, Article 697178.
|
[36]
|
Shao, H., Huang, X., Folkert, M.R., Wang, J. and Zhang, Y. (2021) Automatic Liver Tumor Localization Using Deep Learning‐Based Liver Boundary Motion Estimation and Biomechanical Modeling (DL‐BIO). Medical Physics, 48, 7790-7805. https://doi.org/10.1002/mp.15275
|
[37]
|
Lee, I., Tsai, Y., Lin, Y., Chen, T., Yen, C., Chiu, N., et al. (2024) A Hierarchical Fusion Strategy of Deep Learning Networks for Detection and Segmentation of Hepatocellular Carcinoma from Computed Tomography Images. Cancer Imaging, 24, Article No. 43. https://doi.org/10.1186/s40644-024-00686-8
|
[38]
|
Christ, P.F., Elshaer, M.E.A., Ettlinger, F., Tatavarty, S., Bickel, M., Bilic, P., et al. (2016) Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G. and Wells, W., Eds., Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016, Springer, 415-423. https://doi.org/10.1007/978-3-319-46723-8_48
|
[39]
|
He, K., Liu, X., Shahzad, R., Reimer, R., Thiele, F., Niehoff, J., et al. (2021) Advanced Deep Learning Approach to Automatically Segment Malignant Tumors and Ablation Zone in the Liver with Contrast-Enhanced CT. Frontiers in Oncology, 11, Article 669437. https://doi.org/10.3389/fonc.2021.669437
|
[40]
|
刘云鹏, 刘光品, 王仁芳, 等. 深度学习结合影像组学的肝脏肿瘤CT分割[J]. 中国图象图形学报, 2020, 25(10): 2128-2141.
|
[41]
|
Xu, C., Hu, D., Zhang, Y. and Pang, Y. (2021) Study on the Segmentation Method of Multi-Phase CT Liver Tumor Based on Dual Channel U-Nets. Journal of Physics: Conference Series, 1828, Article ID: 012043. https://doi.org/10.1088/1742-6596/1828/1/012043
|
[42]
|
Wu, Y., Shen, H., Tan, Y. and Shi, Y. (2022) Automatic Liver Tumor Segmentation Used the Cascade Multi-Scale Attention Architecture Method Based on 3D U-Net. International Journal of Computer Assisted Radiology and Surgery, 17, 1915-1922. https://doi.org/10.1007/s11548-022-02653-9
|
[43]
|
Chen, Y., Zheng, C., Hu, F., Zhou, T., Feng, L., Xu, G., et al. (2022) Efficient Two-Step Liver and Tumour Segmentation on Abdominal CT via Deep Learning and a Conditional Random Field. Computers in Biology and Medicine, 150, Article ID: 106076. https://doi.org/10.1016/j.compbiomed.2022.106076
|
[44]
|
Vorontsov, E., Tang, A., Pal, C. and Kadoury, S. (2018) Liver Lesion Segmentation Informed by Joint Liver Segmentation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, 4-7 April 2018, 1332-1335. https://doi.org/10.1109/isbi.2018.8363817
|
[45]
|
Li, X., Chen, H., Qi, X., Dou, Q., Fu, C. and Heng, P. (2018) H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Transactions on Medical Imaging, 37, 2663-2674. https://doi.org/10.1109/tmi.2018.2845918
|
[46]
|
Ou, J., Jiang, L., Bai, T., Zhan, P., Liu, R. and Xiao, H. (2024) ResTransUnet: An Effective Network Combined with Transformer and U-Net for Liver Segmentation in CT Scans. Computers in Biology and Medicine, 177, Article ID: 108625. https://doi.org/10.1016/j.compbiomed.2024.108625
|
[47]
|
Khattab, M.A., Liao, I.Y., Ooi, E.H. and Chong, S.Y. (2022) Compound W-Net with Fully Accumulative Residual Connections for Liver Segmentation Using CT Images. Computational and Mathematical Methods in Medicine, 2022, Article ID: 8501828.
|