[1]
|
Sacco, R.L. and Rundek, T. (2012) Cerebrovascular Disease. Current Opinion in Neurology, 25, 1-4. https://doi.org/10.1097/wco.0b013e32834f89b1
|
[2]
|
Goldstein, L.B. (2020) Introduction for Focused Updates in Cerebrovascular Disease. Stroke, 51, 708-710. https://doi.org/10.1161/strokeaha.119.024159
|
[3]
|
Fujishima, M. and Fujii, K. (1994) Cerebrovascular Disease. Clinical Science, 87, 119-120. https://doi.org/10.1042/cs0870119
|
[4]
|
Wolf, P.A. and Grotta, J.C. (2000) Cerebrovascular Disease. Circulation, 102, IV-75-IV-80. https://doi.org/10.1161/01.cir.102.suppl_4.iv-75
|
[5]
|
Ihara, M., Yamamoto, Y., Hattori, Y., Liu, W., Kobayashi, H., Ishiyama, H., et al. (2022) Moyamoya Disease: Diagnosis and Interventions. The Lancet Neurology, 21, 747-758. https://doi.org/10.1016/s1474-4422(22)00165-x
|
[6]
|
Zhang, X., Xiao, W., Zhang, Q., Xia, D., Gao, P., Su, J., et al. (2022) Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment. Current Neuropharmacology, 20, 292-308. https://doi.org/10.2174/1570159x19666210716114016
|
[7]
|
Gonzalez, N.R., Amin-Hanjani, S., Bang, O.Y., Coffey, C., Du, R., Fierstra, J., et al. (2023) Adult Moyamoya Disease and Syndrome: Current Perspectives and Future Directions: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke, 54, e465-e479. https://doi.org/10.1161/str.0000000000000443
|
[8]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[9]
|
Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050. https://doi.org/10.1111/febs.16059
|
[10]
|
Ursini, F. and Maiorino, M. (2020) Lipid Peroxidation and Ferroptosis: The Role of GSH and Gpx4. Free Radical Biology and Medicine, 152, 175-185. https://doi.org/10.1016/j.freeradbiomed.2020.02.027
|
[11]
|
Chen, T., Wang, H., Chang, C. and Lee, S. (2024) Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. International Journal of Molecular Sciences, 25, Article No. 1314. https://doi.org/10.3390/ijms25021314
|
[12]
|
Gaschler, M.M., Andia, A.A., Liu, H., Csuka, J.M., Hurlocker, B., Vaiana, C.A., et al. (2018) FINO2 Initiates Ferroptosis through GPX4 Inactivation and Iron Oxidation. Nature Chemical Biology, 14, 507-515. https://doi.org/10.1038/s41589-018-0031-6
|
[13]
|
Fortes, G.B., Alves, L.S., de Oliveira, R., Dutra, F.F., Rodrigues, D., Fernandez, P.L., et al. (2012) Heme Induces Programmed Necrosis on Macrophages through Autocrine TNF and ROS Production. Blood, 119, 2368-2375. https://doi.org/10.1182/blood-2011-08-375303
|
[14]
|
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2
|
[15]
|
Ryter, S.W. (2021) Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells, 10, Article No. 515. https://doi.org/10.3390/cells10030515
|
[16]
|
Deng, L., He, S., Guo, N., Tian, W., Zhang, W. and Luo, L. (2022) Molecular Mechanisms of Ferroptosis and Relevance to Inflammation. Inflammation Research, 72, 281-299. https://doi.org/10.1007/s00011-022-01672-1
|
[17]
|
Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23. https://doi.org/10.1038/s41569-022-00735-4
|
[18]
|
Bain, B.J. (2013) Endothelial Cells. American Journal of Hematology, 88, 517-517. https://doi.org/10.1002/ajh.23411
|
[19]
|
Yuan, W., Xia, H., Xu, Y., Xu, C., Chen, N., Shao, C., et al. (2022) The Role of Ferroptosis in Endothelial Cell Dysfunction. Cell Cycle, 21, 1897-1914. https://doi.org/10.1080/15384101.2022.2079054
|
[20]
|
Zheng, D., Liu, J., Piao, H., Zhu, Z., Wei, R. and Liu, K. (2022) ROS-Triggered Endothelial Cell Death Mechanisms: Focus on Pyroptosis, Parthanatos, and Ferroptosis. Frontiers in Immunology, 13, Article ID: 1039241. https://doi.org/10.3389/fimmu.2022.1039241
|
[21]
|
Zhang, H., Zhou, S., Sun, M., Hua, M., Liu, Z., Mu, G., et al. (2022) Ferroptosis of Endothelial Cells in Vascular Diseases. Nutrients, 14, Article No. 4506. https://doi.org/10.3390/nu14214506
|
[22]
|
Lin, X., Ouyang, S., Zhi, C., Li, P., Tan, X., Ma, W., et al. (2022) Focus on Ferroptosis, Pyroptosis, Apoptosis and Autophagy of Vascular Endothelial Cells to the Strategic Targets for the Treatment of Atherosclerosis. Archives of Biochemistry and Biophysics, 715, Article ID: 109098. https://doi.org/10.1016/j.abb.2021.109098
|
[23]
|
Basatemur, G.L., Jørgensen, H.F., Clarke, M.C.H., Bennett, M.R. and Mallat, Z. (2019) Vascular Smooth Muscle Cells in Atherosclerosis. Nature Reviews Cardiology, 16, 727-744. https://doi.org/10.1038/s41569-019-0227-9
|
[24]
|
Bennett, M.R., Sinha, S. and Owens, G.K. (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 118, 692-702. https://doi.org/10.1161/circresaha.115.306361
|
[25]
|
Li, J., Li, X., Song, S., Sun, Z., Li, Y., Yang, L., et al. (2023) Mitochondria Spatially and Temporally Modulate VSMC Phenotypes via Interacting with Cytoskeleton in Cardiovascular Diseases. Redox Biology, 64, Article ID: 102778. https://doi.org/10.1016/j.redox.2023.102778
|
[26]
|
Frismantiene, A., Philippova, M., Erne, P. and Resink, T.J. (2018) Smooth Muscle Cell-Driven Vascular Diseases and Molecular Mechanisms of VSMC Plasticity. Cellular Signalling, 52, 48-64. https://doi.org/10.1016/j.cellsig.2018.08.019
|
[27]
|
Zhang, S., Bei, Y., Huang, Y., Huang, Y., Hou, L., Zheng, X., et al. (2022) Induction of Ferroptosis Promotes Vascular Smooth Muscle Cell Phenotypic Switching and Aggravates Neointimal Hyperplasia in Mice. Molecular Medicine, 28, Article No. 121. https://doi.org/10.1186/s10020-022-00549-7
|
[28]
|
Ye, Y., Chen, A., Li, L., Liang, Q., Wang, S., Dong, Q., et al. (2022) Repression of the Antiporter Slc7a11/Glutathione/Glutathione Peroxidase 4 Axis Drives Ferroptosis of Vascular Smooth Muscle Cells to Facilitate Vascular Calcification. Kidney International, 102, 1259-1275. https://doi.org/10.1016/j.kint.2022.07.034
|
[29]
|
Zafari, A.M., Ushio-Fukai, M., Minieri, C.A., Akers, M., Lassègue, B. and Griendling, K.K. (1999) Arachidonic Acid Metabolites Mediate Angiotensin II-Induced NADH/NADPH Oxidase Activity and Hypertrophy in Vascular Smooth Muscle Cells. Antioxidants & Redox Signaling, 1, 167-179. https://doi.org/10.1089/ars.1999.1.2-167
|
[30]
|
Ouyang, S., You, J., Zhi, C., Li, P., Lin, X., Tan, X., et al. (2021) Ferroptosis: The Potential Value Target in Atherosclerosis. Cell Death & Disease, 12, Article No. 782. https://doi.org/10.1038/s41419-021-04054-3
|
[31]
|
Sampilvanjil, A., Karasawa, T., Yamada, N., Komada, T., Higashi, T., Baatarjav, C., et al. (2020) Cigarette Smoke Extract Induces Ferroptosis in Vascular Smooth Muscle Cells. American Journal of Physiology-Heart and Circulatory Physiology, 318, H508-H518. https://doi.org/10.1152/ajpheart.00559.2019
|
[32]
|
Li, L., Wang, H., Zhang, J., Chen, X., Zhang, Z. and Li, Q. (2021) Effect of Endothelial Progenitor Cell-Derived Extracellular Vesicles on Endothelial Cell Ferroptosis and Atherosclerotic Vascular Endothelial Injury. Cell Death Discovery, 7, Article No. 235. https://doi.org/10.1038/s41420-021-00610-0
|
[33]
|
Walter, K. (2022) What Is Acute Ischemic Stroke? JAMA, 327, Article No. 885. https://doi.org/10.1001/jama.2022.1420
|
[34]
|
Zhang, X., Han, P., Zhao, Y., Shen, X. and Bi, X. (2024) Crosstalk between Autophagy and Ferroptosis Mediate Injury in Ischemic Stroke by Generating Reactive Oxygen Species. Heliyon, 10, e28959. https://doi.org/10.1016/j.heliyon.2024.e28959
|
[35]
|
Hu, X., Bao, Y., Li, M., Zhang, W. and Chen, C. (2024) The Role of Ferroptosis and Its Mechanism in Ischemic Stroke. Experimental Neurology, 372, Article ID: 114630. https://doi.org/10.1016/j.expneurol.2023.114630
|
[36]
|
Tuo, Q., Liu, Y., Xiang, Z., Yan, H., Zou, T., Shu, Y., et al. (2022) Thrombin Induces ACSL4-Dependent Ferroptosis during Cerebral Ischemia/Reperfusion. Signal Transduction and Targeted Therapy, 7, Article No. 59. https://doi.org/10.1038/s41392-022-00917-z
|
[37]
|
Guo, J., Tuo, Q. and Lei, P. (2023) Iron, Ferroptosis, and Ischemic Stroke. Journal of Neurochemistry, 165, 487-520. https://doi.org/10.1111/jnc.15807
|
[38]
|
Li, C., Sun, G., Chen, B., Xu, L., Ye, Y., He, J., et al. (2021) Nuclear Receptor Coactivator 4-Mediated Ferritinophagy Contributes to Cerebral Ischemia-Induced Ferroptosis in Ischemic Stroke. Pharmacological Research, 174, Article ID: 105933. https://doi.org/10.1016/j.phrs.2021.105933
|
[39]
|
Tuo, Q. and Lei, P. (2024) Ferroptosis in Ischemic Stroke: Animal Models and Mechanisms. Zoological Research, 45, 1235-1248. https://doi.org/10.24272/j.issn.2095-8137.2024.239
|
[40]
|
Cui, Y., Zhang, Y., Zhao, X., Shao, L., Liu, G., Sun, C., et al. (2021) ACSL4 Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury and Neuroinflammation. Brain, Behavior, and Immunity, 93, 312-321. https://doi.org/10.1016/j.bbi.2021.01.003
|
[41]
|
Sun, Y., Zhu, H., Zhao, R., Zhou, S., Wang, M., Yang, Y., et al. (2023) Remote Ischemic Conditioning Attenuates Oxidative Stress and Inflammation via the Nrf2/Ho-1 Pathway in MCAO Mice. Redox Biology, 66, Article ID: 102852. https://doi.org/10.1016/j.redox.2023.102852
|
[42]
|
Tian, X., Li, X., Pan, M., Yang, L.Z., Li, Y. and Fang, W. (2024) Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cellular and Molecular Neurobiology, 44, Article No. 25. https://doi.org/10.1007/s10571-024-01457-6
|
[43]
|
Li, J., Li, M., Ge, Y., Chen, J., Ma, J., Wang, C., et al. (2022) β-Amyloid Protein Induces Mitophagy-Dependent Ferroptosis through the CD36/PINK/PARKIN Pathway Leading to Blood-Brain Barrier Destruction in Alzheimer’s Disease. Cell & Bioscience, 12, Article No. 69. https://doi.org/10.1186/s13578-022-00807-5
|
[44]
|
Gao, H., Pang, Z., Fan, L., Hu, K., Wu, B. and Jiang, X. (2010) Effect of Lactoferrin-and Transferrin-Conjugated Polymersomes in Brain Targeting: In Vitro and in Vivo Evaluations. Acta Pharmacologica Sinica, 31, 237-243. https://doi.org/10.1038/aps.2009.199
|
[45]
|
Sun, Y., Li, Q., Guo, H. and He, Q. (2022) Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells, 12, Article No. 90. https://doi.org/10.3390/cells12010090
|
[46]
|
Chen, J., Shi, Z., Zhang, C., Xiong, K., Zhao, W. and Wang, Y. (2024) Oroxin a Alleviates Early Brain Injury after Subarachnoid Hemorrhage by Regulating Ferroptosis and Neuroinflammation. Journal of Neuroinflammation, 21, Article No. 116. https://doi.org/10.1186/s12974-024-03099-3
|
[47]
|
Ren, S., Chen, Y., Wang, L. and Wu, G. (2022) Neuronal Ferroptosis after Intracerebral Hemorrhage. Frontiers in Molecular Biosciences, 9, Article ID: 966478. https://doi.org/10.3389/fmolb.2022.966478
|
[48]
|
Li, X., Lin, L., Li, X., Zhu, Q., Xie, Z., Hu, Y., et al. (2024) BSA-Stabilized Selenium Nanoparticles Ameliorate Intracerebral Hemorrhage’s-Like Pathology by Inhibiting Ferroptosis-Mediated Neurotoxicology via Nrf2/GPX4 Axis Activation. Redox Biology, 75, Article ID: 103268. https://doi.org/10.1016/j.redox.2024.103268
|
[49]
|
van der Flier, W.M., Skoog, I., Schneider, J.A., Pantoni, L., Mok, V., Chen, C.L.H., et al. (2018) Vascular Cognitive Impairment. Nature Reviews Disease Primers, 4, Article No. 18003. https://doi.org/10.1038/nrdp.2018.3
|
[50]
|
Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A. and Camargo, C.J. (2022) Vascular Cognitive Impairment (VCI). Neurotherapeutics, 19, 68-88. https://doi.org/10.1007/s13311-021-01170-y
|
[51]
|
Fu, P., Chen, Y., Wu, M., Bao, B., Yin, X., Chen, Z., et al. (2023) Effect of Ferroptosis on Chronic Cerebral Hypoperfusion in Vascular Dementia. Experimental Neurology, 370, Article ID: 114538. https://doi.org/10.1016/j.expneurol.2023.114538
|
[52]
|
Lou, T., Wu, H., Feng, M., Liu, L., Yang, X., Pan, M., et al. (2024) Integration of Metabolomics and Transcriptomics Reveals That Da Chuanxiong Formula Improves Vascular Cognitive Impairment via ACSL4/GPX4 Mediated Ferroptosis. Journal of Ethnopharmacology, 325, Article ID: 117868. https://doi.org/10.1016/j.jep.2024.117868
|
[53]
|
Bedini, G., Blecharz, K., Nava, S., Vajkoczy, P., Alessandri, G., Ranieri, M., et al. (2016) Vasculogenic and Angiogenic Pathways in Moyamoya Disease. Current Medicinal Chemistry, 23, 315-345. https://doi.org/10.2174/092986732304160204181543
|
[54]
|
Weinberg, D.G., Arnaout, O.M., Rahme, R.J., Aoun, S.G., Batjer, H.H. and Bendok, B.R. (2011) Moyamoya Disease: A Review of Histopathology, Biochemistry, and Genetics. Neurosurgical Focus, 30, E20. https://doi.org/10.3171/2011.3.focus1151
|
[55]
|
MA, J., FU, X., ZHOU, S., MENG, E., YANG, Z. and ZHANG, H. (2022) Study on the Serum Level of Coq10b in Patients with Moyamoya Disease and Its Mechanism of Affecting Disease Progression. Arquivos de Neuro-Psiquiatria, 80, 469-474. https://doi.org/10.1590/0004-282x-anp-2021-0002
|
[56]
|
Choi, J.W., Son, S.M., Mook-Jung, I., Moon, Y.J., Lee, J.Y., Wang, K., et al. (2018) Mitochondrial Abnormalities Related to the Dysfunction of Circulating Endothelial Colony-Forming Cells in Moyamoya Disease. Journal of Neurosurgery, 129, 1151-1159. https://doi.org/10.3171/2017.5.jns17147
|
[57]
|
Key, J., Maletzko, A., Kohli, A., Gispert, S., Torres-Odio, S., Wittig, I., et al. (2020) Loss of Mitochondrial ClpP, Lonp1, and Tfam Triggers Transcriptional Induction of Rnf213, a Susceptibility Factor for Moyamoya Disease. Neurogenetics, 21, 187-203. https://doi.org/10.1007/s10048-020-00609-2
|
[58]
|
Phi, J.H., Suzuki, N., Moon, Y.J., Park, A.K., Wang, K., Lee, J.Y., et al. (2017) Chemokine Ligand 5 (CCL5) Derived from Endothelial Colony-Forming Cells (ECFCs) Mediates Recruitment of Smooth Muscle Progenitor Cells (SPCs) toward Critical Vascular Locations in Moyamoya Disease. PLOS ONE, 12, e0169714. https://doi.org/10.1371/journal.pone.0169714
|
[59]
|
Wu, Q., Jiang, N., Wang, Y., Song, G., Li, P., Fang, Y., et al. (2024) Soluble Epoxide Hydrolase Inhibitor (TPPU) Alleviates Ferroptosis by Regulating CCL5 after Intracerebral Hemorrhage in Mice. Biomedicine & Pharmacotherapy, 172, Article ID: 116301. https://doi.org/10.1016/j.biopha.2024.116301
|