铁死亡在神经血管疾病中的研究进展及其与烟雾病之间相关性的探讨
Advances in the Study of Ferroptosis in Neurovascular Diseases and Its Correlation with Moyamoya Disease
DOI: 10.12677/acm.2025.1551528, PDF, HTML, XML,   
作者: 范学琛*:山东第一医科大学研究生院,山东 济南;济宁市第一人民医院神经外科,山东 济宁;冯 雷#:济宁市第一人民医院神经外科,山东 济宁
关键词: 铁死亡神经血管疾病脑血管疾病Ferroptosis Neurovascular Diseases Cerebrovascular Disease
摘要: 神经血管疾病是指一系列由于脑血管结构或功能异常引起的疾病,极大地威胁人类的身体健康。烟雾病是一种慢性,进行性狭窄神经血管疾病。目前烟雾病的发病原因及其机制并不明确。铁死亡是一种铁依赖性、脂质过氧化驱动的新型的调控性细胞死亡方式,本文通过总结目前对铁死亡与神经血管疾病的研究进展,探讨了铁死亡在神经血管疾病中发挥的作用,分析了烟雾病与铁死亡之间的联系。
Abstract: Neurovascular diseases are a series of disorders caused by structural or functional abnormalities with the cerebral blood vessels, which greatly threaten human health. Moyamoya disease is a chronic, progressive stenotic neurovascular disease. The pathogenesis of moyamoya disease and its mechanisms are not clear at present. Ferroptosis is a novel iron-dependent, lipid peroxidation-driven regulated cell death. In this paper, we summarize the current research progress on ferroptosis and neurovascular diseases, discuss the role played by iron death in neurovascular diseases, and analyze the link between moyamoya disease and ferroptosis.
文章引用:范学琛, 冯雷. 铁死亡在神经血管疾病中的研究进展及其与烟雾病之间相关性的探讨[J]. 临床医学进展, 2025, 15(5): 1563-1570. https://doi.org/10.12677/acm.2025.1551528

1. 介绍

神经血管疾病又称脑血管疾病,是指一系列由于脑血管结构或功能异常引起的疾病,涵盖缺血性、出血性、慢性及结构性病变等类型,是一类对人类的健康产生极大的威胁的疾病[1]。神经血管疾病具有共同的危险因素,可控因素有:高血压、糖尿病、高脂血症、吸烟、肥胖、心房颤动;年龄、性别(男性卒中风险高)、遗传倾向是脑血管疾病中不可控的因素[2]。基于发病急缓、病理过程、发病部位、病因等各种因素的不同,脑血管疾病的症状和体征十分广泛[3],所包含的疾病种类也是复杂多样的,其中危害最为严重的是卒中(脑卒中分为缺血性和出血性脑卒中),是世界范围内导致人类死亡和残疾的主要原因之一[4]

烟雾病是一种慢性脑血管结构性病变的疾病[5]。此疾病的特点是双侧颈内动脉末端和大脑前中动脉起始段血管会发生进行性的狭窄或闭塞,并且伴有颅底代偿性的异常血管网的形成[6]。这些颅底异常血管网十分脆弱,不能发挥正常的血管功能,对患者的生命健康带来极大的隐患。烟雾病具有明显的地域性和家族性[7]。目前研究发现RNF213的基因是烟雾病的易感基因[5],目前烟雾病的发病机制尚未明确,有待进一步研究探讨。

铁死亡是一种铁依赖性、脂质过氧化驱动的新型的调控性细胞死亡方式。与细胞凋亡、自噬会发生细胞核的破裂不同,细胞铁死亡首先影响线粒体的活性,会发生线粒体的固缩、内外膜分离破坏、嵴缩小。这种死亡方式的本质是谷胱甘肽(GSH)的耗竭,谷胱甘肽过氧化物酶4 (GPX4)的活性降低,导致细胞内铁离子(Fe2+)的积累和脂质过氧化反应的增加[8]。游离铁的聚集过载会导致芬顿反应产生大量的活性氧,从而加剧机体的氧化应激状态[9]。铁死亡本身是机体正常的生命活动之一,但铁死亡的过度激活会严重破坏机体、组织的正常结构与功能,进而引发各种疾病[8]

2. 讨论

铁死亡的核心调控通路就是GSH表达减少、GPX4的活性受到抑制。所以调控GSH和GPX4的通路是铁死亡最关键的通路[10]。GSH的合成是细胞抗脂质过氧化过程的关键之一,system x c ¯ 是调控GSH合成的关键因子[11]。system x c ¯ 和GPX4,分别被化合物erastin (铁死亡诱导剂)和RSL3 (谷胱甘肽过氧化物酶4抑制剂)抑制,这两个因子是铁死亡的诱导剂。常见的人体内铁死亡诱导因子还包括能够将二价铁离子转化成三价铁离子的FINO2和促进ROS积累的血红素[12] [13]

有激活诱导就有抵抗抑制。铁死亡抑制蛋白1 (FSP1),一种不依赖谷胱甘肽的铁死亡抑制因子。FSP1可以催化泛醌(CoQ10)的再生,进而清除脂质过氧自由基,从而抑制铁死亡。这是区别于GSH/GPX4通路的第二条铁死亡关键通路[14];血红素氧合酶(HO-1),由Nrf2调控,能够催化上文中的血红素分解代谢成亚铁,进而清除人体内的氧自由基[15]。此外铁死亡与免疫炎症之间的关系也十分紧密,炎症因子聚集往往会伴有铁死亡的发生[16]。有关铁死亡的调控因子十分复杂,这里只作简单的概述。

2.1. 铁死亡的调控机制和其对于血管的病理作用

铁死亡的调控涉及机体的各个方面,其对机体的影响也是十分广泛复杂的。心脑血管是铁死亡研究的重点方向之一,包括:动脉粥样硬化、梗死、缺血后再灌注等方面[17]。讨论血管类疾病的病理机制,有两种细胞是讨论的重点:血管内皮细胞和血管平滑肌细胞。血管内皮细胞排列在血管的内表面,在血管生物学中起着重要的作用。血管内皮对于维持多器官健康和体内平衡至关重要,包括动态维持血管舒张和收缩、血管生成和抗血管生成、抗血栓形成和促血栓形成、炎症的促进和抵抗、抗氧化和促氧化[18]。完整的内皮细胞是正常脑血管的重要组成部分,但在铁死亡中,活性氧和脂质过氧化物会严重破坏内皮细胞的结构和功能,导致严重的血脑屏障损伤、血管收缩和舒张功能障碍、血管平滑肌细胞增殖和迁移、炎症反应和血栓形成[19],最终导致更广泛的程序性细胞死亡[20]。内皮细胞受损的情况被叫做内皮功能障碍(ED) [21],它与多种人类的血管疾病的发生和发展是高度相关的,氧化应激是内皮细胞功能障碍的潜在机制之一[18]。研究发现,内皮细胞的调控性死亡,如铁死亡,是导致ED的机制之一,细胞的铁死亡和铁自噬引起的一系列过氧化物的累积,会引起并加重血管内皮功能障碍。铁死亡还可以导致内皮细胞释放的一氧化氮(NO)减少,影响血管舒张功能;同时,铁死亡还可能通过促进炎症因子的表达和激活,加剧血管炎症反应[22]

血管平滑肌细胞(VSMC)是血管壁的主要组成细胞,具有维持血管张力、正常血压和血流分配等功能[23],其不断接受来自血液的生化组分和血液流动的机械力刺激,参与了血管壁中发生的大部分的生理和病理变化[24]。VSMC表型的转化是许多血管增生性疾病,如动脉粥样硬化、血管成形术后再狭窄和移植性血管病变中共同的细胞病理基础[25] [26]。研究发现,诱导铁死亡会加快VSMC的表型的转换[27],从而加速诱导新内膜的增生。然而新生内膜的增生,对于脑血管疾病来说,并不是一件有利的事情,它会加速血管的狭窄,尤其是对于那些行使支架介入治疗之后的病人来说,铁死亡极大地提高了他们术后再狭窄的风险。研究结果表明,抑制铁死亡是限制血管再狭窄的一种新的有研究价值的策略,在高钙和磷酸盐的影响下细胞会降低谷胱甘肽过氧化物酶4 (GPX4)的表达,并降低谷胱甘肽过氧化物酶的活性。RSL3对GPX4的抑制会诱导铁死亡的发生,这会导致VSMC的钙化[28]。一些研究表明花生四烯酸15-脂氧合酶(ALOX15)在VSMCs中铁死亡中发挥一定作用。ALOX15的过表达可以促进erastin诱导的VSMCs铁死亡,这表明ALOX15可能通过调节脂质代谢和氧化应激反应参与调控VSMCs的铁死亡[29]。此外,铁死亡相关因子如铁、谷胱甘肽(GSH)、谷胱甘肽过氧化物酶4 (GPX4)、铁转运蛋白(FPN)和SLC7A11 (xCT)的异常表达与动脉粥样硬化的形成密切相关。这些因子在VSMCs中的异常表达会诱导铁死亡的发生,进而影响斑块的稳定性和血管功能。因此,SLC7A11/GSH/GPX4轴受到抑制后会引发血管平滑肌细胞的铁死亡,从而促进血管钙化[30]。铁死亡的抑制剂,如铁螯合剂和抗氧化剂,已被研究用于预防和治疗心血管疾病。这些药物通过抑制铁死亡,有助于保护血管平滑肌细胞,减缓其迁移转化的进程[27]

综上,铁死亡会导致内皮细胞功能受损、血管平滑肌细胞的迁移和转化[31] [32]。在血管相关细胞中铁死亡的具体机制仍需进一步研究,以便更好地理解其在神经血管疾病中的作用,为开发新的治疗策略提供科学依据。

2.2. 铁死亡与缺血性脑血管病的联系

缺血性神经血管疾病最常见的疾病是缺血性卒中,缺血性卒中是由脑血流灌注不足引起的疾病,约占所有中风事件的87% [33]。缺血发作时,可观察到缺血部位的铁离子的富集,铁离子参与缺血性中风后氧自由基的释放、神经炎症反应等一系列分子反应[34],其积累可能会诱导铁死亡[35]。缺血组织的再灌注也会引起活性氧(ROS)和脂质过氧化的“爆发”[36]

脑缺血中风患者的血清转铁蛋白水平较低,并且急性缺血性脑卒中患者的转铁蛋白水平和病灶体积呈负相关[37]。缺血性中风患者表现出较高的血清铁调素水平,代偿性地减少铁死亡对脑组织的损害[38]。无独有偶,在缺血性脑卒中患者的脑组织中发现,HO-1 (血红素氧合酶-1)也代偿性增高[37]

在进一步的缺血卒中动物模型研究中发现,脑缺血会导致动物脑组织中铁蓄积、脂质过氧化程度加重、ROS增加、GPX4的活性与表达有明显的降低、缺血灶的GSH含量大大减少[39]。过表达ACSL4 (铁死亡激活因子)会增强脂质过氧化(铁死亡标志物)促进缺血卒中的小鼠神经元死亡[40]。而铁死亡抑制剂可以明显改善这一情况,如HO-1能远程调控NRF2/HO-1通路,减轻小鼠的氧化应激[41]。脑缺血梗死的范围[42],同时铁死亡抑制剂的应用还对缺血后再灌注的情况有显著的改善,显著降低再灌注时爆发的活性氧[36]

铁超载是缺血性脑卒中与铁死亡的重要纽带。正常生理状态下血脑屏障(BBB)是维持脑内外的铁平衡重要的“墙壁”严格控制脑内的铁离子水平[43]。内皮细胞是颅内外转运的重要纽带,它可以利用特殊的转铁蛋白将脑内铁离子转运到外部[44]。在缺血性脑卒中中,在铁死亡以及炎症反应等分子活动的相关因子的影响下,血脑屏障被破坏,颅内铁离子浓度失衡,同时内皮细胞正常功能也会受到损害,其铁输出能力下降,进而导致脑内铁死亡进一步的激活。抑制铁死亡的发生有助于减轻缺血性脑卒中对脑实质的损害,同时也能预防再灌注对机体的损伤。

2.3. 铁死亡与出血性脑血管病的联系

铁死亡与出血性脑病的联系主要涉及到ICH (脑出血) [45]和蛛网膜下腔出血[46] (SAH)。ICH是脑卒中的一种类型,属于出血性脑卒中,脑血管破裂导致血液直接流入脑组织,SAH是中风的亚型,颅内动脉瘤破裂出血导致血液流入蛛网膜下腔部位。两者均会导致周围组织的压迫、损伤和病变,还会继发性损害机体的神经功能。在出血性脑病发生后,血液成分释放到脑组织或蛛网膜下腔中,导致血肿的形成,在机体吸收血肿时,血液中铁代谢相关的蛋白(转铁蛋白、铁蛋白)被分解、游离态铁离子被释放吸收、血红素生成大量活性氧,进而导致脑细胞膜的损伤和细胞死亡,引起脑水肿的发生和脑实质破坏,还会继发性诱导神经元细胞受损,影响患者的神经功能[47]

有关ICH动物模型研究中均发现,出血后血肿周围脑组织铁蛋白高度表达、脂质过氧化物累积的情况。GSH与System X c ¯ 在组织中的含量明显降低、GPX4代偿性过表达[48]。在对脑出血动物模型使用外源性铁螯合剂如去铁胺、铁死亡抑制剂(如Ferrostain-1、Liproxsrain-1)后,GPX4会进一步升高,组织细胞的病理变化得到了改善或逆转[45]。而SAH铁死亡因子的相关研究与ICH基本一致。

综上可见,在ICH等出血性神经血管疾病的患者中,出血部位及周围脑组织出现铁过载,进而导致脂质过氧化的发生,GSH被严重消耗,铁死亡被激活。同时机体自我保护机制代偿作用会引起GPX4继发性过表达、Nrf2/HO-1的通路也被血红素激活。铁死亡抑制因子的使用有助于出血性脑病的患者的血肿吸收和继发神经功能的改善为我们临床诊疗提供了新的思路。

2.4. 铁死亡与血管性认知障碍(VCI)的联系

血管性认知障碍是慢性神经血管疾病的一种,包括由脑血管疾病引起的所有形式的认知缺陷,从轻度认知障碍到血管性痴呆[49]。血管性痴呆是仅次于阿尔茨海默病(AD)的第二大最常见的痴呆类型,约占痴呆患者的20%。血管认识障碍的本质是由于血流灌注、创伤和血脑屏障破坏等因素导致神经元细胞的坏死[50]

有研究发现认知功能障碍疾病的发生与大脑中异常累积的铁离子息息相关,认知障碍的严重程度与脑组织铁沉积的范围、程度呈现正相关性[51]

早期研究发现神经退行性疾病引起的认知障碍中,铁积累和过度氧化应激会导致神经元细胞的衰老和死亡,例如阿尔兹海默症、帕金森病、和亨廷顿病。这与铁死亡的主要特征相符,研究表明,铁死亡在神经系统疾病的神经元丢失中起着至关重要的作用。血管性痴呆常见于出血性和缺血性疾病中,当机体脑组织原发性出血或缺血后,神经元细胞也伴随铁死亡的发生,研究发现ACSL4/GPX4信号通路可以减少血管性痴呆中神经元变性死亡并改善缺血性中风和脑出血诱导的神经功能缺损[52]

2.5. 铁死亡与烟雾病的联系探讨

有研究发现,MMD患者外周血来源的内皮集落形成细胞(ECFCs) (也可称为内皮祖细胞)和平滑肌祖细胞(SPCs)的功能存在缺陷[53]。作为神经血管狭窄性疾病,MMD中血管的闭塞是内膜增厚的结果,中层增生的平滑肌细胞穿过断裂的内弹力层迁移至内膜,导致血管的狭窄;而异常血管网的生成,与内皮集落形成细胞和平滑肌祖细胞均有关联,这证明MMD在疾病进展过程中存在血管重塑的过程,包括内皮细胞障碍和平滑肌细胞的转化迁移[54]。目前烟雾病的发病病因仍不明确,与铁死亡之间的联系尚未明确。

目前有研究检测了MMD患者血清CoQ10B水平、ROS水平、内皮祖细胞(EPCs)数量和EPCs线粒体功能[55]。结果发现MMD患者血清CoQ10B水平显著低于健康对照。MMD患者的EPCs相对数量、Ca2+和ROS水平均显著高于健康对照,MMD患者内皮祖细胞的OCR、线粒体膜电位和ATP酶活性降低[56]。另一组实验则更加直接,利用电镜观察烟雾病患者血清的内皮集落形成细胞形态,发现ECFCs中线粒体体积缩小,这与铁死亡的独特形态学改变一致[56]。同时对于线粒体进一步研究发现,线粒体功能的缺失还会诱导RNF213基因的转录激活。RNF213是烟雾病的已知易感基因,但其外显率并不高。研究发现人内皮细胞中,RNF213受到TLR3 (一种免疫炎症因子)介导的dsRNA毒性反应后其表达出明显的上调。而线粒体功能的障碍会将免疫刺激性dsRNA释放到胞质溶胶中,研究说明在MMD中,RNF213突变的低外显率可能被当线粒体功能障碍或感染触发的免疫炎症障碍所改变,进而诱发MMD的发病。由此看来,铁死亡会诱导RNF213的表达,可以作为MMD的诱因之一[57]

随着对烟雾病细胞学的研究深入,研究人员还发现MMD患者有缺陷的ECFCs通过CCL5的作用将平滑肌祖细胞的异常募集引导到烟雾病的关键血管位置,进而发展出MMD特征性的血管性状[58]。CCL5是一种趋化因子,参与炎症、肿瘤、免疫、铁死亡等多种生物过程,其可作为铁死亡的激活诱导因素[59]。这些就是目前对于烟雾病与铁死亡之间的相关性的研究。

综上可知,烟雾病和铁死亡有着潜在的联系,探讨烟雾病与铁死亡之间的相关性是一个具有一定潜力的研究方向,有助于我们更好地了解、诊断、治疗烟雾病。但目前我们缺乏详细的分子机制研究,来更进一步地验证证明铁死亡在烟雾病中发挥的作用。

3. 结论

铁死亡与神经血管疾病联系紧密。本综述叙述了部分神经血管疾病与铁死亡的相关性,探究了铁死亡在疾病发生中的影响及作用;本文还总结了有关烟雾病和铁死亡相关要素的最新研究进展,从细胞的病理表现、代谢因子的表达水平等方面初步探讨了烟雾病与铁死亡之间的关系。希望能够加深对这些疾病的了解,为神经血管疾病的临床诊疗提供新的思路。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Sacco, R.L. and Rundek, T. (2012) Cerebrovascular Disease. Current Opinion in Neurology, 25, 1-4.
https://doi.org/10.1097/wco.0b013e32834f89b1
[2] Goldstein, L.B. (2020) Introduction for Focused Updates in Cerebrovascular Disease. Stroke, 51, 708-710.
https://doi.org/10.1161/strokeaha.119.024159
[3] Fujishima, M. and Fujii, K. (1994) Cerebrovascular Disease. Clinical Science, 87, 119-120.
https://doi.org/10.1042/cs0870119
[4] Wolf, P.A. and Grotta, J.C. (2000) Cerebrovascular Disease. Circulation, 102, IV-75-IV-80.
https://doi.org/10.1161/01.cir.102.suppl_4.iv-75
[5] Ihara, M., Yamamoto, Y., Hattori, Y., Liu, W., Kobayashi, H., Ishiyama, H., et al. (2022) Moyamoya Disease: Diagnosis and Interventions. The Lancet Neurology, 21, 747-758.
https://doi.org/10.1016/s1474-4422(22)00165-x
[6] Zhang, X., Xiao, W., Zhang, Q., Xia, D., Gao, P., Su, J., et al. (2022) Progression in Moyamoya Disease: Clinical Features, Neuroimaging Evaluation, and Treatment. Current Neuropharmacology, 20, 292-308.
https://doi.org/10.2174/1570159x19666210716114016
[7] Gonzalez, N.R., Amin-Hanjani, S., Bang, O.Y., Coffey, C., Du, R., Fierstra, J., et al. (2023) Adult Moyamoya Disease and Syndrome: Current Perspectives and Future Directions: A Scientific Statement from the American Heart Association/American Stroke Association. Stroke, 54, e465-e479.
https://doi.org/10.1161/str.0000000000000443
[8] Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[9] Liu, J., Kang, R. and Tang, D. (2021) Signaling Pathways and Defense Mechanisms of Ferroptosis. The FEBS Journal, 289, 7038-7050.
https://doi.org/10.1111/febs.16059
[10] Ursini, F. and Maiorino, M. (2020) Lipid Peroxidation and Ferroptosis: The Role of GSH and Gpx4. Free Radical Biology and Medicine, 152, 175-185.
https://doi.org/10.1016/j.freeradbiomed.2020.02.027
[11] Chen, T., Wang, H., Chang, C. and Lee, S. (2024) Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. International Journal of Molecular Sciences, 25, Article No. 1314.
https://doi.org/10.3390/ijms25021314
[12] Gaschler, M.M., Andia, A.A., Liu, H., Csuka, J.M., Hurlocker, B., Vaiana, C.A., et al. (2018) FINO2 Initiates Ferroptosis through GPX4 Inactivation and Iron Oxidation. Nature Chemical Biology, 14, 507-515.
https://doi.org/10.1038/s41589-018-0031-6
[13] Fortes, G.B., Alves, L.S., de Oliveira, R., Dutra, F.F., Rodrigues, D., Fernandez, P.L., et al. (2012) Heme Induces Programmed Necrosis on Macrophages through Autocrine TNF and ROS Production. Blood, 119, 2368-2375.
https://doi.org/10.1182/blood-2011-08-375303
[14] Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692.
https://doi.org/10.1038/s41586-019-1705-2
[15] Ryter, S.W. (2021) Heme Oxgenase-1, a Cardinal Modulator of Regulated Cell Death and Inflammation. Cells, 10, Article No. 515.
https://doi.org/10.3390/cells10030515
[16] Deng, L., He, S., Guo, N., Tian, W., Zhang, W. and Luo, L. (2022) Molecular Mechanisms of Ferroptosis and Relevance to Inflammation. Inflammation Research, 72, 281-299.
https://doi.org/10.1007/s00011-022-01672-1
[17] Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23.
https://doi.org/10.1038/s41569-022-00735-4
[18] Bain, B.J. (2013) Endothelial Cells. American Journal of Hematology, 88, 517-517.
https://doi.org/10.1002/ajh.23411
[19] Yuan, W., Xia, H., Xu, Y., Xu, C., Chen, N., Shao, C., et al. (2022) The Role of Ferroptosis in Endothelial Cell Dysfunction. Cell Cycle, 21, 1897-1914.
https://doi.org/10.1080/15384101.2022.2079054
[20] Zheng, D., Liu, J., Piao, H., Zhu, Z., Wei, R. and Liu, K. (2022) ROS-Triggered Endothelial Cell Death Mechanisms: Focus on Pyroptosis, Parthanatos, and Ferroptosis. Frontiers in Immunology, 13, Article ID: 1039241.
https://doi.org/10.3389/fimmu.2022.1039241
[21] Zhang, H., Zhou, S., Sun, M., Hua, M., Liu, Z., Mu, G., et al. (2022) Ferroptosis of Endothelial Cells in Vascular Diseases. Nutrients, 14, Article No. 4506.
https://doi.org/10.3390/nu14214506
[22] Lin, X., Ouyang, S., Zhi, C., Li, P., Tan, X., Ma, W., et al. (2022) Focus on Ferroptosis, Pyroptosis, Apoptosis and Autophagy of Vascular Endothelial Cells to the Strategic Targets for the Treatment of Atherosclerosis. Archives of Biochemistry and Biophysics, 715, Article ID: 109098.
https://doi.org/10.1016/j.abb.2021.109098
[23] Basatemur, G.L., Jørgensen, H.F., Clarke, M.C.H., Bennett, M.R. and Mallat, Z. (2019) Vascular Smooth Muscle Cells in Atherosclerosis. Nature Reviews Cardiology, 16, 727-744.
https://doi.org/10.1038/s41569-019-0227-9
[24] Bennett, M.R., Sinha, S. and Owens, G.K. (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 118, 692-702.
https://doi.org/10.1161/circresaha.115.306361
[25] Li, J., Li, X., Song, S., Sun, Z., Li, Y., Yang, L., et al. (2023) Mitochondria Spatially and Temporally Modulate VSMC Phenotypes via Interacting with Cytoskeleton in Cardiovascular Diseases. Redox Biology, 64, Article ID: 102778.
https://doi.org/10.1016/j.redox.2023.102778
[26] Frismantiene, A., Philippova, M., Erne, P. and Resink, T.J. (2018) Smooth Muscle Cell-Driven Vascular Diseases and Molecular Mechanisms of VSMC Plasticity. Cellular Signalling, 52, 48-64.
https://doi.org/10.1016/j.cellsig.2018.08.019
[27] Zhang, S., Bei, Y., Huang, Y., Huang, Y., Hou, L., Zheng, X., et al. (2022) Induction of Ferroptosis Promotes Vascular Smooth Muscle Cell Phenotypic Switching and Aggravates Neointimal Hyperplasia in Mice. Molecular Medicine, 28, Article No. 121.
https://doi.org/10.1186/s10020-022-00549-7
[28] Ye, Y., Chen, A., Li, L., Liang, Q., Wang, S., Dong, Q., et al. (2022) Repression of the Antiporter Slc7a11/Glutathione/Glutathione Peroxidase 4 Axis Drives Ferroptosis of Vascular Smooth Muscle Cells to Facilitate Vascular Calcification. Kidney International, 102, 1259-1275.
https://doi.org/10.1016/j.kint.2022.07.034
[29] Zafari, A.M., Ushio-Fukai, M., Minieri, C.A., Akers, M., Lassègue, B. and Griendling, K.K. (1999) Arachidonic Acid Metabolites Mediate Angiotensin II-Induced NADH/NADPH Oxidase Activity and Hypertrophy in Vascular Smooth Muscle Cells. Antioxidants & Redox Signaling, 1, 167-179.
https://doi.org/10.1089/ars.1999.1.2-167
[30] Ouyang, S., You, J., Zhi, C., Li, P., Lin, X., Tan, X., et al. (2021) Ferroptosis: The Potential Value Target in Atherosclerosis. Cell Death & Disease, 12, Article No. 782.
https://doi.org/10.1038/s41419-021-04054-3
[31] Sampilvanjil, A., Karasawa, T., Yamada, N., Komada, T., Higashi, T., Baatarjav, C., et al. (2020) Cigarette Smoke Extract Induces Ferroptosis in Vascular Smooth Muscle Cells. American Journal of Physiology-Heart and Circulatory Physiology, 318, H508-H518.
https://doi.org/10.1152/ajpheart.00559.2019
[32] Li, L., Wang, H., Zhang, J., Chen, X., Zhang, Z. and Li, Q. (2021) Effect of Endothelial Progenitor Cell-Derived Extracellular Vesicles on Endothelial Cell Ferroptosis and Atherosclerotic Vascular Endothelial Injury. Cell Death Discovery, 7, Article No. 235.
https://doi.org/10.1038/s41420-021-00610-0
[33] Walter, K. (2022) What Is Acute Ischemic Stroke? JAMA, 327, Article No. 885.
https://doi.org/10.1001/jama.2022.1420
[34] Zhang, X., Han, P., Zhao, Y., Shen, X. and Bi, X. (2024) Crosstalk between Autophagy and Ferroptosis Mediate Injury in Ischemic Stroke by Generating Reactive Oxygen Species. Heliyon, 10, e28959.
https://doi.org/10.1016/j.heliyon.2024.e28959
[35] Hu, X., Bao, Y., Li, M., Zhang, W. and Chen, C. (2024) The Role of Ferroptosis and Its Mechanism in Ischemic Stroke. Experimental Neurology, 372, Article ID: 114630.
https://doi.org/10.1016/j.expneurol.2023.114630
[36] Tuo, Q., Liu, Y., Xiang, Z., Yan, H., Zou, T., Shu, Y., et al. (2022) Thrombin Induces ACSL4-Dependent Ferroptosis during Cerebral Ischemia/Reperfusion. Signal Transduction and Targeted Therapy, 7, Article No. 59.
https://doi.org/10.1038/s41392-022-00917-z
[37] Guo, J., Tuo, Q. and Lei, P. (2023) Iron, Ferroptosis, and Ischemic Stroke. Journal of Neurochemistry, 165, 487-520.
https://doi.org/10.1111/jnc.15807
[38] Li, C., Sun, G., Chen, B., Xu, L., Ye, Y., He, J., et al. (2021) Nuclear Receptor Coactivator 4-Mediated Ferritinophagy Contributes to Cerebral Ischemia-Induced Ferroptosis in Ischemic Stroke. Pharmacological Research, 174, Article ID: 105933.
https://doi.org/10.1016/j.phrs.2021.105933
[39] Tuo, Q. and Lei, P. (2024) Ferroptosis in Ischemic Stroke: Animal Models and Mechanisms. Zoological Research, 45, 1235-1248.
https://doi.org/10.24272/j.issn.2095-8137.2024.239
[40] Cui, Y., Zhang, Y., Zhao, X., Shao, L., Liu, G., Sun, C., et al. (2021) ACSL4 Exacerbates Ischemic Stroke by Promoting Ferroptosis-Induced Brain Injury and Neuroinflammation. Brain, Behavior, and Immunity, 93, 312-321.
https://doi.org/10.1016/j.bbi.2021.01.003
[41] Sun, Y., Zhu, H., Zhao, R., Zhou, S., Wang, M., Yang, Y., et al. (2023) Remote Ischemic Conditioning Attenuates Oxidative Stress and Inflammation via the Nrf2/Ho-1 Pathway in MCAO Mice. Redox Biology, 66, Article ID: 102852.
https://doi.org/10.1016/j.redox.2023.102852
[42] Tian, X., Li, X., Pan, M., Yang, L.Z., Li, Y. and Fang, W. (2024) Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cellular and Molecular Neurobiology, 44, Article No. 25.
https://doi.org/10.1007/s10571-024-01457-6
[43] Li, J., Li, M., Ge, Y., Chen, J., Ma, J., Wang, C., et al. (2022) β-Amyloid Protein Induces Mitophagy-Dependent Ferroptosis through the CD36/PINK/PARKIN Pathway Leading to Blood-Brain Barrier Destruction in Alzheimer’s Disease. Cell & Bioscience, 12, Article No. 69.
https://doi.org/10.1186/s13578-022-00807-5
[44] Gao, H., Pang, Z., Fan, L., Hu, K., Wu, B. and Jiang, X. (2010) Effect of Lactoferrin-and Transferrin-Conjugated Polymersomes in Brain Targeting: In Vitro and in Vivo Evaluations. Acta Pharmacologica Sinica, 31, 237-243.
https://doi.org/10.1038/aps.2009.199
[45] Sun, Y., Li, Q., Guo, H. and He, Q. (2022) Ferroptosis and Iron Metabolism after Intracerebral Hemorrhage. Cells, 12, Article No. 90.
https://doi.org/10.3390/cells12010090
[46] Chen, J., Shi, Z., Zhang, C., Xiong, K., Zhao, W. and Wang, Y. (2024) Oroxin a Alleviates Early Brain Injury after Subarachnoid Hemorrhage by Regulating Ferroptosis and Neuroinflammation. Journal of Neuroinflammation, 21, Article No. 116.
https://doi.org/10.1186/s12974-024-03099-3
[47] Ren, S., Chen, Y., Wang, L. and Wu, G. (2022) Neuronal Ferroptosis after Intracerebral Hemorrhage. Frontiers in Molecular Biosciences, 9, Article ID: 966478.
https://doi.org/10.3389/fmolb.2022.966478
[48] Li, X., Lin, L., Li, X., Zhu, Q., Xie, Z., Hu, Y., et al. (2024) BSA-Stabilized Selenium Nanoparticles Ameliorate Intracerebral Hemorrhage’s-Like Pathology by Inhibiting Ferroptosis-Mediated Neurotoxicology via Nrf2/GPX4 Axis Activation. Redox Biology, 75, Article ID: 103268.
https://doi.org/10.1016/j.redox.2024.103268
[49] van der Flier, W.M., Skoog, I., Schneider, J.A., Pantoni, L., Mok, V., Chen, C.L.H., et al. (2018) Vascular Cognitive Impairment. Nature Reviews Disease Primers, 4, Article No. 18003.
https://doi.org/10.1038/nrdp.2018.3
[50] Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A. and Camargo, C.J. (2022) Vascular Cognitive Impairment (VCI). Neurotherapeutics, 19, 68-88.
https://doi.org/10.1007/s13311-021-01170-y
[51] Fu, P., Chen, Y., Wu, M., Bao, B., Yin, X., Chen, Z., et al. (2023) Effect of Ferroptosis on Chronic Cerebral Hypoperfusion in Vascular Dementia. Experimental Neurology, 370, Article ID: 114538.
https://doi.org/10.1016/j.expneurol.2023.114538
[52] Lou, T., Wu, H., Feng, M., Liu, L., Yang, X., Pan, M., et al. (2024) Integration of Metabolomics and Transcriptomics Reveals That Da Chuanxiong Formula Improves Vascular Cognitive Impairment via ACSL4/GPX4 Mediated Ferroptosis. Journal of Ethnopharmacology, 325, Article ID: 117868.
https://doi.org/10.1016/j.jep.2024.117868
[53] Bedini, G., Blecharz, K., Nava, S., Vajkoczy, P., Alessandri, G., Ranieri, M., et al. (2016) Vasculogenic and Angiogenic Pathways in Moyamoya Disease. Current Medicinal Chemistry, 23, 315-345.
https://doi.org/10.2174/092986732304160204181543
[54] Weinberg, D.G., Arnaout, O.M., Rahme, R.J., Aoun, S.G., Batjer, H.H. and Bendok, B.R. (2011) Moyamoya Disease: A Review of Histopathology, Biochemistry, and Genetics. Neurosurgical Focus, 30, E20.
https://doi.org/10.3171/2011.3.focus1151
[55] MA, J., FU, X., ZHOU, S., MENG, E., YANG, Z. and ZHANG, H. (2022) Study on the Serum Level of Coq10b in Patients with Moyamoya Disease and Its Mechanism of Affecting Disease Progression. Arquivos de Neuro-Psiquiatria, 80, 469-474.
https://doi.org/10.1590/0004-282x-anp-2021-0002
[56] Choi, J.W., Son, S.M., Mook-Jung, I., Moon, Y.J., Lee, J.Y., Wang, K., et al. (2018) Mitochondrial Abnormalities Related to the Dysfunction of Circulating Endothelial Colony-Forming Cells in Moyamoya Disease. Journal of Neurosurgery, 129, 1151-1159.
https://doi.org/10.3171/2017.5.jns17147
[57] Key, J., Maletzko, A., Kohli, A., Gispert, S., Torres-Odio, S., Wittig, I., et al. (2020) Loss of Mitochondrial ClpP, Lonp1, and Tfam Triggers Transcriptional Induction of Rnf213, a Susceptibility Factor for Moyamoya Disease. Neurogenetics, 21, 187-203.
https://doi.org/10.1007/s10048-020-00609-2
[58] Phi, J.H., Suzuki, N., Moon, Y.J., Park, A.K., Wang, K., Lee, J.Y., et al. (2017) Chemokine Ligand 5 (CCL5) Derived from Endothelial Colony-Forming Cells (ECFCs) Mediates Recruitment of Smooth Muscle Progenitor Cells (SPCs) toward Critical Vascular Locations in Moyamoya Disease. PLOS ONE, 12, e0169714.
https://doi.org/10.1371/journal.pone.0169714
[59] Wu, Q., Jiang, N., Wang, Y., Song, G., Li, P., Fang, Y., et al. (2024) Soluble Epoxide Hydrolase Inhibitor (TPPU) Alleviates Ferroptosis by Regulating CCL5 after Intracerebral Hemorrhage in Mice. Biomedicine & Pharmacotherapy, 172, Article ID: 116301.
https://doi.org/10.1016/j.biopha.2024.116301