METS-IR评分与卒中后抑郁风险的相关性研究
Correlation between Metabolic Score for Insulin Resistance and the Risk of Post-Stroke Depression
DOI: 10.12677/acm.2025.1551526, PDF, HTML, XML,   
作者: 辛大慧, 方传勤*:安徽医科大学第二附属医院神经内科,安徽 合肥
关键词: 卒中卒中后抑郁胰岛素抵抗代谢评分Stroke Post-Stroke Depression Metabolic Score for Insulin Resistance
摘要: 目的:卒中(Stroke)是一种急性脑血管疾病,分为缺血性和出血性两类,主要由脑血流中断或血管破裂引起。它是全球致残和致死的主要原因之一。卒中后抑郁(post-stroke depression, PSD)是该病最常见的神经精神后遗症之一。近期研究发现胰岛素抵抗代谢评分(metabolic score for insulin resistance, METS-IR)与抑郁具有相关性。本文探讨METS-IR评分与急性卒中患者发生卒中后抑郁风险的关系。方法:前瞻性选取2023年12月至2024年6月在安徽医科大学第二附属医院收治的急性脑卒中患者,对所有入组患者在入院后第7~14天内使用24项汉密尔顿抑郁评定量表(Hamilton Depression Scale, HAMD)进行评分,分为PSD和非PSD组,比较两组间的一般资料和实验室资料,对卒中后抑郁的危险因素进行Logistics单因素分析,选取其中P < 0.05变量进行Logistic多因素分析,并构建相关模型,最后使用ROC曲线评估该模型对PSD的预测价值。结果:卒中后抑郁组METS-IR显著高于非卒中后抑郁组(38.48 vs 36.84, P = 0.026),该指数联合入院NIHSS、脂蛋白a构建的模型ROC曲线下面积为0.669 (95% CI: 0.601~0.738, P < 0.001)。结论:METS-IR评分与卒中后抑郁的发生风险呈正相关,是发生PSD的独立危险因素。
Abstract: Objective: Stroke is an acute cerebrovascular disease, which is divided into ischemic and hemorrhagic diseases, which is mainly caused by interruption of cerebral blood flow or rupture of blood vessels. It is one of the leading causes of disability and death worldwide. Post-stroke depression (PSD) is one of the most common neuropsychiatric sequelae of the disease. Recent studies have found an association between metabolic score for insulin resistance (METS-IR) and depression. This article explores the relationship between METS-IR score and risk of post-stroke depression in patients with acute stroke. Methods: Acute stroke patients admitted to the Second Affiliated Hospital of Anhui Medical University from December 2023 to June 2024 were prospectively selected, and all enrolled patients were divided into PSD and non-PSD groups using the 24-item Hamilton Depression Scale (HAMD) within 7~14 days after admission. The risk factors of post-stroke depression were analyzed by Logistic univariate analysis, in which P < 0.05 variables were selected for Logistic multivariate analysis, and the correlation model was constructed, and finally the ROC curve was used to evaluate the predictive value of the model for PSD. Results: The METS-IR of the post-stroke depression group was significantly higher than that of the non-stroke depression group (38.48 vs 36.84, P = 0.026), and the area under the ROC curve of the model constructed by combining this index with admission NIHSS and lipoprotein a was 0.669 (95% CI: 0.601~0.738, P < 0.001). Conclusion: METS-IR score is positively correlated with the occurrence of post-stroke depression and is an independent risk factor for PSD.
文章引用:辛大慧, 方传勤. METS-IR评分与卒中后抑郁风险的相关性研究[J]. 临床医学进展, 2025, 15(5): 1546-1554. https://doi.org/10.12677/acm.2025.1551526

1. 引言

脑血管病目前已成为全球范围内主要死亡原因之一,其中脑卒中是致死率、致残率最高的单病种疾病[1]。除此之外,它还存在复发率高、并发症多的特点,卒中后抑郁(post-stroke depression, PSD)是中风后常见的并发症之一。卒中后抑郁是指脑卒中后出现的一系列以情绪低落、兴趣丧失、情感淡漠等为主要特征的情感障碍综合征[2]。据研究显示,卒中后抑郁的发生率在11%~41%之间波动[3],且早期卒中后抑郁漏诊率高、不易察觉,严重影响卒中患者预后及生活质量。因此,早期识别卒中后抑郁高风险人群,寻找卒中后抑郁的预测指标至关重要。

目前卒中后抑郁暂无特定的生物预测指标,有研究报道糖尿病与抑郁症之间存在一定相关性,指出基线时血糖和糖化血红蛋白升高提醒急性脑梗死患者未来会发生抑郁症[4]。胰岛素抵抗是糖尿病的主要发病机制,有研究指出它与心血管疾病、动脉粥样硬化相关,是脑卒中的危险因素[5] [6]。已有研究指出急性抑郁症患者的胰岛素水平和胰岛素抵抗稳态模型评估指数均升高,显示出胰岛素抵抗对抑郁症诊断可能存在一定的意义[7]。胰岛素抵抗代谢评分(metabolic score for insulin resistance, METS-IR)可作为评估胰岛素抵抗的指标,具有成本低且易得的优点。有文章指出METS-IR评分与卒中的发生相关,且对中老年高血压患者脑卒中发病风险具有较好的预测作用[8]。同时近期有研究发现较高的METS-IR评分与美国成年人出现抑郁症状的可能性增加有关[9]。但它与卒中后抑郁的关系尚未可知,本文旨在探讨METS-IR评分与卒中后抑郁的关系。

2. 材料与方法

2.1. 研究人群

前瞻性选取2023年12月至2024年6月在安徽医科大学第二附属医院收治的急性脑卒中患者。本研究获得安徽医科大学第二附属医院医学伦理委员会批准(审批号:YX2024-067)。本研究共纳入464名患者,其中256名符合筛查标准。

纳入标准:1) 18岁以上发病患者;2) 发病到入院时间在7天以内;3) 有经颅脑计算机断层扫描(CT)或磁共振成像(MRI)诊断为脑卒中;4) 患者意识清晰,能配合相关检查。排除标准:1) 既往有抑郁症等精神疾病或服用精神类药物;2) 从发病到入院的时间超过7天;3) 语言或听力障碍而无法配合;4) 肾、肝或心力衰竭;5) 有脑卒中以外的神经系统疾病;6) 缺乏临床资料。

2.2. 数据收集

收集入组患者的人口统计学特征,包括年龄、性别、身高、体重、吸烟、饮酒、高血压(HT)、糖尿病(DM)、冠心病(CHD)和心房颤动(AF);实验室检查包括空腹血糖(FBG)、甘油三酯(TG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)、同型半胱氨酸(Hcy)、小而密低密度脂蛋白(sdLDL)、脂蛋白a (Lp(a))、游离脂肪酸(FFA);评估量表证据包括入院NIHSS (National Institutes of Health Stroke Scale)评分量表、24项汉密尔顿抑郁评定量表(Hamilton Depression Scale, HAMD)。

METS-IR = Ln [((2 × FBG) + TG) × BMI]/[Ln(HDL-C)]

TG、FBG和HDL-C均以mg/dl表示;BMI = 体重/身高2,单位为kg/m2

2.3. 分组

对所有入组患者入院后第7~14天使用24项汉密尔顿抑郁评定量表(HAMD)进行评分和分组:非PSD (HAMD ≤ 7)和PSD (HAMD > 7)。

2.4. 统计方法

采用SPSS 26.0统计软件对数据进行检查。检查所有定量数据是否正态分布,正态分布的数据表示为平均数[±方差],偏态分布的数据表示为中位数[四分位距(IQR)],并利用T检验及非参数检验对两组进行比较。此外,定性变量的数据表示为频率和百分比(%),并对对比组进行χ2检验。选取其中危险因素进行单因素Logistic分析,选取其中P < 0.05指标进行构建模型进行多因素Logistic回归分析,将具有意义因素构建符合模型并使用ROC曲线检测其预测价值,结果表示为比值比(OR)和95%置信区间(95% CI),P < 0.05表示统计学显著。

3. 结果

3.1. PSD组和非PSD组一般资料比较

比较两组基本信息时发现两组之间在性别、年龄、吸烟、饮酒、高血压、心房颤动、冠心病、身高、体重、BMI、既往卒中病史方面无显著差异(P > 0.05,表1)。与非PSD组相比,PSD组入院时NIHSS更高(4 vs 3, P = 0.011)。此外,与非PSD组相比,PSD组的糖尿病患病率更高(41.1% vs 23.6%, P = 0.003)。

3.2. PSD组和非PSD组实验室资料比较

与非PSD组相比,PSD组的脂蛋白a (244.00 vs 195.00, P = 0.014)、甘油三酯(1.48 vs 1.20, P < 0.001)和小而密低密度脂蛋白(1.18 vs 1.04, P = 0.004)水平显著升高,而高密度脂蛋白胆固醇水平较低(1.17 vs 1.22, P = 0.042)。此外,PSD组具有较高的空腹血糖(5.94 vs 5.27, P < 0.001)和METS-IR评分(38.48 vs 36.84, P = 0.026)。而游离脂肪酸、低密度脂蛋白胆固醇、总胆固醇和同型半胱氨酸水平在两组之间无显著统计学差异(P > 0.05,表2)。

Table 1. General data comparison between PSD and non-PSD groups

1. PSD组与非PSD组一般资料比较

PSD组

(n = 95)

非PSD组

(n = 161)

P

女性

27 (28.4)

42 (26.1)

0.684

年龄

60.0 (51.0~72.0)

61.0 (54.0~71.0)

0.544

吸烟

47 (49.5)

74 (46.0)

0.587

饮酒

44 (46.3)

81 (50.3)

0.537

高血压

84 (88.4)

130 (80.7)

0.109

糖尿病

39 (41.1)

38 (23.6)

0.003

房颤

3 (3.2)

10 (6.2)

0.435

冠心病

4 (4.2)

9 (5.6)

0.848

既往卒中

19 (20.0)

33 (20.5)

0.209

身高(cm)

166.0 (160.0~170.0)

168.0 (160.0~171.0)

0.700

体重(kg)

68.0 (60.0~76.0)

68.0 (60.0~75.0)

0.792

BMI (kg/m2)

24.80 (22.31~26.99)

24.22 (22.41~26.96)

0.462

入院NIHSS

4 (2~6)

3 (1~4.5)

0.011

BMI:体重指数。

Table 2. Comparison of laboratory data between PSD and non-PSD groups

2. PSD组与非PSD组实验室资料比较

PSD组

(n = 95)

非PSD组

(n = 161)

P

FFA (mmol/l)

0.57 (0.34~0.72)

0.49 (0.33~0.67)

0.348

LDL-C (mmol/l)

3.16 ± 0.86

2.97 ± 0.86

0.089

HDL-C (mmol/l)

1.17 (0.99~1.35)

1.22 (1.07~1.42)

0.042

Lp(a) (mg/l)

244.00 (158.00~423.00)

195.00 (103.50~331.50)

0.014

TC (mmol/l)

4.87 (4.09~5.75)

4.59 (3.93~5.46)

0.125

TG (mmol/l)

1.48 (1.14~2.11)

1.20 (0.87~1.64)

<0.001

Hcy (mmol/l)

15.20 (12.10~18.40)

14.40 (12.15~17.80)

0.726

sdLDL (mmol/l)

1.18 (0.94~1.74)

1.04 (0.73~1.37)

0.004

FBG (mmol/l)

5.94 (4.97~8.11)

5.27 (4.74~6.09)

<0.001

METS-IR

38.48 (36.05~43.61)

36.84 (32.58~42.38)

0.026

FFA:游离脂肪酸;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇;Lp(a):脂蛋白a;TC:总胆固醇;TG:甘油三酯;Hcy:同型半胱氨酸;sdLDL:小而密低密度脂蛋白;FBG:空腹血糖;METS-IR:胰岛素抵抗代谢评分。

3.3. PSD的单因素Logistic分析

将可能的危险因素指标与是否发生卒中后抑郁进行单因素分析,其中存在几个变量显示与PSD的发生具有潜在相关性,包括糖尿病(OR: 2.25, 95% CI: 1.30~3.90, P = 0.004),入院NIHSS (OR: 1.17, 95% CI: 1.06~1.28, P = 0.001),METS-IR评分(OR: 1.05, 95% CI: 1.01~1.08, P = 0.008),高密度脂蛋白(OR: 0.36, 95% CI: 0.14~0.90, P = 0.029),脂蛋白a (OR: 1.00, 95% CI: 1.00~1.01, P = 0.010),小而密低密度脂蛋白(OR: 1.59, 95% CI: 1.07~2.37, P = 0.023),空腹血糖(OR: 1.18, 95% CI: 1.07~1.31, P = 0.001)和甘油三酯(OR: 1.34, 95% CI: 1.02~1.77, P = 0.037) (见表3)。

Table 3. Univariate Logistic analysis of PSD

3. PSD的单因素Logistic分析

B

Exp(B)

95% CI

P

性别

0.12

1.13

0.64~1.99

0.684

年龄

−0.01

0.99

0.97~1.01

0.366

吸烟

0.14

1.15

0.69~1.91

0.587

饮酒

−0.16

0.85

0.51~1.42

0.537

高血压

0.60

1.82

0.87~3.82

0.113

糖尿病

0.81

2.25

1.30~3.90

0.004

房颤

−0.71

0.49

0.13~1.84

0.291

冠心病

−0.30

0.74

0.22~2.48

0.628

既往卒中

−0.09

0.91

0.52~1.59

0.746

身高

−0.01

0.99

0.97~1.02

0.694

体重

0.01

1.01

0.99~1.03

0.395

BMI

0.02

1.02

0.96~1.08

0.574

FFA

0.54

1.71

0.64~4.58

0.286

LDL-C

0.26

1.29

0.96~1.73

0.091

HDL-C

−1.02

0.36

0.14~0.90

0.029

sdLDL

0.46

1.59

1.07~2.37

0.023

Hcy

0.00

1.00

0.98~1.02

0.671

TC

0.09

1.10

0.90~1.33

0.351

TG

0.30

1.34

1.02~1.77

0.037

FBG

0.17

1.18

1.07~1.31

0.001

METS-IR

0.05

1.05

1.01~1.08

0.008

Lp(a)

0.00

1.00

1.00~1.01

0.010

入院NIHSS

0.15

1.17

1.06~1.28

0.001

BMI:体重指数;FFA:游离脂肪酸;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇;Lp(a):脂蛋白a;TC:总胆固醇;TG:甘油三酯;Hcy:同型半胱氨酸;sdLDL:小而密低密度脂蛋白;FBG:空腹血糖;METS-IR:胰岛素抵抗代谢评分。

3.4. 卒中后抑郁的多因素Logistic分析

在上述分析中选取P < 0.05指标为自变量,检验多重共线性后排除HDL-C、FBG、糖尿病病史和TG,联合METS-IR评分、入院NIHSS、脂蛋白a、小而密低密度脂蛋白构建模型,以是否发生PSD为因变量进行二元Logistic分析。在多因素回归模型中,METS-IR (OR: 1.04, 95% CI: 1.01~1.08, P = 0.025)、入院NIHSS (OR: 1.18, 95%CI: 1.08~1.30, P = 0.001)、脂蛋a (OR: 1.00, 95% CI: 1.00~1.01, P = 0.009)、与PSD风险增加显著相关,为PSD的独立危险因素(表4)。

Table 4. Multivariate Logistic analysis of post-stroke depression

4. 卒中后抑郁的多因素Logistic分析

B

Exp(B)

95% CI

P

Lp(a)

0.00

1.00

1.00~1.01

0.009

sdLDL

0.34

1.41

0.92~2.16

0.119

METS-IR

0.04

1.04

1.01~1.08

0.025

入院NIHSS

0.17

1.18

1.08~1.30

0.001

*由于显著的多重共线性,TG、HDL-C、FBG和糖尿病病史被排除在回归模型外;LP(a):脂蛋白a,sdLDL:小而密低密度脂蛋白,METS-IR:胰岛素抵抗代谢评分。

3.5. 构建PSD预测模型

选取上述的独立危险因素,即脂蛋白a、入院NIHSS、METS-IR评分共同构建预测模型,其AUC为0.669 (95% CI: 0.601~0.738, P < 0.001),表现出良好的性能(见图1)。

Figure 1. ROC curves of PSD prediction models

1. PSD预测模型的ROC曲线

4. 讨论

在该研究中,我们比较了卒中后抑郁与非卒中后抑郁患者间的一般资料和实验室资料,发现入院NIHSS、脂蛋白a、METS-IR评分是卒中后抑郁的独立危险因素,三者联合构建的模型对于卒中后抑郁的发生有一定的预测意义。

卒中后抑郁是卒中患者常见的神经精神并发症之一,通常在卒中后数周至数月内发生。其发病率较高,不仅严重影响患者的生活质量,还可能延缓神经功能恢复,所以早期识别和干预有助于改善PSD患者的预后。在本研究中,我们发现卒中后抑郁患者存在更高的糖尿病患病率、入院NIHSS,这提示着神经功能缺损严重程度可能在卒中后抑郁的发生发展中起着重要作用。既往有研究指出,NIHSS评分与卒中后抑郁风险呈正相关[10] [11],这与本研究结果一致。其机制可能涉及:1) 神经功能缺损影响患者社会适应能力,导致角色认知落差;2) 失语等并发症阻碍情绪疏解;3) 炎症因子(如TNF-α、IL-6)影响神经递质代谢[12];4) HPA轴功能紊乱导致海马神经元损伤[13]

而针对实验室资料的分析表明,卒中后抑郁患者拥有更高水平的甘油三酯、空腹血糖、小而密低密度脂蛋白和脂蛋白a,而高密度脂蛋白水平更低。既往的研究也发现与无抑郁的卒中患者相比,卒中后抑郁患者的脂蛋白a水平较高,高密度脂蛋白水平较低[14]。这均提示着脂质代谢会影响抑郁症[15]。血脂异常可引发动脉粥样硬化[16],影响脑血流,导致脑组织灌注不足,引起脑组织的缺血和缺氧,损害神经元的功能和存活,增加神经精神疾病,特别是抑郁症的发生概率[17]。其次,血脂异常还可能引发炎症反应,促进抑郁的发生[18] [19]。Wang Y等人也指出PSD患者更有可能有糖尿病病史,即空腹血糖水平升高可能会影响PSD的发展[20]

METS-IR (Metabolic Score for Insulin Resistance)作为一种用于评估胰岛素抵抗(Insulin Resistance, IR)的新型综合代谢指标,系空腹血糖、高密度脂蛋白、甘油三酯和BMI经一定公式换算而来。该指标与血脂血糖指标密切相关,综合反映了脂代谢和糖代谢的异常程度,具有操作简便、成本低廉的优势[21]。胰岛素抵抗是多种代谢性疾病(如2型糖尿病、肥胖症、心血管疾病等)的核心病理生理机制之一[22]。除此之外,亦有研究指出胰岛素抵抗与卒中的发生和发展密切相关。IR通过多种机制增加卒中风险,包括促进动脉粥样硬化、内皮功能障碍、炎症反应和血栓形成[23]。研究表明,METS-IR评分水平与卒中发生风险增加呈正相关[24]。同时,IR与抑郁之间也被证实存在一定的相关性。一项涉及240,704名参与者的荟萃分析指出急性抑郁症患者的胰岛素水平和胰岛素抵抗指数(HOMA-IR)略有增加,但其水平在缓解期没有改变[7]。还有报道发现在肥胖女性中IR与抑郁状态呈正相关,其中IR的风险随着抑郁状态水平的增加而增加,而在肥胖男性中未发现关联[25]。在美国成人中观察到METS-IR评分每增加一个单位,抑郁症患病率就会增加1.1个百分点[9]。而在卒中患者中,已有研究指出HOMA-IR或IL-1β的组合可能有助于PSD的早期识别和治疗[26]。但METS-IR评分作为IR的可靠替代品,它是否可作为卒中后抑郁的独立危险因素及预测指标尚需进一步研究证实。

在本研究中发现METS-IR评分可作为卒中后抑郁的独立危险因素,且该指标联合入院NIHSS、脂蛋白a的预测模型对于卒中后抑郁的早期识别有一定的临床意义(AUC = 0.699)。其中的关键环节为胰岛素抵抗,它通过多重机制影响卒中后抑郁的发生发展。首先,IR导致糖代谢紊乱,引发慢性高胰岛素血症,进而激活炎症反应,促使TNF-α、IL-6等促炎因子分泌增加[27]。有报道发现缺血性卒中患者中抑郁人群明显存在更高的IL-17和IL-6水平[28],这些炎症因子会破坏血脑屏障,抑制BDNF表达,损害海马体神经元可塑性[29],最终诱发PSD。其次,IR引发HPA轴功能失调,导致皮质醇水平持续升高,对海马体产生神经毒性[30]。同时,IR通过影响胰岛素在神经元中的关键作用,干扰神经突生长及神经递质代谢,造成5-羟色胺等单胺类神经递质系统失衡[31]。此外,IR诱导线粒体功能障碍,加剧氧化应激反应,导致神经元损伤[32]。上述机制共同作用,可能解释了高METS-IR评分患者更易并发PSD的病理基础,但这些都还需更多的临床研究去进一步验证分析。

尽管本研究为卒中后抑郁的相关因素提供了初步探索,但仍存在一些局限性,需在未来的研究中进一步完善。第一,研究样本量较小,且研究对象来自单一医疗机构,可能限制了结果的普遍性,需要通过多中心、大样本的前瞻性研究进行未来验证。第二,研究设计仅对患者在住院期间进行了心理评估,缺乏对PSD的长期追踪观察,未来需要开展随访期更长、评估时间点更多的纵向研究。第三,本研究对潜在混杂因素的控制不足,例如社会经济地位、临床药物使用等,未来需采用更严谨的设计来验证相关结论。

综上,METS-IR评分是反映胰岛素抵抗的可替代指标,综合反映了脂代谢和糖代谢的异常程度,在卒中患者中METS-IR评分与卒中后抑郁的发生风险呈正相关,是发生PSD的独立危险因素。

NOTES

*通讯作者。

参考文献

[1] Diener, H. and Hankey, G.J. (2020) Primary and Secondary Prevention of Ischemic Stroke and Cerebral Hemorrhage. Journal of the American College of Cardiology, 75, 1804-1818.
https://doi.org/10.1016/j.jacc.2019.12.072
[2] Wang, L., Tao, Y., Chen, Y., Wang, H., Zhou, H. and Fu, X. (2016) Association of Post Stroke Depression with Social Factors, Insomnia, and Neurological Status in Chinese Elderly Population. Neurological Sciences, 37, 1305-1310.
https://doi.org/10.1007/s10072-016-2590-1
[3] Guo, J., Wang, J., Sun, W. and Liu, X. (2021) The Advances of Post-Stroke Depression: 2021 Update. Journal of Neurology, 269, 1236-1249.
https://doi.org/10.1007/s00415-021-10597-4
[4] Zhang, Y., He, J., Liang, H., Lu, W., Yang, G., Liu, J., et al. (2017) Diabetes Mellitus Is Associated with Late-Onset Post-Stroke Depression. Journal of Affective Disorders, 221, 222-226.
https://doi.org/10.1016/j.jad.2017.06.045
[5] Yang, Q., Vijayakumar, A. and Kahn, B.B. (2018) Metabolites as Regulators of Insulin Sensitivity and Metabolism. Nature Reviews Molecular Cell Biology, 19, 654-672.
https://doi.org/10.1038/s41580-018-0044-8
[6] Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., Papakonstantinou, E.J., Salamou, E. and Guzman, E. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medical Research, 51, 3.
https://doi.org/10.1177/03000605231164548
[7] Fernandes, B.S., Salagre, E., Enduru, N., Grande, I., Vieta, E. and Zhao, Z. (2022) Insulin Resistance in Depression: A Large Meta-Analysis of Metabolic Parameters and Variation. Neuroscience & Biobehavioral Reviews, 139, Article ID: 104758.
https://doi.org/10.1016/j.neubiorev.2022.104758
[8] 孙继红, 刘恒道, 汤毅, 等. METS-IR与中老年高血压患者脑卒中的相关性[J]. 河南医学研究, 2024, 33(19): 3474-3478.
[9] Huang, Q., Wang, D., Chen, S., Tang, L. and Ma, C. (2024) Association of METS-IR Index with Depressive Symptoms in US Adults: A Cross-Sectional Study. Journal of Affective Disorders, 355, 355-362.
https://doi.org/10.1016/j.jad.2024.03.129
[10] Ilut, S., Stan, A., Blesneag, A., et al. (2017) Factors That Influence the Severity of Post-Stroke Depression. Journal of Medicine and Life, 10, 167-171.
[11] 王小莉, 李鑫铭. 脑卒中伴不同程度抑郁患者的临床特点及相关因素分析[J]. 临床医学研究与实践, 2019, 4(12): 89-91.
[12] Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., et al. (2010) A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry, 67, 446-457.
https://doi.org/10.1016/j.biopsych.2009.09.033
[13] Xu, Y., Sheng, H., Tang, Z., Lu, J. and Ni, X. (2015) Inflammation and Increased IDO in Hippocampus Contribute to Depression-Like Behavior Induced by Estrogen Deficiency. Behavioural Brain Research, 288, 71-78.
https://doi.org/10.1016/j.bbr.2015.04.017
[14] Zhong, J., Chen, J., Cao, M., Fang, L., Wang, Z., Liao, J., et al. (2022) Elevated Plasma Intestinal Fatty Acid Binding Protein and Aberrant Lipid Metabolism Predict Post-Stroke Depression. Heliyon, 8, e11848.
https://doi.org/10.1016/j.heliyon.2022.e11848
[15] Parekh, A., Smeeth, D., Milner, Y. and Thuret, S. (2017) The Role of Lipid Biomarkers in Major Depression. Healthcare, 5, Article 5.
https://doi.org/10.3390/healthcare5010005
[16] Zhang, S., Hong, F., Ma, C. and Yang, S. (2022) Hepatic Lipid Metabolism Disorder and Atherosclerosis. Endocrine, Metabolic & Immune DisordersDrug Targets, 22, 590-600.
https://doi.org/10.2174/1871530322666211220110810
[17] Nagafusa, Y., Okamoto, N., Sakamoto, K., Yamashita, F., Kawaguchi, A., Higuchi, T., et al. (2012) Assessment of Cerebral Blood Flow Findings Using 99mtc-Ecd Single-Photon Emission Computed Tomography in Patients Diagnosed with Major Depressive Disorder. Journal of Affective Disorders, 140, 296-299.
https://doi.org/10.1016/j.jad.2012.03.026
[18] Chan, K.L., Cathomas, F. and Russo, S.J. (2019) Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology, 34, 123-133.
https://doi.org/10.1152/physiol.00047.2018
[19] Zhan, Y., Zhou, Y., Zheng, W., Liu, W., Wang, C., Lan, X., et al. (2020) Alterations of Multiple Peripheral Inflammatory Cytokine Levels after Repeated Ketamine Infusions in Major Depressive Disorder. Translational Psychiatry, 10, Article No. 246.
https://doi.org/10.1038/s41398-020-00933-z
[20] Wang, Y., Zhu, L., Tan, X., Cheng, Y., Wang, X. and Fang, S. (2022) Higher Levels of Peripheral Blood Glucose in the Acute Stage of Stroke Increase the Risk of Post-Stroke Depression: A Systematic Review and Meta-Analysis. Neuroscience & Biobehavioral Reviews, 142, Article ID: 104829.
https://doi.org/10.1016/j.neubiorev.2022.104829
[21] Bello-Chavolla, O.Y., Almeda-Valdes, P., Gomez-Velasco, D., Viveros-Ruiz, T., Cruz-Bautista, I., Romo-Romo, A., et al. (2018) METS-IR, a Novel Score to Evaluate Insulin Sensitivity, Is Predictive of Visceral Adiposity and Incident Type 2 Diabetes. European Journal of Endocrinology, 178, 533-544.
https://doi.org/10.1530/eje-17-0883
[22] Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article ID: 154766.
https://doi.org/10.1016/j.metabol.2021.154766
[23] Deng, X., Liu, Z., Wang, C., Li, Y. and Cai, Z. (2017) Insulin Resistance in Ischemic Stroke. Metabolic Brain Disease, 32, 1323-1334.
https://doi.org/10.1007/s11011-017-0050-0
[24] Jiang, S., Zhang, X., Song, C., Wu, G. and Yang, A. (2024) Joint Association of METS-IR and Uric Acid with Stoke, Mediated by C-Reactive Protein. Frontiers in Endocrinology, 15, Article 1448021.
https://doi.org/10.3389/fendo.2024.1448021
[25] He, Y., Tong, L., Guo, F., Zhao, S., Zhang, J., Guo, X., et al. (2022) Depression Status and Insulin Resistance in Adults with Obesity: A Cross-Sectional Study. Journal of Psychosomatic Research, 163, Article ID: 111049.
https://doi.org/10.1016/j.jpsychores.2022.111049
[26] Yi, X., Zhu, X., Zhou, Y., Zhang, D., Li, M., Zhu, Y., et al. (2021) The Combination of Insulin Resistance and Serum Interleukin-1β Correlates with Post-Stroke Depression in Patients with Acute Ischemic Stroke. Neuropsychiatric Disease and Treatment, 17, 735-746.
https://doi.org/10.2147/ndt.s291164
[27] Wang, Y., Lin, S., Chuang, Y., Sheu, W.H., Tung, K. and Chen, C. (2014) Activation of Hepatic Inflammatory Pathways by Catecholamines Is Associated with Hepatic Insulin Resistance in Male Ischemic Stroke Rats. Endocrinology, 155, 1235-1246.
https://doi.org/10.1210/en.2013-1593
[28] Hu, J., Zhou, W., Zhou, Z., et al., et al. (2019) [Predictive Value of Inflammatory Indicators for Post-Stroke Depression in Patients with Ischemic Stroke]. Journal of Southern Medical University, 39, 665-671.
[29] Tan, P., Xue, T., Wang, Y., Hu, Z., Su, J., Yang, R., et al. (2022) Hippocampal NR6A1 Impairs CREB-BDNF Signaling and Leads to the Development of Depression-Like Behaviors in Mice. Neuropharmacology, 209, Article ID: 108990.
https://doi.org/10.1016/j.neuropharm.2022.108990
[30] Al-Hakeim, H.K., Al-Naqeeb, T.H., Almulla, A.F. and Maes, M. (2023) The Physio-Affective Phenome of Major Depression Is Strongly Associated with Biomarkers of Astroglial and Neuronal Projection Toxicity Which in Turn Are Associated with Peripheral Inflammation, Insulin Resistance and Lowered Calcium. Journal of Affective Disorders, 331, 300-312.
https://doi.org/10.1016/j.jad.2023.03.072
[31] Kwok, R.P.S. and Juorio, A.V. (1987) Facilitating Effect of Insulin on Brain 5-Hydroxytryptamine Metabolism. Neuroendocrinology, 45, 267-273.
https://doi.org/10.1159/000124739
[32] Watanabe, T., Saotome, M., Nobuhara, M., Sakamoto, A., Urushida, T., Katoh, H., et al. (2014) Roles of Mitochondrial Fragmentation and Reactive Oxygen Species in Mitochondrial Dysfunction and Myocardial Insulin Resistance. Experimental Cell Research, 323, 314-325.
https://doi.org/10.1016/j.yexcr.2014.02.027