口咽癌组织癌内微生物组学研究
A Study on the Microbiome within Oropharyngeal Cancer Tissues
DOI: 10.12677/acm.2025.1551523, PDF, HTML, XML,   
作者: 孙 冉:山东第一医科大学第一附属医院耳鼻咽喉科,山东 济南;山东第一医科大学(山东省医学科学院)研究生部,山东 济南;梁 辉*:山东第一医科大学第一附属医院耳鼻咽喉科,山东 济南
关键词: 口咽癌微生物微生物组学致病机制诊断Oropharyngeal Cance Microbiota Microbiomics Pathogenesis Diagnosis
摘要: 口咽癌(Oropharyngeal Cancer, OPC)是头颈部较常见的恶性肿瘤之一,有较高的发病率和死亡率,预防和治疗策略需要新的突破。随着对OPC研究的不断加深,微生物群(包括与口咽直接接触的以及存在于OPC组织内的数万亿微生物)的重要作用被逐渐认识到,他们在OPC的发生发展过程中扮演着重要角色。了解复杂微生物群落和单个微生物在OPC发病机制中的作用及机制,将有助于我们寻找新的OPC预防及治疗干预措施。本综述广泛检索了国内外相关文献,涵盖了微生物组学、OPC流行病学、分子生物学以及临床研究等多个领域,共引用了68篇高质量的研究文献,包括临床试验、队列研究、机制探讨以及综述文章。我们总结了当前有关OPC中微生物组学领域研究成果、研究方法、存在的争议以及研究的方向,详细讨论微生物群的整体和特定微生物与OPC的关联、微生物可能驱动OPC发展的潜在机制以及在OPC发病机制中的作用。本综述强调了微生物群在OPC发病机制中的重要性,并指出其在OPC预防和治疗中的潜在应用价值。未来的研究应进一步探索微生物群与OPC之间的因果关系,优化研究设计,以期为OPC的精准预防和治疗提供新的策略和靶点。
Abstract: Oropharyngeal cancer (OPC) is one of the more common malignancies in the head and neck region, characterized by high incidence and mortality rates. New breakthroughs in prevention and treatment strategies are urgently needed. With the deepening of research on OPC, the significant role of the microbiota (including trillions of microorganisms in direct contact with the oropharynx and those residing within OPC tissues) has gradually been recognized. These microorganisms play a crucial role in the development and progression of OPC. Understanding the roles and mechanisms of complex microbial communities and individual microorganisms in the pathogenesis of OPC will facilitate the identification of novel preventive and therapeutic interventions for OPC. This review extensively searched for relevant literature from both domestic and international sources, covering multiple fields including microbiomics, OPC epidemiology, molecular biology, and clinical research. A total of 68 high-quality studies were cited, including clinical trials, cohort studies, mechanistic investigations, and review articles. In this review, we summarize the current research findings, methodologies, controversies, and future directions in the field of OPC microbiomics. We provide a detailed discussion on the associations between the overall microbiota and specific microorganisms with OPC, the potential mechanisms by which microbes may drive OPC development, and their roles in the pathogenesis of OPC. This review highlights the importance of the microbiota in the pathogenesis of OPC and underscores its potential applications in OPC prevention and treatment. Future studies should further explore the causal relationships between the microbiota and OPC, optimize research designs, and aim to provide new strategies and targets for the precision prevention and treatment of OPC.
文章引用:孙冉, 梁辉. 口咽癌组织癌内微生物组学研究[J]. 临床医学进展, 2025, 15(5): 1525-1532. https://doi.org/10.12677/acm.2025.1551523

1. 引言

口咽癌(oropharyngeal cancer, OPC)指扁桃体、舌根、软腭、悬雍垂等部位的恶性肿瘤,是头颈部鳞状细胞癌(squamous cell carcinoma of the head and neck, SCCHN)的一种[1]。2018年,近9.3万名患者被诊断为OPC,占全球头颈部癌症总数的13%以上[2]。目前,吸烟、饮酒等被认为是主要的危险因素[3],同时,人类乳头瘤病毒(HPV)感染[4]和口腔菌群失调[5]也被认为存在一定的相关性。人类口腔中有超过700种细菌,含有继胃肠道之外第二丰富的微生物群[6]。在目前已知的1012种不同微生物中,只有11种被国际癌症登记协会标记为人类致癌物[7] [8]。而更广泛的微生物群可能作为一类重要的“协同因素”参与致癌作用,但不足以导致癌症[9]-[11]。早在19世纪,肿瘤微生物组的概念就已经被提及,但在相当长的一段时间内,该领域进展甚微[12]

随着高通量测序技术的发展,越来越多的证据表明肿瘤组织中存在微生物群落,并已经揭示了肿瘤内微生物组在肿瘤进展中起着重要作用[8]。由此提出了肿瘤内微生物群的概念。目前,已经至少在33种主要癌症类型中发现了这样的微生物[13]。故多态微生物组被定义为新出现的癌症的新标志[14]。近年来,微生物组学技术尤其是16S rRNA基因测序和宏基因组测序,已成为研究OPC组织内微生物群落的重要工具,这些技术能够高通量地分析微生物群落的组成和功能,进而揭示微生物与宿主之间的相互作用[15]。随着对OPC病因学研究的不断深入,微生物组学研究逐渐揭示了口腔微生物群与OPC之间的密切联系及相关性[16]

在这篇综述中,我们对微生物群与口咽癌(OPC)相互关系的最新研究进展进行总结。首先,我们探讨了OPC微生物群的整体组成及其影响因素;其次,我们分析了特定微生物与OPC之间的联系、相互作用机制以及潜在的临床应用。以期为OPC早期筛查诊断、预后评估和治疗提供新的视角。

2. 口咽癌内微生物组的来源

OPC (OPC)组织内微生物的外源性来源主要包括口腔微生物群(如唾液、牙菌斑和牙周袋中的微生物菌) [17] [18]、鼻腔和鼻窦微生物群(如鼻腔分泌物、慢性鼻窦炎中的微生物)、咽喉部微生物群(如咽喉部黏膜和扁桃体中的微生物)、食管和胃肠道微生物群(如食管反流、吞咽过程中的微生物)、外部环境(如空气中的微生物、饮食中的微生物)以及医疗操作(如口腔治疗、内镜检查)等。这些来源的微生物通过不同的途径进入口咽部,可以通过粘膜破坏、邻近组织迁移和血液侵袭等方式定植肿瘤组织,从而影响肿瘤的生物学行为,影响肿瘤的微环境[19]

当前已有研究表明,在门水平上,口腔微生物组均由厚壁菌门(Firmicutes)、变形菌门(Protebacteria)和拟杆菌门(Bacteroidota)主导[20]-[22],但对于OPC内微生物的主导菌群尚无统一认定。同时,口腔也是多种真菌的栖息地,如最常见的念珠菌属通过唾液的传播,定植于口咽组织[23];鼻腔及鼻窦真菌中可能含有曲霉菌和青霉菌[24] [25],他们通过鼻腔与口咽连接处进入。口腔粘膜和唾液中存在多种病毒,如单纯疱疹病毒(HSV)和乳头瘤病毒(HPV) [26],这些病毒可以通过唾液传播并定植于口咽组织。因此,要想明确肿瘤内微生物的具体致病机制,可以主要针对微生物群落、更明确的菌群以及真菌和病毒进行论述研究。

3. OPC微生物组与肿瘤的关系

3.1. 微生物群落与肿瘤发生

对于口腔微生物群与口腔肿瘤发展之间的关系,最新的研究报告表明,非癌症患者和癌症患者之间的口腔微生物群组成有着较大差异[27]。这种差异可能通过多种机制影响肿瘤发生发展。首先,口腔微生物群落失调被认为是OPC发生及发展的重要因素,失调的微生物群通过改变口腔微环境,破坏微生态的平衡,通过导致炎症反应、免疫抑制和基因组不稳定在恶性肿瘤的发展中发挥重要作用[28]。但是,这种失调是因为改变口腔免疫稳态,从而导致致癌微环境,而特定的微生物是OPC的主要致病因子,这个目前并不明确。其次,微生物群落失调引发慢性炎症反应,其中促炎细胞因子IL-6、IL-8、TNF-α等的释放,为肿瘤发生发展创造有利环境。但是从微生物学的角度来看,将OPC的风险归因于导致口腔卫生的变化可能过于简单化,当前缺乏将其与OPC的发病机制之间的联系,但绝不应简单地理解为促进炎症的并发作用[29]。因此,微生物群落失调、慢性炎症和基因组不稳定之间存在着紧密的因果联系,而非孤立存在。遗传因素、环境因素、宿主健康状态也有可能影响口腔微生物环境。第三方面,口腔微生物群落能够通过多种机制调节宿主细胞的基因表达和代谢途径。例如,某些微生物的代谢产物乙醛能够直接损伤DNA,增加基因突变的风险[30]。同时微生物群落可能通过调节宿主细胞内信号通路的过程来促进细胞增值[17]。且目前尚难以准确衡量微生物群与OPC关联中各机制的相对重要性。另外,正如Gong等人在研究中指出[31],整个口腔细菌群落及其相互作用将被集中研究,以期探索在OPC中的潜在致病因素。口腔微生物群落复杂,不仅包括细菌,还包括真菌、病毒等多种微生物,这些微生物之间可能存在复杂的相互作用,从而影响OPC的发生和发展[30]。最新研究揭示了部分口腔微生物群促进肿瘤发展的具体机制:口腔微生物群也可以成为癌症的治疗靶点。益生菌,如双歧杆菌、乳酸杆菌和链球菌,可以增加口腔微生物群的多样性,这有可能通过改变口腔微生物群组成来治疗疾病[17]。同时,有研究发现,口腔微生物组的组成与OPC患者的预后密切相关,某些特定的微生物特征可以作为预后标志物[32] [33]。此外,例如通过调节微生物群落的组成来尽可能增强免疫治疗的效果[1] [34]

3.2. 特定微生物与肿瘤发生

当前研究重点,除了微生物组群这个群体作用外,这个组群中特定微生物个体在OPC发生发展中的作用也受到重视。探索更明确致病机制,寻找口腔微生物组中的特定物种组成作为可能致癌的生物标志物,可能是当前口咽肿瘤学的主要目标,尽管许多有争议的方面还远未完全阐明[35]。一方面,某些口腔微生物可直接激活癌基因或将癌基因整合到宿主基因组中,诱导与癌症进展相关的宿主基因扩增,从而促进肿瘤生长和转移[36] [37]。另一方面,口腔微生物群的代谢活动也可能导致致癌作用,其产生的挥发性毒性化合物可能引起基因组不稳定,最终导致肿瘤发生[38]-[41]。特定微生物可能通过促进致癌、诱导免疫抑制或引发慢性炎症等途径增加癌症风险[42] [43]。例如,HPV是一种已知的致癌病毒,能够通过将其基因组整合到宿主细胞基因组中,激活癌基因并抑制肿瘤抑制基因的表达;其能够导致的基因组不稳定性、肿瘤抑制基因失活以及免疫逃逸,也是其促进癌变的重要机制[44]。某些口腔细菌,如牙龈卟啉单胞菌,能够代谢产生硫化氢,通过诱导DNA损伤和抑制DNA修复机制,增加基因组的不稳定性[38]。研究特定微生物与癌症、口咽组织、细胞微环境的相互作用,可能有利于寻找用于癌症预防和诊断的更合适的生物标志物。从这个角度来看,研究口腔或口咽部定植的细菌、真菌、病毒的生理病理状态及其与OPC的相互作用,将为我们进一步明确口咽癌内微生物可能存在的致病机制以及是否可作为检测和诊断OPC的生物标志物提供帮助。

在厚壁菌门中,首先引起我们注意的是链球菌属[45],其与多种癌症存在相关性。当前有研究发现,链球菌在扁桃体癌患者的扁桃体隐窝内丰度较非肿瘤组明显增加[46]。也有研究表明,链球菌属中变异链球菌被发现与口腔癌的发生和发展密切相关[47];咽峡炎链球菌被发现可能通过慢性炎症反应、产生代谢产物致DNA损伤等促进肿瘤的发生和发展[48]

其次,引起我们注意的是具核梭杆菌。具核梭杆菌主要分布于口腔[49],人们普遍认为其与某些上皮源性恶性肿瘤的发生密切相关[16],且当前具核梭杆菌被发现在口腔鳞状细胞癌样本中显著高于健康组织[50],并上调CCL20 (趋化因子配体20)来促进口腔鳞状细胞癌的进展。目前尚无研究明确具核梭杆菌致OPC机制,可能存在包括DNA损伤、信号通路激活、慢性炎症和上皮–间质转化(EMT)等多种途径促进肿瘤的发生和发展。

最近发现,牙龈卟啉单胞菌与OPC密切相关,但是这种细菌促进肿瘤进展的许多机制尚未完全阐明[51]。牙龈卟啉单胞菌是一种常见的慢性牙周炎的致病菌,其广泛存在于牙龈鳞状细胞癌组织中,这表明牙龈卟啉单胞菌和牙龈鳞状细胞癌之间存在潜在的关联[52]。牙龈卟啉单胞菌可能通过增强细胞增殖、抑制凋亡、产生有毒代谢物和调节免疫反应等多种机制促进癌症的发生和发展[53]。例如,牙龈卟啉单胞菌通过其脂多糖(LPS)激活宿主的Toll样受体4 (TLR4),诱导促炎细胞因子IL-6、TNF-α的释放,从而创造有利于癌症发展的炎症环境[54]

念珠菌广泛存在于口腔中,是一类条件致病菌。多项研究表明,念珠菌感染与黏膜白斑病有关,而黏膜白斑病属于癌前病变[55]。且念珠菌感染可通过诱导炎症反应、代谢致癌物质等机制促进癌症的发生。也有研究表明,单纯疱疹病毒1 (HSV1)被发现存在于口腔舌鳞状细胞癌(OTSCC)组织中[56],但致OPC机制尚处于研究阶段,需进一步探索其致病机制。

HPV感染与OPC密切相关,尤其是高危型HPV16,而HPV阳性患者的预后较HPV阴性患者较好[57],且放化疗和免疫治疗敏感性较高。HPV阳性OPC的肿瘤细胞依赖病毒蛋白调控细胞周期、抑制细胞凋亡和DNA损伤修复,如HPV16 E6蛋白通过抑制p53功能,减少细胞对DNA损伤的修复能力,进一步增强放化疗的敏感性[58]。此外,HPV阳性肿瘤微环境中免疫细胞浸润显著增加,尤其是CD8+细胞毒性T细胞,这使得免疫治疗效果更好[59]。同时,HPV阳性肿瘤细胞通过激活cGAS-STING通路增强免疫细胞活性,促进免疫治疗的协同作用[60]

此外,未来的研究可能会通过包括口腔微生物组和宿主基因组之间的相互作用来扩大关联分析的复杂性,以便靶向最易感的口腔微生物组-宿主谱[61]。实际上,专家应该关注的主要问题是通过基因组和代谢组学分析对口腔微生物组组成的全面了解是否可以作为预测癌症发病风险的主要诊断工具[62]

4. 微生物组学在OPC诊断和治疗的应用前景

口腔微生物组是一个复杂的生态系统,某些特定肿瘤组织内微生物的消耗和病原体的富集,可能导致OPC风险增加[63]。已鉴定的OPC相关的细菌和细菌复合物、真菌、病毒有望作为潜在的生物标志物,用于鉴定高危个体以个性化预防OPC [64]。微生物组学研究不仅有助于理解OPC的发病机制,还为开发新的诊断标志物和治疗靶点提供了可能[65]。可探索基于微生物组学的诊断标志物。通过对大量OPC患者和健康对照组的微生物组数据进行分析,筛选出与OPC发生、发展密切相关的特定微生物种类或其代谢产物,作为潜在的诊断标志物。此外,明确微生物的致癌机制,探索其可能存在的基因表达和蛋白质功能调节,微生物群落的组成和功能也可能为未来治疗OPC提供新策略,还可能为个性化治疗提供新依据[50]

5. 总结

尽管当前微生物组学研究在OPC领域已取得了显著进展,但仍面临一些挑战。例如,当前我们检测的OPC微生物可能来源于唾液、拭子,与我们想明确的OPC组织内微生物组成存在差异,我们无法确定癌内微生物群落的组成和功能是否相同或相似于当前已有机制。且受到多种因素的影响,包括宿主的遗传背景、生活方式和环境因素等。因此,未来的研究需要进一步探索微生物与宿主之间的复杂相互作用机制,并开发标准化的分析流程和工具。目前的研究大多集中在微生物群落的组成和功能上,但对于微生物与宿主细胞之间具体的分子机制仍知之甚少。未来的研究需要结合多组学技术,如转录组学、蛋白质组学和代谢组学,以全面解析微生物与宿主之间的相互作用及其在OPC肿瘤发生发展中的作用。

NOTES

*通讯作者。

参考文献

[1] Lechner, M., Liu, J., Masterson, L. and Fenton, T.R. (2022) HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nature Reviews Clinical Oncology, 19, 306-327.
https://doi.org/10.1038/s41571-022-00603-7
[2] Machczyński, P., Majchrzak, E., Niewinski, P., Marchlewska, J. and Golusiński, W. (2020) A Review of the 8th Edition of the AJCC Staging System for Oropharyngeal Cancer According to HPV Status. European Archives of Oto-Rhino-Laryngology, 277, 2407-2412.
https://doi.org/10.1007/s00405-020-05979-9
[3] Gormley, M., Dudding, T., Sanderson, E., Martin, R.M., Thomas, S., Tyrrell, J., et al. (2020) A Multivariable Mendelian Randomization Analysis Investigating Smoking and Alcohol Consumption in Oral and Oropharyngeal Cancer. Nature Communications, 11, Article No. 6071.
https://doi.org/10.1038/s41467-020-19822-6
[4] Chera, B.S., Kumar, S., Shen, C., Amdur, R., Dagan, R., Green, R., et al. (2020) Plasma Circulating Tumor HPV DNA for the Surveillance of Cancer Recurrence in HPV-Associated Oropharyngeal Cancer. Journal of Clinical Oncology, 38, 1050-1058.
https://doi.org/10.1200/jco.19.02444
[5] Hayes, R.B., Ahn, J., Fan, X., Peters, B.A., Ma, Y., Yang, L., et al. (2018) Association of Oral Microbiome with Risk for Incident Head and Neck Squamous Cell Cancer. JAMA Oncology, 4, 358-365.
https://doi.org/10.1001/jamaoncol.2017.4777
[6] Deo, P. and Deshmukh, R. (2019) Oral Microbiome: Unveiling the Fundamentals. Journal of Oral and Maxillofacial Pathology, 23, 122-128.
https://doi.org/10.4103/jomfp.jomfp_304_18
[7] Locey, K.J. and Lennon, J.T. (2016) Scaling Laws Predict Global Microbial Diversity. Proceedings of the National Academy of Sciences, 113, 5970-5975.
https://doi.org/10.1073/pnas.1521291113
[8] Sepich-Poore, G.D., Zitvogel, L., Straussman, R., Hasty, J., Wargo, J.A. and Knight, R. (2021) The Microbiome and Human Cancer. Science, 371, eabc4552.
https://doi.org/10.1126/science.abc4552
[9] Jin, C., Lagoudas, G.K., Zhao, C., Bullman, S., Bhutkar, A., Hu, B., et al. (2019) Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell, 176, 998-1013.E16.
https://doi.org/10.1016/j.cell.2018.12.040
[10] Zitvogel, L. and Kroemer, G. (2021) Lower Airway Dysbiosis Exacerbates Lung Cancer. Cancer Discovery, 11, 224-226.
https://doi.org/10.1158/2159-8290.cd-20-1641
[11] Dejea, C.M., Fathi, P., Craig, J.M., Boleij, A., Taddese, R., Geis, A.L., et al. (2018) Patients with Familial Adenomatous Polyposis Harbor Colonic Biofilms Containing Tumorigenic Bacteria. Science, 359, 592-597.
https://doi.org/10.1126/science.aah3648
[12] Gagliani, N., Hu, B., Huber, S., Elinav, E. and Flavell, R.A. (2014) The Fire Within: Microbes Inflame Tumors. Cell, 157, 776-783.
https://doi.org/10.1016/j.cell.2014.03.006
[13] Nejman, D., Livyatan, I., Fuks, G., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980.
[14] Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46.
https://doi.org/10.1158/2159-8290.cd-21-1059
[15] Chen, X., Wang, A., Chu, A., Gong, Y. and Yuan, Y. (2019) Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared with Non-Cancer Tissues. Frontiers in Microbiology, 10, Article 1261.
https://doi.org/10.3389/fmicb.2019.01261
[16] Zhang, L., Liu, Y., Zheng, H.J. and Zhang, C.P. (2020) The Oral Microbiota May Have Influence on Oral Cancer. Frontiers in Cellular and Infection Microbiology, 9, Article 476.
https://doi.org/10.3389/fcimb.2019.00476
[17] Wang, X., Xu, H. and Liu, N. (2023) Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. Phenomics, 3, 535-547.
https://doi.org/10.1007/s43657-023-00124-y
[18] Kylmä, A.K., Jouhi, L., Listyarifah, D., Mohamed, H., Mäkitie, A., Remes, S.M., et al. (2018) Treponema Denticola Chymotrypsin-Like Protease as Associated with HPV-Negative Oropharyngeal Squamous Cell Carcinoma. British Journal of Cancer, 119, 89-95.
https://doi.org/10.1038/s41416-018-0143-5
[19] Xie, Y., Xie, F., Zhou, X., Zhang, L., Yang, B., Huang, J., et al. (2022) Microbiota in Tumors: From Understanding to Application. Advanced Science, 9, e2200470.
https://doi.org/10.1002/advs.202200470
[20] 李瀛, 卫红齐, 钱鸣涛. 鼻腔黏膜菌群多样性与慢性鼻窦炎发病及预后的相关性研究[J]. 临床耳鼻咽喉头颈外科杂志, 2024, 38(12): 1144-1148.
[21] Xu, W., Xu, L. and Xu, C. (2022) Relationship between Helicobacter Pylori Infection and Gastrointestinal Microecology. Frontiers in Cellular and Infection Microbiology, 12, Article 938608.
https://doi.org/10.3389/fcimb.2022.938608
[22] Guan, S., Lin, Q. and Yu, H. (2023) Intratumour Microbiome of Pancreatic Cancer. World Journal of Gastrointestinal Oncology, 15, 713-730.
https://doi.org/10.4251/wjgo.v15.i5.713
[23] 李雪, 林勇, 毛绵, 李燕, 陈海涛. 一例法式假丝酵母菌所致真菌血流感染及文献回顾[J]. 中华保健医学杂志, 2023, 25(2): 238-240.
[24] 朱娅男, 刘德纯. 鼻腔鼻窦曲霉菌病103例病理学观察[J]. 新发传染病电子杂志, 2020, 5(4): 249-252.
[25] 农辉图, 李菊裳, 黄光武, 等. 鼻腔鼻窦真菌病的真菌学和临床诊疗研究(附51例报告) [J]. 耳鼻咽喉头颈外科, 2000, 7(1): 3-8.
[26] 刘合频. 中西结合治疗对口腔单纯疱疹病毒感染患者的效果研究[J]. 中国冶金工业医学杂志, 2024, 41(1): 29-31.
[27] Mascitti, M., Togni, L., Troiano, G., Caponio, V.C.A., Gissi, D.B., Montebugnoli, L., et al. (2019) Beyond Head and Neck Cancer: The Relationship between Oral Microbiota and Tumour Development in Distant Organs. Frontiers in Cellular and Infection Microbiology, 9, Article 232.
https://doi.org/10.3389/fcimb.2019.00232
[28] La Rosa, G., Gattuso, G., Pedullà, E., Rapisarda, E., Nicolosi, D. and Salmeri, M. (2020) Association of Oral Dysbiosis with Oral Cancer Development (Review). Oncology Letters, 19, 3045-3058.
https://doi.org/10.3892/ol.2020.11441
[29] Zumsteg, Z.S., Luu, M., Rosenberg, P.S., Elrod, J.K., Bray, F., Vaccarella, S., et al. (2023) Global Epidemiologic Patterns of Oropharyngeal Cancer Incidence Trends. JNCI: Journal of the National Cancer Institute, 115, 1544-1554.
https://doi.org/10.1093/jnci/djad169
[30] 舒蓉, 陈方淳. 口腔微生物和口腔黏膜癌变相关性的研究进展[J]. 医学理论与实践, 2023, 36(1): 40-42.
[31] Gong, H., Shi, Y., Xiao, X., Cao, P., Wu, C., Tao, L., et al. (2017) Alterations of Microbiota Structure in the Larynx Relevant to Laryngeal Carcinoma. Scientific Reports, 7, Article No. 5507.
https://doi.org/10.1038/s41598-017-05576-7
[32] Cortiana, V., Nadar, S., Gambill, J., Mahendru, D., Theyver, A., Coloma, H.S., et al. (2025) Understanding and Treating HPV-Associated Oropharyngeal Carcinoma: Insights from a Mednewsweek Keynote Lecture by Dr Theodoros N. Teknos and Literature Review. Therapeutic Advances in Medical Oncology, 17.
https://doi.org/10.1177/17588359251322290
[33] Nocini, R., Muzio, L.L., Gibellini, D., Malerba, G., Milella, M., Chirumbolo, S., et al. (2022) Oral Microbiota in Oropharyngeal Cancers: Friend or Foe? Frontiers in Oncology, 12, Article 948068.
https://doi.org/10.3389/fonc.2022.948068
[34] Zheng, D., Deng, W., Song, W., Wu, C., Liu, J., Hong, S., et al. (2021) Biomaterial-Mediated Modulation of Oral Microbiota Synergizes with PD-1 Blockade in Mice with Oral Squamous Cell Carcinoma. Nature Biomedical Engineering, 6, 32-43.
https://doi.org/10.1038/s41551-021-00807-9
[35] Hou, K., Wu, Z., Chen, X., Wang, J., Zhang, D., Xiao, C., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No.135.
https://doi.org/10.1038/s41392-022-00974-4
[36] Garrett, W.S. (2015) Cancer and the Microbiota. Science, 348, 80-86.
https://doi.org/10.1126/science.aaa4972
[37] Zhang, L., Duan, X., Zhao, Y., Zhang, D. and Zhang, Y. (2025) Implications of Intratumoral Microbiota in Tumor Metastasis: A Special Perspective of Microorganisms in Tumorigenesis and Clinical Therapeutics. Frontiers in Immunology, 16, Article 1526589.
https://doi.org/10.3389/fimmu.2025.1526589
[38] Khattak, S., Rauf, M.A., Khan, N.H., Zhang, Q., Chen, H., Muhammad, P., et al. (2022) Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 27, Article 3389.
https://doi.org/10.3390/molecules27113389
[39] Milella, L. (2015) The Negative Effects of Volatile Sulphur Compounds. Journal of Veterinary Dentistry, 32, 99-102.
https://doi.org/10.1177/089875641503200203
[40] Stasiewicz, M. and Karpiński, T.M. (2022) The Oral Microbiota and Its Role in Carcinogenesis. Seminars in Cancer Biology, 86, 633-642.
https://doi.org/10.1016/j.semcancer.2021.11.002
[41] Lin, H., Yu, Y., Zhu, L., Lai, N., Zhang, L., Guo, Y., et al. (2023) Implications of Hydrogen Sulfide in Colorectal Cancer: Mechanistic Insights and Diagnostic and Therapeutic Strategies. Redox Biology, 59, Article 102601.
https://doi.org/10.1016/j.redox.2023.102601
[42] Wang, N., Wu, S., Huang, L., Hu, Y., He, X., He, J., et al. (2025) Intratumoral Microbiome: Implications for Immune Modulation and Innovative Therapeutic Strategies in Cancer. Journal of Biomedical Science, 32, Article No. 23.
https://doi.org/10.1186/s12929-025-01117-x
[43] He, R., Qi, P., Shu, L., Ding, Y., Zeng, P., Wen, G., et al. (2025) Dysbiosis and Extraintestinal Cancers. Journal of Experimental & Clinical Cancer Research, 44, Article No. 44.
https://doi.org/10.1186/s13046-025-03313-x
[44] Zhang, Y., Qiu, K., Ren, J., Zhao, Y. and Cheng, P. (2025) Roles of Human Papillomavirus in Cancers: Oncogenic Mechanisms and Clinical Use. Signal Transduction and Targeted Therapy, 10, Article No. 44.
https://doi.org/10.1038/s41392-024-02083-w
[45] Wang, X., He, X. and Zhong, B. (2025) Oral Microbiota: The Overlooked Catalyst in Cancer Initiation and Progression. Frontiers in Cell and Developmental Biology, 12, Article 1479720.
https://doi.org/10.3389/fcell.2024.1479720
[46] De Martin, A., Lütge, M., Stanossek, Y., Engetschwiler, C., Cupovic, J., Brown, K., et al. (2021) Distinct Microbial Communities Colonize Tonsillar Squamous Cell Carcinoma. OncoImmunology, 10, Article 1945202.
https://doi.org/10.1080/2162402x.2021.1945202
[47] Tsai, M., Chen, Y., Chen, W. and Chen, M. (2022) Streptococcus mutans Promotes Tumor Progression in Oral Squamous Cell Carcinoma. Journal of Cancer, 13, 3358-3367.
https://doi.org/10.7150/jca.73310
[48] Crispino, A., Varricchio, S., Esposito, A., Marfella, A., Cerbone, D., Perna, A., et al. (2024) The Oral Microbiome and Its Role in Oral Squamous Cell Carcinoma: A Systematic Review of Microbial Alterations and Potential Biomarkers. Pathologica, 116, 338-357.
https://doi.org/10.32074/1591-951x-n867
[49] McIlvanna, E., Linden, G.J., Craig, S.G., Lundy, F.T. and James, J.A. (2021) Fusobacterium Nucleatum and Oral Cancer: A Critical Review. BMC Cancer, 21, Article No. 1212.
https://doi.org/10.1186/s12885-021-08903-4
[50] Muñoz-Grez, C.P., Vidal, M.A., Rojas, T.B., Ferrada, L.E., Zuñiga, F.A., Vera, A.A., et al. (2025) Host-Microbe Computational Proteomic Landscape in Oral Cancer Revealed Key Functional and Metabolic Pathways between Fusobacterium Nucleatum and Cancer Progression. International Journal of Oral Science, 17, Article No. 1.
https://doi.org/10.1038/s41368-024-00326-8
[51] Wen, L., Mu, W., Lu, H., Wang, X., Fang, J., Jia, Y., et al. (2020) Porphyromonas gingivalis Promotes Oral Squamous Cell Carcinoma Progression in an Immune Microenvironment. Journal of Dental Research, 99, 666-675.
https://doi.org/10.1177/0022034520909312
[52] Katz, J., Onate, M.D., Pauley, K.M., Bhattacharyya, I. and Cha, S. (2011) Presence of Porphyromonas Gingivalis in Gingival Squamous Cell Carcinoma. International Journal of Oral Science, 3, 209-215.
https://doi.org/10.4248/ijos11075
[53] Bagirova, N.S., Grigorievskaya, Z.V., Tereshchenko, I.V., Petukhova, I.N., Kazimov, A.E., Vinnikova, V.D., et al. (2022) Microbiological and Molecular Identification of the Anaerobic Component of the Oral Microbiota in Patients with Cancer of the Oropharyngeal Region. Russian Clinical Laboratory Diagnostics, 67, 301-308.
https://doi.org/10.51620/0869-2084-2022-67-5-301-308
[54] Kim, J., Noh, E., You, Y., Kim, M.S. and Lee, Y. (2022) Downregulation of Matriptase Inhibits Porphyromonas Gingivalis Lipopolysaccharide‐Induced Matrix Metalloproteinase‐1 and Proinflammatory Cytokines by Suppressing the Tlr4/NF‐κB Signaling Pathways in Human Gingival Fibroblasts. BioMed Research International, 2022, Article ID: 3865844.
https://doi.org/10.1155/2022/3865844
[55] 闫志敏, 华红. 口腔念珠菌病的规范化诊断理念与防治策略[J]. 中华口腔医学杂志, 2022, 57(7): 780-785.
[56] Koivikko, T., Rodrigues, P.C., Vehviläinen, M., Hyvönen, P., Sundquist, E., Arffman, R.K., et al. (2023) Detection of Herpes Simplex Virus in Oral Tongue Squamous Cell Carcinoma. Frontiers in Pharmacology, 14, Article 1182152.
https://doi.org/10.3389/fphar.2023.1182152
[57] 李志鹏, 范志伟, 王文龙, 卜祥斌, 张凌楠, 马向瑞. 口咽鳞状细胞癌中人乳头状瘤病毒精准检测研究进展[J]. 精准医学杂志, 2021, 36(4): 373-376.
[58] Puram, S.V., Mints, M., Pal, A., Qi, Z., Reeb, A., Gelev, K., et al. (2023) Cellular States Are Coupled to Genomic and Viral Heterogeneity in HPV-Related Oropharyngeal Carcinoma. Nature Genetics, 55, 640-650.
https://doi.org/10.1038/s41588-023-01357-3
[59] Ali, A., Bari, M.F., Arshad, S., Wahid, M., Safdar, J., Anwar, K., et al. (2025) Tissue-Resident Memory T-Cell Expressions and Their Prognostic Role in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. BMC Cancer, 25, Article No. 356.
https://doi.org/10.1186/s12885-025-13764-2
[60] Zhang, Z. and Zhang, C. (2025) Regulation of cGAS-Sting Signalling and Its Diversity of Cellular Outcomes. Nature Reviews Immunology.
https://doi.org/10.1038/s41577-024-01112-7
[61] Liu, X., Tong, X., Zhu, J., Tian, L., Jie, Z., Zou, Y., et al. (2021) Metagenome-Genome-Wide Association Studies Reveal Human Genetic Impact on the Oral Microbiome. Cell Discovery, 7, Article No. 117.
https://doi.org/10.1038/s41421-021-00356-0
[62] Oh, S., Kim, J., Shin, C.M., Lee, H., Lee, H.S. and Park, K.U. (2025) Metagenomic Characterization of Oral Microbiome Signatures to Predict Upper Gastrointestinal and Pancreaticobiliary Cancers: A Case-Control Study. Journal of Translational Medicine, 23, Article No. 20.
https://doi.org/10.1186/s12967-024-05989-9
[63] Mivehchi, H., Eskandari-Yaghbastlo, A., Pour Bahrami, P., Elhami, A., Faghihinia, F., Nejati, S.T., et al. (2025) Exploring the Role of Oral Bacteria in Oral Cancer: A Narrative Review. Discover Oncology, 16, Article No. 242.
https://doi.org/10.1007/s12672-025-01998-2
[64] Wang, S., Tan, X., Cheng, J., Liu, Z., Zhou, H., Liao, J., et al. (2024) Oral Microbiome and Its Relationship with Oral Cancer. Journal of Cancer Research and Therapeutics, 20, 1141-1149.
https://doi.org/10.4103/jcrt.jcrt_44_24
[65] Dumitrescu, R., Bolchis, V., Fratila, A.D., Jumanca, D., Buzatu, B.L.R., Sava-Rosianu, R., et al. (2025) The Global Trends and Advances in Oral Microbiome Research on Oral Squamous Cell Carcinoma: A Systematic Review. Microorganisms, 13, Article 373.
https://doi.org/10.3390/microorganisms13020373