外泌体治疗卵巢早衰机制的研究进展
Research Progress on the Mechanisms of Exosome-Based Therapy for Premature Ovarian Failure
DOI: 10.12677/acm.2025.1551520, PDF, HTML, XML,   
作者: 陈 杰:内蒙古医科大学内蒙古临床医学院,内蒙古 呼和浩特;马玉珍*:内蒙古自治区人民医院生殖医学科,内蒙古 呼和浩特
关键词: 卵巢早衰外泌体颗粒细胞不孕Premature Ovarian Failure Exosomes Granulosa Cell Infertility
摘要: 卵巢早衰(Premature ovarian failure, POF)是一种近年发病率不断升高的妇科内分泌疾病,常导致不孕并伴随多种类似于更年期症状。目前POF病因暂不明确,治疗效果尚未达到预期,因此需要探索POF的新型治疗方式,改善卵巢功能,促进女性患者生育能力的恢复。外泌体广泛存在于血液、唾液、脑脊液等人体液体成分中,由脂质、蛋白质、RNA、DNA和其他与细胞来源相关的物质组成,介导细胞间的信息交流。大量研究表明,外泌体对于治疗卵巢疾病至关重要,可能作为重要靶点参与卵巢疾病的治疗过程,通过促进颗粒细胞功能恢复、促进卵巢再生、减少炎症、增强血管生成以及减轻氧化应激等各个方面对POF的治疗起到一定作用。现就当前外泌体对卵巢早衰的治疗作如下综述,以期为外泌体相关理论在POF的后续研究和治疗中提供参考。
Abstract: Premature ovarian failure (POF) is a gynecological endocrine disease with an increasing incidence in recent years. It often leads to infertility and is accompanied by various symptoms similar to those of menopause. Currently, the etiology of POF remains unclear, and the treatment effect has not yet met expectations. Therefore, it is necessary to explore new treatment methods for POF to improve ovarian function and promote the recovery of fertility in female patients. Exosomes are widely present in human body fluid components such as blood, saliva, and cerebrospinal fluid. They are composed of lipids, proteins, RNA, DNA, and other substances related to cell origin, and mediate intercellular communication. A large number of studies have shown that exosomes are crucial for the treatment of ovarian diseases. They may participate in the treatment process of ovarian diseases as important targets and play a certain role in the treatment of POF in various aspects, such as enhancement of granulosa cell functional recovery, promotion of ovarian regeneration, reduction of inflammation, augmentation of angiogenesis, and alleviation of oxidative stress. This article reviews the current treatment of premature ovarian failure with exosomes, aiming to provide a reference for the subsequent research and treatment of POF using exosome-related theories.
文章引用:陈杰, 马玉珍. 外泌体治疗卵巢早衰机制的研究进展[J]. 临床医学进展, 2025, 15(5): 1506-1513. https://doi.org/10.12677/acm.2025.1551520

1. 引言

卵巢早衰(Premature ovarian failure, POF)是指因卵巢功能过早衰竭致使女性40岁之前出现闭经,同时伴有不孕、低雌激素及高促性腺激素水平的一种疾病[1]。在病理学中,POF表现为卵巢组织内的卵泡耗竭或闭锁,进而导致的原发性或继发性闭经等卵巢功能衰退[2]。长期以来,基因改变一直被认为是POF的常见原因,例如在X染色体中的FMR1、FMR2、BMP15和常染色体中的FOXL2、FSHR、LH受体和抑制素A已经明确与POF相关;然而,正常卵泡发生的分子途径以及POF的潜在机制在很大程度上仍然未知,需要我们进一步探索[3] [4]。研究表明,卵巢早衰的总体患病率在0.5%~4%,流行病学研究表明40岁以下女性的发病率为1%,30至39岁女性的发病率为0.076%,15至29岁女性占0.01%。而在中国女性群体中POF的患病率为2.8%。这些研究之间观察到的差异可能是由于方法、种族和民族的不同[5] [6]。随着环境污染、生活方式的改变,POF的发病率不断上升,发病年龄也在向年轻化趋势发展[7]。目前,临床对POF主要采用激素补充替代治疗,虽在临床应用广泛且有一定的治疗效果,但是无法恢复卵巢功能,改善卵巢的生育力[8]。因此探索POF的新型治疗方式有着重要意义,近年来随着对外泌体治疗的深入研究,其在卵巢早衰方面发挥的作用被不断发掘,本文综述了外泌体治疗POF可能的治疗机制,以期为POF的后续研究和治疗提供参考。

2. 卵巢早衰的治疗现状

POF是一种由遗传因素、自身免疫性疾病、线粒体异常、医源性因素(包括化疗、放疗和外科手术)和环境因素引起的疾病[9]。虽然已知有50多个基因与POF相关,但仍有许多病例缺乏明确的遗传解释[10]。POF有多种治疗方式,目前临床中对POF主要采用激素补充替代治疗缓解低雌激素相关症状,降低长期心血管疾病和骨质疏松症的风险,但并不能恢复卵巢功能。此外,基于卵巢碎片化残余休眠卵泡的体外活化(IVA)正在成为一种新型有效的方法,卵巢碎片化通过破坏Hippo信号通路激活静息卵泡,并通过PTEN/PI3K/AKT/FOXO3通路,激活原始卵泡。由于妊娠率低和药物方法的潜在致癌作用,研究人员提出一种简化的无药物IVA方法,可以通过单独破坏Hippo信号通路来促进卵泡生长恢复[11];研究表明可以使用线粒体营养物质如白藜芦醇、褪黑激素来恢复线粒体的活力,延缓卵巢细胞的衰老[12];间充质干细胞疗法是一种被广泛研究,已成为一种潜在的细胞的疗法,通过迁移和归巢功能、增殖、抗炎、抗凋亡、旁分泌、免疫调节、抗纤维化以及自噬和氧化应激的调节促进卵巢再生并恢复卵巢功能[13]。生物材料技术是一种新兴技术,它结合了细胞生物学和材料科学,在体外或体内构建组织或器官,并在体外或体内开发或替代受损或患病组织或器官的功能[14]。研究表明,干细胞移植后可能在短时间内被破坏,而使用胶原蛋白、藻酸盐和透明质酸(HA)等生物材料可以改善这种情况,并增强干细胞的附着、存活和增殖[15]。研究表明,将干细胞与生物材料结合能够增加GCs的增殖、改善微血管重塑、卵巢血管生成和卵泡发育改善等改善卵巢功能[16]。卵巢内富血小板血浆(PRP)注射作为一种新兴的治疗方式可能是由于其富含生长因子(如PDGF和VEGF),这些生长因子促进血管生成,增强各个阶段的卵泡生成,并刺激卵子干细胞(OSC)形成新的原始卵泡改善卵巢反应和胚胎质量[17];外泌体疗法我们将在下文中详细介绍。以上这些疗法均被认为十分有前景,尽管这些创新药物及治疗方式具有很大的潜力,但仍处于实验阶段。在将其视为可行的临床解决方案之前,必须对其有效性和安全性进行全面评估。

3. 外泌体的生物学特性

外泌体(Exosomes, Exos)是细胞外囊泡的一种亚型,其大小范围在30~150 nm之间,最初是从网织红细胞培养基中分离获得的具有脂质双层结构的囊泡结构[18]。研究表明,Exos广泛存在于血液、唾液、脑脊液等人体液体成分中,由脂质、蛋白质、RNA、DNA和其他与细胞来源相关的物质组成,并且可由多种细胞释放,通过利用其小尺寸和相对持久性等特性穿过各种细胞屏障并到达靶细胞发挥调节作用,介导细胞间的信息交流[19]。Exos释放包括DNA、蛋白质、mRNA和非编码RNA在内的多种生物活性分子,积极调节细胞信息传递和受体细胞基因表达;其脂质双分子层结构可有效保护其内容物免受胞外核酸酶和蛋白酶的分解使其可以稳定地存在于体液中[20] [21]。外泌体在多种疾病诊断和治疗方面前景广阔,但由于免疫相容性和细胞稳定性以及外泌体的提取技术限制等问题仍需要进一步的临床研究和技术改进来确保间充质干细胞来源的外泌体安全性和有效性。

4. 外泌体治疗卵巢早衰的机制研究

4.1. 外泌体促进颗粒细胞功能恢复的作用

颗粒细胞(granulosa cells, GCs)在卵泡结构中起着至关重要的作用,是卵巢的基础功能单位,其位于卵母细胞透明带外侧,通过缝隙连接直接与卵母细胞相互作用,GCs的增殖、分化、凋亡对卵母细胞发育的成熟起着至关重要的作用[22]。生理情况下,大多数原始卵泡保持静止状态,只有少数原始卵泡在特定时间被激活,当这种平衡被打破,原始卵泡的激活迅速加速,导致POF等疾病[23]。研究证明卵泡过早闭锁和耗竭是POF发病机制的主要因素,而GCs过度凋亡被认为是卵泡过早闭锁和耗竭的主要因素[24]。许多POF病例的原因是原始卵泡过度激活导致卵巢储备过早耗竭,这可能是遗传因素的结果,例如PTEN基因的缺失。研究表明PTEN-AKT-FOXO3a有助于细胞生长、新陈代谢,以及维持基因组完整性是控制原始卵泡募集和生长以及调节原始卵泡激活的关键通路[23]

Yang的研究团队通过连续腹腔注射环磷酰胺(CTX)诱导POF大鼠模型,并从健康SD大鼠的胫骨和股骨中分离出骨髓间充质干细胞(BMSCs)提取Exos,随机分组后进行下一步治疗。在BMSC及骨髓间充质干细胞外泌体(BMSC-Exos)移植2周后,发情周期正常的大鼠数量增加,且免疫组化结果提示闭锁卵泡以及凋亡GCs数量明显减少。实验进一步添加GW4689预处理的BMSCs和BMSC-Exos共培养组别,通过流式细胞计数证实BMSCs主要通过Exos转移抑制CTX损伤的GCs凋亡。而后通过qRT-PCR检测GCs中miR-144-5p的表达水平升高。研究证明miR-144-5通过下调PTEN,PI3K/AKT通路被激活,磷酸化AKT水平升高。AKT通过抑制促凋亡蛋白(如BAD、Caspase-9),激活mTOR等下游效应分子,增强细胞增殖和存活进而抑制GCs凋亡改善CTX诱导的大鼠卵巢早衰[25]。研究人员通过miRNA抑制剂敲低羊水干细胞衍生外泌体中miR-146a和miR-10a的表达与磷酰胺氮芥损伤的GCs共培养证明这两种miRNA的双重敲低显著损伤受损GCs的抗凋亡特性。结合既往研究表明AFMSC衍生的外泌体可能通过miR-146a和miR-10a靶向作用于Bim并导致caspase9的下调以及影响NF-κB通路和Bcl-6之间的调节,改善颗粒细胞凋亡修复卵巢功能[26]。Cai的研究团队发现,人脐带间充质干细胞外泌体(hUCMSCs-Exos)可通过高表达的miR-21下调自然衰老小鼠模型中肿瘤抑制因子1 (LATS1)的表达,减少赖氨酸氧化酶样2 (LOXL2)和Yes相关蛋白(YAP)的磷酸化,进而增加卵巢GCs分泌雌激素,改善卵巢功能,影响POF的治疗[27]

上述研究结果均证明了外泌体可以通过递送特定的miRNA,靶向调控多种信号通路,抑制颗粒细胞凋亡、促进颗粒细胞雌激素分泌,改善卵巢功能及POF患者的生育能力,为日后的治疗提供新的思路。

4.2. 外泌体促进卵巢再生的作用

卵巢是女性生殖系统的核心器官,在POF中,卵巢生理功能和生殖能力因卵巢功能障碍或卵泡耗竭而受到损害。GCs过度凋亡可触发卵泡功能障碍和卵巢生理变化,促进GCs的增殖可以挽救受损的卵巢结构和功能[28]。Hippo通路通过经典激酶级联反应中保守的激酶激活序列发挥作用,对生物的生理功能和器官生长发育以及再生调节发挥着重要作用,在卵巢中Hippo信号通路通过调控卵泡的激活和存活,在卵泡生成及卵巢功能中起重要作用[29]

Li等通过分离小鼠颗粒细胞及构建POF小鼠模型在体内及体外实验中研究证明hUCMSC-Exos通过非编码RNA和它们输送到细胞的其他分子调节Hippo通路的关键分子进而调节卵泡活化和存活以及卵巢细胞增殖,在卵泡发生和卵巢功能中发挥关键作用。体内研究结果表明POF小鼠模型注射hUCMSC-Exos后两周内小鼠动情周期逐渐恢复,且AMH、E2和FSH水平逐渐接近正常组;外泌体移植后4周后小鼠的繁殖功能也要远优于POF组。组织切片免疫组化结果中FSHR的高表达水平也表明hUCMSC-Exos移植卵泡的生成有了明显改善。通过蛋白质印迹同时检测与关键Hippo分子和卵巢功能相关的蛋白质(FSHR和PCNA),与POF组相比,Exos组YAP1、TAZ和TEAD1以及FSHR和PCNA表达水平显著升高。同时实验人员通过EdU和CCK-8测定证明与hUCMSC-Exos共培养能够明显增强了GCs的增殖能力,且蛋白质印迹的结果也与体内实验一致。这些发现共同证明hUCMSC-Exos通过Hippo信号通路促进卵巢细胞增殖并恢复卵巢功能[30]。无独有偶近期的一项研究表明在顺铂诱导的卵巢早衰小鼠模型中注射人子宫内膜干细胞外泌体(EnSC-Exos)同样能够通过Hippo信号通路抑制GCs凋亡并增加健康卵泡总数增量和减少闭锁卵泡的数目。此外,该实验中卵巢切片的形态学显示,外泌体治疗组的小鼠相较其他的实验组卵巢结构更好,间质增生和纤维化程度更低[31]。以上研究证明外泌体在通过调控Hippo通路促进卵巢细胞增殖恢复卵巢功能中有重要意义,值得我们进一步研究。

4.3. 外泌体减少卵巢早衰炎症的作用

慢性炎症是参与POF发病机制的影响因素之一。炎症与卵泡生成有关,炎性因子表达失调导致卵母细胞质量受损和卵巢早衰[32]。研究证明卵巢早衰患者的炎症指标表达增加,如中性粒细胞与淋巴细胞比值(NLR)、氧化应激指数以及促炎细胞因子和转录因子(如NF-κB)的表达增加,表明它们参与POF发病机制[33]。研究者通过从怀孕母羊的羊水中分离外泌体(AF-Exos)并将其直接移植到CTX诱导的POF大鼠的卵巢组织中。实验结果表明AF-Exos干预4周后POF大鼠的雌激素水平恢复至基础水平,且健康卵泡计数增加,而闭锁卵泡计数减少;与未治疗的POF大鼠相比,AF-Exos后窝产仔数显著增加。同时,AF-Exos移植后SMAD-6的表达增加,Tgf-β1、Tnf-α和IL-10的表达降低。研究者结合既往实验结果得出AF-Exos移植有可能通过TGF-β/Smads信号通路抑制卵巢纤维化和慢性炎症过程促进POF大鼠卵巢功能的恢复[34]。综上所述,外泌体可以通过抑慢性炎症过程,有效改善卵巢功能,为POF的治疗提供了新的潜在策略,但未来仍需进一步研究明确具体的作用机制。

4.4. 外泌体增强血管生成的作用

卵巢血管系统的建立和重塑是卵巢发育和功能恢复的基础。卵泡和黄体可以通过卵巢血管获得营养支持,并将激素运输到目标器官。毛细血管网和正常的血液供应在卵泡发育和成熟中以及优势卵泡的选择和排卵中起着重要作用,卵巢血管网的损伤会导致卵泡发育的抑制和卵巢内分泌功能的破坏。在参与自噬调节的几个因素中,血管内皮生长因子(VEGF)发挥着关键功能。POF模型中卵巢组织VEGF蛋白的低表达也证明血管生成在卵泡发育中的重要作用[35]。一项研究通过miR-126-3p慢病毒感染人脐带间充质干细胞(hucMSCs)再由高速离心法获取其衍生的外泌体治疗顺铂诱导的POF大鼠。实验结果表明给予miR-126-3p-hUCMSC-Exos可以通过提高血管生成相关因子(VEGF、IGF-1和FGF)的表达,减少细胞凋亡相关因子(Bax和caspase-3)进而促进卵巢血管的生成来刺激受损卵巢结构和功能的恢复。同时该项实验还表明,外泌体可以在化疗诱导的POF的情况下通过PIK3R2/PI3K/AKT/mTOR轴促进GCs的增殖,同时抑制GCs的凋亡[36]。大量研究表明Exos能够改善机体组织损伤后的血管生成并发挥包括调节血管生成在内的广泛生理和病理作用[37],虽然Exos在改善POF卵巢血管生成的领域中研究结果较少,但上述结果表明Exos在卵巢血管的再生和恢复中具有重要意义,值得更加深入的研究。

4.5. 外泌体减轻氧化应激的作用

氧化应激是卵巢早衰发病机制中的一个重要环节。氧化应激在排卵和黄体化等生理过程中起重要作用,然而逐渐积累和高水平的氧化损伤会通过影响卵母细胞和颗粒细胞微环境来诱导不育,并诱导卵泡闭锁、卵巢炎症,引发多种生殖疾病包括多囊卵巢综合征、子宫内膜异位症和卵巢早衰[38]。线粒体作为细胞内活性氧(ROS)的重要来源,对氧化应激更敏感[39]。Yang的实验团队通过使用GEO数据库筛选出hsa_circ_0002021并通过体内及体外研究证明在hUCMSC-Exos中增强hsa_circ_0002021的表达,能够显著减少GCs的氧化应激标志物(MDA、ROS)和衰老标志物β-半乳糖苷酶活性,并增加抗氧化酶(SOD、CAT)的活性。研究人员通过双荧光素酶报告实验和RNA免疫沉淀(RIP)实验证实hsa_circ_0002021能够吸附miR-125a-5p,减少miR-125a-5p对CDK6的抑制作用,调节氧化应激从而延缓GCs的衰老,改善卵巢功能[40]。高水平的ROS导致低ATP产生,这本身会加速卵巢生殖细胞凋亡、卵子发生障碍、卵母细胞计数低,并最终导致卵巢早衰。Zhu等在前期实验中证明hUCMSC-Exos能够通过减少ROS损伤来缓解GCs衰老,并通过进一步研究证明hUCMSC-Exos中源自BRCA1基因外显子19-21的circBRCA1有助于通过miR-642a-5p上调GCs中FOXO1的表达降低ROS积累、P16和P21水平以及SA-β-gal活性,并提高Gpx和SOD2水平防止氧化损伤诱导的细胞衰老,减轻线粒体功能障碍进而促进POF大鼠卵巢功能和生殖能力的恢复[41]。综上所述,氧化应激在POF的发病机制中扮演着重要角色,这些研究发现不仅加深了我们对POF分子机制的理解,也为日后开发新的治疗策略提供了潜在靶点。

5. 研究展望

卵巢早衰是一种具有许多致病机制和分子因素的多方面疾病,卵巢早衰患者卵巢功能和生育力的恢复是长期困扰临床治疗的难题,激发了大量的科学探索。外泌体作为一种无细胞治疗方法引起了人们的兴趣,对外泌体治疗卵巢早衰的机制进行深入研究有望成为恢复卵巢功能和减轻卵巢早衰患者生育负担的一个潜在趋势。外泌体具有极高的免疫原性、稳定性和靶向特异性,但是,目前仍有一些问题需要解决,外泌体的分离制备、安全性和表征的成熟技术以及成本都是需要克服的困难。外泌体miRNA的确切作用机制和与其他信号通路的相互作用必须通过进一步的研究来阐明。但是这些信息将有助于开发更有效的卵巢早衰治疗策略。虽然外泌体具有治疗卵巢早衰的巨大潜力,但需要进一步研究以克服当前的障碍并改进递送、表征和给药方案。解决这些问题将为卵巢早衰患者提供高效、标准化和安全的治疗方法。

NOTES

*通讯作者。

参考文献

[1] Ke, H., Tang, S., Guo, T., Hou, D., Jiao, X., Li, S., et al. (2023) Landscape of Pathogenic Mutations in Premature Ovarian Insufficiency. Nature Medicine, 29, 483-492.
https://doi.org/10.1038/s41591-022-02194-3
[2] Wang, J., Sun, X., Yang, Z., Li, S., Wang, Y., Ren, R., et al. (2023) Epigenetic Regulation in Premature Ovarian Failure: A Literature Review. Frontiers in Physiology, 13, Article 998424.
https://doi.org/10.3389/fphys.2022.998424
[3] Chu, K., He, Y., Li, Z., Jiang, Z., Wang, L., Ji, Y., et al. (2021) Novel LAT Pathogenic Variants in a POI Family and Its Role in the Ovary. Frontiers in Genetics, 12, Article 764160.
https://doi.org/10.3389/fgene.2021.764160
[4] Liang, Q., Wang, Z., Lin, F., Zhang, C., Sun, H., Zhou, L., et al. (2018) Ablation of Beta Subunit of Protein Kinase CK2 in Mouse Oocytes Causes Follicle Atresia and Premature Ovarian Failure. Cell Death & Disease, 9, Article No. 508.
https://doi.org/10.1038/s41419-018-0505-1
[5] Touraine, P., Chabbert-Buffet, N., Plu-Bureau, G., Duranteau, L., Sinclair, A.H. and Tucker, E.J. (2024) Premature Ovarian Insufficiency. Nature Reviews Disease Primers, 10, Article No. 63.
https://doi.org/10.1038/s41572-024-00547-5
[6] Wu, X., Cai, H., Kallianpur, A., Li, H., Yang, G., Gao, J., et al. (2014) Impact of Premature Ovarian Failure on Mortality and Morbidity among Chinese Women. PLOS ONE, 9, e89597.
https://doi.org/10.1371/journal.pone.0089597
[7] Lin, J., Wu, D., Jia, L., Liang, M., Liu, S., Qin, Z., et al. (2021) The Treatment of Complementary and Alternative Medicine on Premature Ovarian Failure. Evidence-Based Complementary and Alternative Medicine, 2021, Article ID: 6677767.
https://doi.org/10.1155/2021/6677767
[8] Craciunas, L., Zdoukopoulos, N., Vinayagam, S. and Mohiyiddeen, L. (2022) Hormone Therapy for Uterine and Endometrial Development in Women with Premature Ovarian Insufficiency. Cochrane Database of Systematic Reviews, No. 10, CD008209.
https://doi.org/10.1002/14651858.cd008209.pub2
[9] Rebar, R.W. (2009) Premature Ovarian Failure. Obstetrics & Gynecology, 113, 1355-1363.
https://doi.org/10.1097/aog.0b013e3181a66843
[10] Ishizuka, B. (2021) Current Understanding of the Etiology, Symptomatology, and Treatment Options in Premature Ovarian Insufficiency (POI). Frontiers in Endocrinology, 12, Article 626924.
https://doi.org/10.3389/fendo.2021.626924
[11] Li, Q., Zheng, J., Li, Z., Xiao, Y., Zhang, M., Shi, W., et al. (2022) Drug-Free in vitro Activation Combined with 3D-Bioprinted Adipose-Derived Stem Cells Restores Ovarian Function of Rats with Premature Ovarian Insufficiency. Stem Cell Research & Therapy, 13, Article No. 347.
https://doi.org/10.1186/s13287-022-03035-3
[12] Sevgin, K. and Erguven, P. (2024) SIRT1 Overexpression by Melatonin and Resveratrol Combined Treatment Attenuates Premature Ovarian Failure through Activation of SIRT1/FOXO3a/BCL2 Pathway. Biochemical and Biophysical Research Communications, 696, Article 149506.
https://doi.org/10.1016/j.bbrc.2024.149506
[13] Shi, L., Zhang, Z., Deng, M., Zheng, F., Liu, W. and Ye, S. (2022) Biological Mechanisms and Applied Prospects of Mesenchymal Stem Cells in Premature Ovarian Failure. Medicine, 101, e30013.
https://doi.org/10.1097/md.0000000000030013
[14] Li, Z., Zhang, M., Tian, Y., Li, Q. and Huang, X. (2021) Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Frontiers in Cell and Developmental Biology, 9, Article 718192.
https://doi.org/10.3389/fcell.2021.718192
[15] Huang, Q., Chen, S., Chen, J., Shi, Q. and Lin, S. (2022) Therapeutic Options for Premature Ovarian Insufficiency: An Updated Review. Reproductive Biology and Endocrinology, 20, Article No. 28.
https://doi.org/10.1186/s12958-022-00892-8
[16] Kuchakzadeh, F., Ai, J. and Ebrahimi-Barough, S. (2024) Tissue Engineering and Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency. Regenerative Therapy, 25, 10-23.
https://doi.org/10.1016/j.reth.2023.11.007
[17] Yu, T., Chen, M., Lee, T., Chen, Y., Cheng, E., Huang, C., et al. (2025) Intraovarian Platelet-Rich Plasma Injection Significantly Improves Blastocyst Yield and Quality in IVF Patients. Scientific Reports, 15, Article No. 1301.
https://doi.org/10.1038/s41598-024-82630-1
[18] van der Pol, E., Böing, A.N., Harrison, P., Sturk, A. and Nieuwland, R. (2012) Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacological Reviews, 64, 676-705.
https://doi.org/10.1124/pr.112.005983
[19] Chen, Z. and Wang, X. (2022) The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Veterinary Sciences, 9, Article 706.
https://doi.org/10.3390/vetsci9120706
[20] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977.
https://doi.org/10.1126/science.aau6977
[21] Lin, Y., Lu, Y. and Li, X. (2019) Biological Characteristics of Exosomes and Genetically Engineered Exosomes for the Targeted Delivery of Therapeutic Agents. Journal of Drug Targeting, 28, 129-141.
https://doi.org/10.1080/1061186x.2019.1641508
[22] Chavda, V.P., Pandya, A., Kumar, L., Raval, N., Vora, L.K., Pulakkat, S., et al. (2023) Exosome Nanovesicles: A Potential Carrier for Therapeutic Delivery. Nano Today, 49, Article 101771.
https://doi.org/10.1016/j.nantod.2023.101771
[23] Reddy, P., Zheng, W. and Liu, K. (2010) Mechanisms Maintaining the Dormancy and Survival of Mammalian Primordial Follicles. Trends in Endocrinology & Metabolism, 21, 96-103.
https://doi.org/10.1016/j.tem.2009.10.001
[24] Jiao, X., Zhang, X., Li, N., Zhang, D., Zhao, S., Dang, Y., et al. (2021) Treg Deficiency‐Mediated TH1 Response Causes Human Premature Ovarian Insufficiency through Apoptosis and Steroidogenesis Dysfunction of Granulosa Cells. Clinical and Translational Medicine, 11, e448.
https://doi.org/10.1002/ctm2.448
[25] Yang, M., Lin, L., Sha, C., Li, T., Zhao, D., Wei, H., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-144-5p Improves Rat Ovarian Function after Chemotherapy-Induced Ovarian Failure by Targeting PTEN. Laboratory Investigation, 100, 342-352.
https://doi.org/10.1038/s41374-019-0321-y
[26] Xiao, G., Cheng, C., Chiang, Y., Cheng, W.T., Liu, I. and Wu, S. (2016) Exosomal miR-10a Derived from Amniotic Fluid Stem Cells Preserves Ovarian Follicles after Chemotherapy. Scientific Reports, 6, Article No. 23120.
https://doi.org/10.1038/srep23120
[27] Cai, J., Sun, Y. and Bao, S. (2022) HucMSCs-Exosomes Containing miR-21 Promoted Estrogen Production in Ovarian Granulosa Cells via LATS1-Mediated Phosphorylation of LOXL2 and YAP. General and Comparative Endocrinology, 321, Article 114015.
https://doi.org/10.1016/j.ygcen.2022.114015
[28] Yu, Y.S., Sui, H.S., Han, Z.B., Li, W., Luo, M.J. and Tan, J.H. (2004) Apoptosis in Granulosa Cells during Follicular Atresia: Relationship with Steroids and Insulin-Like Growth Factors. Cell Research, 14, 341-346.
https://doi.org/10.1038/sj.cr.7290234
[29] Gershon, E. and Dekel, N. (2020) Newly Identified Regulators of Ovarian Folliculogenesis and Ovulation. International Journal of Molecular Sciences, 21, Article 4565.
https://doi.org/10.3390/ijms21124565
[30] Li, Z., Zhang, M., Zheng, J., Tian, Y., Zhang, H., Tan, Y., et al. (2021) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Frontiers in Endocrinology, 12, Article 711902.
https://doi.org/10.3389/fendo.2021.711902
[31] Wang, L., Wang, L., Wang, R., Xu, T., Wang, J., Cui, Z., et al. (2024) Endometrial Stem Cell-Derived Exosomes Repair Cisplatin-Induced Premature Ovarian Failure via Hippo Signaling Pathway. Heliyon, 10, e31639.
https://doi.org/10.1016/j.heliyon.2024.e31639
[32] Han, Y., Yao, R., Yang, Z., Li, S., Meng, W., Zhang, Y., et al. (2022) Interleukin-4 Activates the PI3K/AKT Signaling to Promote Apoptosis and Inhibit the Proliferation of Granulosa Cells. Experimental Cell Research, 412, Article 113002.
https://doi.org/10.1016/j.yexcr.2021.113002
[33] Ağaçayak, E., Yaman Görük, N., Küsen, H., Yaman Tunç, S., Başaranoğlu, S., İçen, M.S., et al. (2016) Role of Inflammation and Oxidative Stress in the Etiology of Primary Ovarian Insufficiency. Journal of Turkish Society of Obstetric and Gynecology, 13, 109-115.
https://doi.org/10.4274/tjod.00334
[34] Nazdikbin Yamchi, N., Ahmadian, S., Mobarak, H., Amjadi, F., Beheshti, R., Tamadon, A., et al. (2023) Amniotic Fluid-Derived Exosomes Attenuated Fibrotic Changes in POI Rats through Modulation of the TGF-β/Smads Signaling Pathway. Journal of Ovarian Research, 16, Article No. 118.
https://doi.org/10.1186/s13048-023-01214-1
[35] Bai, X. and Wang, S. (2022) Signaling Pathway Intervention in Premature Ovarian Failure. Frontiers in Medicine, 9, Article 999440.
https://doi.org/10.3389/fmed.2022.999440
[36] Qu, Q., Liu, L., Cui, Y., Liu, H., Yi, J., Bing, W., et al. (2022) miR-126-3p Containing Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Angiogenesis and Attenuate Ovarian Granulosa Cell Apoptosis in a Preclinical Rat Model of Premature Ovarian Failure. Stem Cell Research & Therapy, 13, Article No. 352.
https://doi.org/10.1186/s13287-022-03056-y
[37] Wang, Z., Tan, W., Li, B., Zou, J., Li, Y., Xiao, Y., et al. (2023) Exosomal Non-Coding RNAs in Angiogenesis: Functions, Mechanisms and Potential Clinical Applications. Heliyon, 9, e18626.
https://doi.org/10.1016/j.heliyon.2023.e18626
[38] Khosravizadeh, Z., Rashidi, Z., Talebi, A., Khodamoradi, K. and Hassanzadeh, G. (2020) The Role of Mitochondria in Premature Ovarian Failure: A Review. Journal of Contemporary Medical Sciences, 6, 1-7.
https://doi.org/10.22317/jcms.v6i1.712
[39] Ding, Y., Xia, B., Zhuo, G., Zhang, C. and Leng, J. (2019) Premature Ovarian Insufficiency May Be Associated with the Mutations in Mitochondrial tRNA Genes. Endocrine Journal, 66, 81-88.
https://doi.org/10.1507/endocrj.ej18-0308
[40] Yang, G., Zhang, B., Xu, M., Wu, M., Lin, J., Luo, Z., et al. (2024) Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell Exosome-Derived Hsa_circ_0002021. Tissue Engineering and Regenerative Medicine, 21, 897-914.
https://doi.org/10.1007/s13770-024-00652-2
[41] Zhu, X., Li, W., Lu, M., Shang, J., Zhou, J., Lin, L., et al. (2024) M6A Demethylase FTO-Stabilized Exosomal CircBRCA1 Alleviates Oxidative Stress-Induced Granulosa Cell Damage via the miR-642a-5p/FOXO1 Axis. Journal of Nanobiotechnology, 22, Article No. 367.
https://doi.org/10.1186/s12951-024-02583-5