[1]
|
Ke, H., Tang, S., Guo, T., Hou, D., Jiao, X., Li, S., et al. (2023) Landscape of Pathogenic Mutations in Premature Ovarian Insufficiency. Nature Medicine, 29, 483-492. https://doi.org/10.1038/s41591-022-02194-3
|
[2]
|
Wang, J., Sun, X., Yang, Z., Li, S., Wang, Y., Ren, R., et al. (2023) Epigenetic Regulation in Premature Ovarian Failure: A Literature Review. Frontiers in Physiology, 13, Article 998424. https://doi.org/10.3389/fphys.2022.998424
|
[3]
|
Chu, K., He, Y., Li, Z., Jiang, Z., Wang, L., Ji, Y., et al. (2021) Novel LAT Pathogenic Variants in a POI Family and Its Role in the Ovary. Frontiers in Genetics, 12, Article 764160. https://doi.org/10.3389/fgene.2021.764160
|
[4]
|
Liang, Q., Wang, Z., Lin, F., Zhang, C., Sun, H., Zhou, L., et al. (2018) Ablation of Beta Subunit of Protein Kinase CK2 in Mouse Oocytes Causes Follicle Atresia and Premature Ovarian Failure. Cell Death & Disease, 9, Article No. 508. https://doi.org/10.1038/s41419-018-0505-1
|
[5]
|
Touraine, P., Chabbert-Buffet, N., Plu-Bureau, G., Duranteau, L., Sinclair, A.H. and Tucker, E.J. (2024) Premature Ovarian Insufficiency. Nature Reviews Disease Primers, 10, Article No. 63. https://doi.org/10.1038/s41572-024-00547-5
|
[6]
|
Wu, X., Cai, H., Kallianpur, A., Li, H., Yang, G., Gao, J., et al. (2014) Impact of Premature Ovarian Failure on Mortality and Morbidity among Chinese Women. PLOS ONE, 9, e89597. https://doi.org/10.1371/journal.pone.0089597
|
[7]
|
Lin, J., Wu, D., Jia, L., Liang, M., Liu, S., Qin, Z., et al. (2021) The Treatment of Complementary and Alternative Medicine on Premature Ovarian Failure. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6677767. https://doi.org/10.1155/2021/6677767
|
[8]
|
Craciunas, L., Zdoukopoulos, N., Vinayagam, S. and Mohiyiddeen, L. (2022) Hormone Therapy for Uterine and Endometrial Development in Women with Premature Ovarian Insufficiency. Cochrane Database of Systematic Reviews, No. 10, CD008209. https://doi.org/10.1002/14651858.cd008209.pub2
|
[9]
|
Rebar, R.W. (2009) Premature Ovarian Failure. Obstetrics & Gynecology, 113, 1355-1363. https://doi.org/10.1097/aog.0b013e3181a66843
|
[10]
|
Ishizuka, B. (2021) Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Frontiers in Endocrinology, 12, Article 626924. https://doi.org/10.3389/fendo.2021.626924
|
[11]
|
Li, Q., Zheng, J., Li, Z., Xiao, Y., Zhang, M., Shi, W., et al. (2022) Drug-Free in vitro Activation Combined with 3D-Bioprinted Adipose-Derived Stem Cells Restores Ovarian Function of Rats with Premature Ovarian Insufficiency. Stem Cell Research & Therapy, 13, Article No. 347. https://doi.org/10.1186/s13287-022-03035-3
|
[12]
|
Sevgin, K. and Erguven, P. (2024) SIRT1 Overexpression by Melatonin and Resveratrol Combined Treatment Attenuates Premature Ovarian Failure through Activation of SIRT1/FOXO3a/BCL2 Pathway. Biochemical and Biophysical Research Communications, 696, Article 149506. https://doi.org/10.1016/j.bbrc.2024.149506
|
[13]
|
Shi, L., Zhang, Z., Deng, M., Zheng, F., Liu, W. and Ye, S. (2022) Biological Mechanisms and Applied Prospects of Mesenchymal Stem Cells in Premature Ovarian Failure. Medicine, 101, e30013. https://doi.org/10.1097/md.0000000000030013
|
[14]
|
Li, Z., Zhang, M., Tian, Y., Li, Q. and Huang, X. (2021) Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Frontiers in Cell and Developmental Biology, 9, Article 718192. https://doi.org/10.3389/fcell.2021.718192
|
[15]
|
Huang, Q., Chen, S., Chen, J., Shi, Q. and Lin, S. (2022) Therapeutic Options for Premature Ovarian Insufficiency: An Updated Review. Reproductive Biology and Endocrinology, 20, Article No. 28. https://doi.org/10.1186/s12958-022-00892-8
|
[16]
|
Kuchakzadeh, F., Ai, J. and Ebrahimi-Barough, S. (2024) Tissue Engineering and Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency. Regenerative Therapy, 25, 10-23. https://doi.org/10.1016/j.reth.2023.11.007
|
[17]
|
Yu, T., Chen, M., Lee, T., Chen, Y., Cheng, E., Huang, C., et al. (2025) Intraovarian Platelet-Rich Plasma Injection Significantly Improves Blastocyst Yield and Quality in IVF Patients. Scientific Reports, 15, Article No. 1301. https://doi.org/10.1038/s41598-024-82630-1
|
[18]
|
van der Pol, E., Böing, A.N., Harrison, P., Sturk, A. and Nieuwland, R. (2012) Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 64, 676-705. https://doi.org/10.1124/pr.112.005983
|
[19]
|
Chen, Z. and Wang, X. (2022) The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Veterinary Sciences, 9, Article 706. https://doi.org/10.3390/vetsci9120706
|
[20]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. https://doi.org/10.1126/science.aau6977
|
[21]
|
Lin, Y., Lu, Y. and Li, X. (2019) Biological Characteristics of Exosomes and Genetically Engineered Exosomes for the Targeted Delivery of Therapeutic Agents. Journal of Drug Targeting, 28, 129-141. https://doi.org/10.1080/1061186x.2019.1641508
|
[22]
|
Chavda, V.P., Pandya, A., Kumar, L., Raval, N., Vora, L.K., Pulakkat, S., et al. (2023) Exosome Nanovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today, 49, Article 101771. https://doi.org/10.1016/j.nantod.2023.101771
|
[23]
|
Reddy, P., Zheng, W. and Liu, K. (2010) Mechanisms Maintaining the Dormancy and Survival of Mammalian Primordial Follicles. Trends in Endocrinology & Metabolism, 21, 96-103. https://doi.org/10.1016/j.tem.2009.10.001
|
[24]
|
Jiao, X., Zhang, X., Li, N., Zhang, D., Zhao, S., Dang, Y., et al. (2021) Treg Deficiency‐Mediated TH1 Response Causes Human Premature Ovarian Insufficiency through Apoptosis and Steroidogenesis Dysfunction of Granulosa Cells. Clinical and Translational Medicine, 11, e448. https://doi.org/10.1002/ctm2.448
|
[25]
|
Yang, M., Lin, L., Sha, C., Li, T., Zhao, D., Wei, H., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-144-5p Improves Rat Ovarian Function after Chemotherapy-Induced Ovarian Failure by Targeting PTEN. Laboratory Investigation, 100, 342-352. https://doi.org/10.1038/s41374-019-0321-y
|
[26]
|
Xiao, G., Cheng, C., Chiang, Y., Cheng, W.T., Liu, I. and Wu, S. (2016) Exosomal miR-10a Derived from Amniotic Fluid Stem Cells Preserves Ovarian Follicles after Chemotherapy. Scientific Reports, 6, Article No. 23120. https://doi.org/10.1038/srep23120
|
[27]
|
Cai, J., Sun, Y. and Bao, S. (2022) HucMSCs-Exosomes Containing miR-21 Promoted Estrogen Production in Ovarian Granulosa Cells via LATS1-Mediated Phosphorylation of LOXL2 and YAP. General and Comparative Endocrinology, 321, Article 114015. https://doi.org/10.1016/j.ygcen.2022.114015
|
[28]
|
Yu, Y.S., Sui, H.S., Han, Z.B., Li, W., Luo, M.J. and Tan, J.H. (2004) Apoptosis in Granulosa Cells during Follicular Atresia: Relationship with Steroids and Insulin-Like Growth Factors. Cell Research, 14, 341-346. https://doi.org/10.1038/sj.cr.7290234
|
[29]
|
Gershon, E. and Dekel, N. (2020) Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. International Journal of Molecular Sciences, 21, Article 4565. https://doi.org/10.3390/ijms21124565
|
[30]
|
Li, Z., Zhang, M., Zheng, J., Tian, Y., Zhang, H., Tan, Y., et al. (2021) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Frontiers in Endocrinology, 12, Article 711902. https://doi.org/10.3389/fendo.2021.711902
|
[31]
|
Wang, L., Wang, L., Wang, R., Xu, T., Wang, J., Cui, Z., et al. (2024) Endometrial Stem Cell-Derived Exosomes Repair Cisplatin-Induced Premature Ovarian Failure via Hippo Signaling Pathway. Heliyon, 10, e31639. https://doi.org/10.1016/j.heliyon.2024.e31639
|
[32]
|
Han, Y., Yao, R., Yang, Z., Li, S., Meng, W., Zhang, Y., et al. (2022) Interleukin-4 Activates the PI3K/AKT Signaling to Promote Apoptosis and Inhibit the Proliferation of Granulosa Cells. Experimental Cell Research, 412, Article 113002. https://doi.org/10.1016/j.yexcr.2021.113002
|
[33]
|
Ağaçayak, E., Yaman Görük, N., Küsen, H., Yaman Tunç, S., Başaranoğlu, S., İçen, M.S., et al. (2016) Role of Inflammation and Oxidative Stress in the Etiology of Primary Ovarian Insufficiency. Journal of Turkish Society of Obstetric and Gynecology, 13, 109-115. https://doi.org/10.4274/tjod.00334
|
[34]
|
Nazdikbin Yamchi, N., Ahmadian, S., Mobarak, H., Amjadi, F., Beheshti, R., Tamadon, A., et al. (2023) Amniotic Fluid-Derived Exosomes Attenuated Fibrotic Changes in POI Rats through Modulation of the TGF-β/Smads Signaling Pathway. Journal of Ovarian Research, 16, Article No. 118. https://doi.org/10.1186/s13048-023-01214-1
|
[35]
|
Bai, X. and Wang, S. (2022) Signaling Pathway Intervention in Premature Ovarian Failure. Frontiers in Medicine, 9, Article 999440. https://doi.org/10.3389/fmed.2022.999440
|
[36]
|
Qu, Q., Liu, L., Cui, Y., Liu, H., Yi, J., Bing, W., et al. (2022) miR-126-3p Containing Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Angiogenesis and Attenuate Ovarian Granulosa Cell Apoptosis in a Preclinical Rat Model of Premature Ovarian Failure. Stem Cell Research & Therapy, 13, Article No. 352. https://doi.org/10.1186/s13287-022-03056-y
|
[37]
|
Wang, Z., Tan, W., Li, B., Zou, J., Li, Y., Xiao, Y., et al. (2023) Exosomal Non-Coding RNAs in Angiogenesis: Functions, Mechanisms and Potential Clinical Applications. Heliyon, 9, e18626. https://doi.org/10.1016/j.heliyon.2023.e18626
|
[38]
|
Khosravizadeh, Z., Rashidi, Z., Talebi, A., Khodamoradi, K. and Hassanzadeh, G. (2020) The Role of Mitochondria in Premature Ovarian Failure: A Review. Journal of Contemporary Medical Sciences, 6, 1-7. https://doi.org/10.22317/jcms.v6i1.712
|
[39]
|
Ding, Y., Xia, B., Zhuo, G., Zhang, C. and Leng, J. (2019) Premature Ovarian Insufficiency May Be Associated with the Mutations in Mitochondrial tRNA Genes. Endocrine Journal, 66, 81-88. https://doi.org/10.1507/endocrj.ej18-0308
|
[40]
|
Yang, G., Zhang, B., Xu, M., Wu, M., Lin, J., Luo, Z., et al. (2024) Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell Exosome-Derived Hsa_circ_0002021. Tissue Engineering and Regenerative Medicine, 21, 897-914. https://doi.org/10.1007/s13770-024-00652-2
|
[41]
|
Zhu, X., Li, W., Lu, M., Shang, J., Zhou, J., Lin, L., et al. (2024) M6A Demethylase FTO-Stabilized Exosomal CircBRCA1 Alleviates Oxidative Stress-Induced Granulosa Cell Damage via the miR-642a-5p/FOXO1 Axis. Journal of Nanobiotechnology, 22, Article No. 367. https://doi.org/10.1186/s12951-024-02583-5
|