[1]
|
Rutkowska, J., Ozgirgin, N. and Olszewska, E. (2017) Cholesteatoma Definition and Classification: A Literature Review. The Journal of International Advanced Otology, 13, 266-271. https://doi.org/10.5152/iao.2017.3411
|
[2]
|
王佳豪, 刘云福, 马晓博, 等. 影像学在中耳胆脂瘤诊疗中的应用现状及进展[J]. 影像科学与光化学, 2024, 42(5): 521-528.
|
[3]
|
蒋吉美, 张皓, 罗禹, 等. 中耳胆脂瘤的影像诊断: 高分辨率计算机断层成像与磁共振成像的比较研究[J]. 现代生物医学进展, 2015, 15(9): 1700-1704.
|
[4]
|
Sun, W., Fan, J. and Huang, T. (2022) The Efficacy of DW and T1-W MRI Combined with CT in the Preoperative Evaluation of Cholesteatoma. Journal of Personalized Medicine, 12, Article No. 1349. https://doi.org/10.3390/jpm12081349
|
[5]
|
姚丽萍. 基于CT影像学的胆脂瘤诊断及误诊鉴别[J]. 中国现代药物应用, 2022, 16(5): 242-245.
|
[6]
|
Debeaupte, M., Hermann, R., Pialat, J., Martinon, A., Truy, E. and Ltaief Boudrigua, A. (2018) Cone Beam versus Multi-Detector Computed Tomography for Detecting Hearing Loss. European Archives of Oto-Rhino-Laryngology, 276, 315-321. https://doi.org/10.1007/s00405-018-5214-y
|
[7]
|
Yamashita, K., Yoshiura, T., Hiwatashi, A., Tuvshinjargal, D., Kamano, H., Shiratsuchi, H., et al. (2011) Contributing Factors in the Pathogenesis of Acquired Cholesteatoma: Size Analysis Based on MDCT. American Journal of Roentgenology, 196, 1172-1175. https://doi.org/10.2214/ajr.10.5414
|
[8]
|
Tanrivermis Sayit, A., Saglam, D., Gunbey, H.P., Tastan, M. and Celenk, C. (2017) MDCT of the Temporal Bone and Audiological Findings of Pediatric Acquired Cholesteatoma. European Archives of Oto-Rhino-Laryngology, 274, 3959-3964. https://doi.org/10.1007/s00405-017-4721-6
|
[9]
|
Liu, Y., Sun, J., Guo, Y., Lu, Q., Zhao, D. and Lin, Y. (2014) Quality Assessment of 3D-CTVR, MPR and Section Plane Techniques in Ossicular Chain Reconstruction in Middle Ear Cholesteatoma. Computerized Medical Imaging and Graphics, 38, 696-701. https://doi.org/10.1016/j.compmedimag.2014.06.019
|
[10]
|
霍明月, 陈英敏, 贾秀川, 等. 双能CT在中耳及外耳道胆脂瘤诊断和精准定位中的应用价值[J]. 放射学实践, 2023, 38(5): 559-564.
|
[11]
|
欧劲. 磁共振平扫联合弥散加权成像对中耳胆脂瘤的诊断价值[J]. 中国当代医药, 2022, 29(26): 130-133.
|
[12]
|
Venail, F., Bonafe, A., Poirrier, V., Mondain, M. and Uziel, A. (2008) Comparison of Echo-Planar Diffusion-Weighted Imaging and Delayed Postcontrast T1-Weighted MR Imaging for the Detection of Residual Cholesteatoma. American Journal of Neuroradiology, 29, 1363-1368. https://doi.org/10.3174/ajnr.a1100
|
[13]
|
Fan, X., Ding, C. and Liu, Z. (2022) Comparison of the Utility of High-Resolution CT-DWI and T2WI-DWI Fusion Images for the Localization of Cholesteatoma. American Journal of Neuroradiology, 43, 1029-1035. https://doi.org/10.3174/ajnr.a7538
|
[14]
|
Benson, J.C., Carlson, M.L., Yin, L. and Lane, J.I. (2020) Cholesteatoma Localization Using Fused Diffusion‐Weighted Images and Thin‐Slice T2 Weighted Images. The Laryngoscope, 131, E1662-E1667. https://doi.org/10.1002/lary.29222
|
[15]
|
Dubrulle, F., Souillard, R., Chechin, D., Vaneecloo, F.M., Desaulty, A. and Vincent, C. (2006) Diffusion-Weighted MR Imaging Sequence in the Detection of Postoperative Recurrent Cholesteatoma. Radiology, 238, 604-610. https://doi.org/10.1148/radiol.2381041649
|
[16]
|
Aikele, P., Kittner, T., Offergeld, C., Kaftan, H., Hüttenbrink, K. and Laniado, M. (2003) Diffusion-Weighted MR Imaging of Cholesteatoma in Pediatric and Adult Patients Who Have Undergone Middle Ear Surgery. American Journal of Roentgenology, 181, 261-265. https://doi.org/10.2214/ajr.181.1.1810261
|
[17]
|
Vercruysse, J., De Foer, B., Pouillon, M., Somers, T., Casselman, J. and Offeciers, E. (2006) The Value of Diffusion-Weighted MR Imaging in the Diagnosis of Primary Acquired and Residual Cholesteatoma: A Surgical Verified Study of 100 Patients. European Radiology, 16, 1461-1467. https://doi.org/10.1007/s00330-006-0160-2
|
[18]
|
Más-Estellés, F., Mateos-Fernández, M., Carrascosa-Bisquert, B., Facal de Castro, F., Puchades-Román, I. and Morera-Pérez, C. (2012) Contemporary Non-Echo-Planar Diffusion-Weighted Imaging of Middle Ear Cholesteatomas. RadioGraphics, 32, 1197-1213. https://doi.org/10.1148/rg.324115109
|
[19]
|
Lingam, R.K., Nash, R., Majithia, A., Kalan, A. and Singh, A. (2016) Non-Echoplanar Diffusion Weighted Imaging in the Detection of Post-Operative Middle Ear Cholesteatoma: Navigating Beyond the Pitfalls to Find the Pearl. Insights into Imaging, 7, 669-678. https://doi.org/10.1007/s13244-016-0516-3
|
[20]
|
Lingam, R.K. and Bassett, P. (2017) A Meta-Analysis on the Diagnostic Performance of Non-Echoplanar Diffusion-Weighted Imaging in Detecting Middle Ear Cholesteatoma: 10 Years on. Otology & Neurotology, 38, 521-528. https://doi.org/10.1097/mao.0000000000001353
|
[21]
|
Bozer, A., Adıbelli, Z.H., Yener, Y. and Dalgıç, A. (2024) Diagnostic Performance of Multishot Echo-Planar Imaging (RESOLVE) and Non-Echo-Planar Imaging (HASTE) Diffusion-Weighted Imaging in Cholesteatoma with an Emphasis on Signal Intensity Ratio Measurement. Diagnostic and Interventional Radiology, 30, 370-377. https://doi.org/10.4274/dir.2024.242767
|
[22]
|
De Foer, B., Vercruysse, J.P., Pilet, B., et al. (2006) Single-Shot, Turbo Spin-Echo, Diffusion-Weighted Imaging versus Spin-Echo-Planar, Diffusion-Weighted Imaging in the Detection of Acquired Middle Ear Cholesteatoma. AJNR American Journal of Neuroradiology, 27, 1480-1482.
|
[23]
|
Wiesmueller, M., Wuest, W., May, M.S., Ellmann, S., Heiss, R., Saake, M., et al. (2021) Comparison of Readout-Segmented Echo-Planar Imaging and Single-Shot TSE DWI for Cholesteatoma Diagnostics. American Journal of Neuroradiology, 42, 1305-1312. https://doi.org/10.3174/ajnr.a7112
|
[24]
|
Lehmann, P., Saliou, G., Brochart, C., Page, C., Deschepper, B., Vallée, J.N., et al. (2008) 3T MR Imaging of Postoperative Recurrent Middle Ear Cholesteatomas: Value of Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction Diffusion-Weighted MR Imaging. American Journal of Neuroradiology, 30, 423-427. https://doi.org/10.3174/ajnr.a1352
|
[25]
|
De Foer, B. (2011) Non Echo Planar, Diffusion-Weighted Magnetic Resonance Imaging (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction Sequence) Compared with Echo Planar Imaging for the Detection of Middle-Ear Cholesteatoma. The Journal of Laryngology & Otology, 125, 877-878. https://doi.org/10.1017/s0022215111001022
|
[26]
|
Pizzini, F.B., Barbieri, F., Beltramello, A., Alessandrini, F. and Fiorino, F. (2010) HASTE Diffusion-Weighted 3-Tesla Magnetic Resonance Imaging in the Diagnosis of Primary and Relapsing Cholesteatoma. Otology & Neurotology, 31, 596-602. https://doi.org/10.1097/mao.0b013e3181dbb7c2
|
[27]
|
Romano, A., Covelli, E., Confaloni, V., Rossi-Espagnet, M.C., Butera, G., Barbara, M., et al. (2019) Role of Non-Echo-Planar Diffusion-Weighted Images in the Identification of Recurrent Cholesteatoma of the Temporal Bone. La Radiologia Medica, 125, 75-79. https://doi.org/10.1007/s11547-019-01085-x
|
[28]
|
Lemoine, D., Barillot, C., Gibaud, B., et al. (1991) An Anatomical-Based 3D Registration System of Multimodality and Atlas Data in Neurosurgery. In: Colchester, A.C.F. and Hawkes, D.J., Eds., Information Processing in Medical Imaging, Springer, 154-164.
|
[29]
|
Hall, A., St Leger, D., Singh, A. and Lingam, R.K. (2020) The Utility of Computed Tomography and Diffusion-Weighted Magnetic Resonance Imaging Fusion in Cholesteatoma: Illustration with a UK Case Series. The Journal of Laryngology & Otology, 134, 178-183. https://doi.org/10.1017/s0022215119002640
|
[30]
|
Campos, A., Mata, F., Reboll, R., Peris, M.L. and Basterra, J. (2016) Computed Tomography and Magnetic Resonance Fusion Imaging in Cholesteatoma Preoperative Assessment. European Archives of Oto-Rhino-Laryngology, 274, 1405-1411. https://doi.org/10.1007/s00405-016-4415-5
|
[31]
|
Maccarrone, F., Cantaffa, C., Genovese, M., Tassi, S. and Negri, M. (2023) Fusion Computed Tomography-Magnetic Resonance Imaging Scans for Pre-Operative Staging of Congenital Middle-Ear Cholesteatoma. The Journal of Laryngology & Otology, 138, 507-511. https://doi.org/10.1017/s0022215123002001
|
[32]
|
Cao, M., Xu, T., Jiang, W., Chen, C., Yang, H., Man, R., et al. (2024) Selection of a Surgical Approach for Middle Ear Cholesteatoma Based on the Fusion Images of Non-Echo Planar Diffusion-Weighted MRI and CT. Annals of Otology, Rhinology & Laryngology, 133, 598-604. https://doi.org/10.1177/00034894241241189
|
[33]
|
Covelli, E., Margani, V., Romano, A., Volpini, L., Elfarargy, H.H., Bozzao, A., et al. (2023) The Impact of Fusion Imaging Technique on Middle Ear Cholesteatoma Surgery: A Prospective Comparative Study. Acta Oto-Laryngologica, 143, 223-230. https://doi.org/10.1080/00016489.2023.2172209
|
[34]
|
Russo, C., Di Lullo, A.M., Cantone, E., Klain, M., Motta, G., Elefante, A., et al. (2021) Combining Thin-Section Coronal and Axial Diffusion Weighted Imaging: Good Practice in Middle Ear Cholesteatoma Neuroimaging. Frontiers in Neurology, 12, Article ID: 606692. https://doi.org/10.3389/fneur.2021.606692
|
[35]
|
Kusak, A., Rosiak, O., Durko, M., Grzelak, P. and Pietruszewska, W. (2018) Diagnostic Imaging in Chronic Otitis Media: Does CT and MRI Fusion Aid Therapeutic Decision Making? A Pilot Study. Otolaryngologia Polska, 73, 7-12. https://doi.org/10.5604/01.3001.0012.5423
|
[36]
|
Galal, A., ElNaggar, M., Omran, A., Eid, M. and Badr-El-Dine, M. (2022) Fusion of Diffusion-Weighted Magnetic Resonance Imaging and High-Resolution Computed Tomography Scan as a Preoperative Tool for Classification of Middle Ear Cholesteatoma. The Journal of International Advanced Otology, 18, 507-512. https://doi.org/10.5152/iao.2022.21619
|
[37]
|
Forbes, K.P., Pipe, J.G., Karis, J.P. and Heiserman, J.E. (2002) Improved Image Quality and Detection of Acute Cerebral Infarction with PROPELLER Diffusion-Weighted MR Imaging. Radiology, 225, 551-555. https://doi.org/10.1148/radiol.2252011479
|
[38]
|
Kasbekar, A.V., Scoffings, D.J., Kenway, B., Cross, J., Donnelly, N., Lloyd, S.W.K., et al. (2010) Non Echo Planar, Diffusion-Weighted Magnetic Resonance Imaging (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction Sequence) Compared with Echo Planar Imaging for the Detection of Middle-Ear Cholesteatoma. The Journal of Laryngology & Otology, 125, 376-380. https://doi.org/10.1017/s0022215110002197
|
[39]
|
Locketz, G.D., Li, P.M.M.C., Fischbein, N.J., Holdsworth, S.J. and Blevins, N.H. (2016) Fusion of Computed Tomography and PROPELLER Diffusion-Weighted Magnetic Resonance Imaging for the Detection and Localization of Middle Ear Cholesteatoma. JAMA Otolaryngology—Head & Neck Surgery, 142, 947-953. https://doi.org/10.1001/jamaoto.2016.1663
|
[40]
|
De Foer, B., Vercruysse, J., Bernaerts, A., Deckers, F., Pouillon, M., Somers, T., et al. (2008) Detection of Postoperative Residual Cholesteatoma with Non-Echo-Planar Diffusion-Weighted Magnetic Resonance Imaging. Otology & Neurotology, 29, 513-517. https://doi.org/10.1097/mao.0b013e31816c7c3b
|
[41]
|
Khemani, S., Singh, A., Lingam, R.K. and Kalan, A. (2011) Imaging of Postoperative Middle Ear Cholesteatoma. Clinical Radiology, 66, 760-767. https://doi.org/10.1016/j.crad.2010.12.019
|
[42]
|
De Foer, B., Vercruysse, J., Bernaerts, A., Maes, J., Deckers, F., Michiels, J., et al. (2007) The Value of Single-Shot Turbo Spin-Echo Diffusion-Weighted MR Imaging in the Detection of Middle Ear Cholesteatoma. Neuroradiology, 49, 841-848. https://doi.org/10.1007/s00234-007-0268-3
|
[43]
|
Porter, D.A. and Heidemann, R.M. (2009) High Resolution Diffusion‐Weighted Imaging Using Readout‐Segmented Echo‐Planar Imaging, Parallel Imaging and a Two‐Dimensional Navigator‐Based Reacquisition. Magnetic Resonance in Medicine, 62, 468-475. https://doi.org/10.1002/mrm.22024
|
[44]
|
Wiggins, G.C., Polimeni, J.R., Potthast, A., Schmitt, M., Alagappan, V. and Wald, L.L. (2009) 96‐Channel Receive‐Only Head Coil for 3 Tesla: Design Optimization and Evaluation. Magnetic Resonance in Medicine, 62, 754-762. https://doi.org/10.1002/mrm.22028
|
[45]
|
Fan, X., Ding, C. and Liu, Z. (2022) Localization Evaluation of Primary Middle Ear Cholesteatoma with Fusion of Turbo Spin-Echo Diffusion-Weighted Imaging and High-Resolution Computed Tomography. Journal of Computer Assisted Tomography, 47, 144-150. https://doi.org/10.1097/rct.0000000000001389
|
[46]
|
Yamashita, K., Hiwatashi, A., Togao, O., Kikuchi, K., Matsumoto, N., Obara, M., et al. (2014) High-Resolution Three-Dimensional Diffusion-Weighted MRI/CT Image Data Fusion for Cholesteatoma Surgical Planning: A Feasibility Study. European Archives of Oto-Rhino-Laryngology, 272, 3821-3824. https://doi.org/10.1007/s00405-014-3467-7
|
[47]
|
Jeong, E., Kim, S. and Parker, D.L. (2003) High‐Resolution Diffusion‐Weighted 3D MRI, Using Diffusion‐Weighted Driven‐Equilibrium (DW‐DE) and Multishot Segmented 3D‐SSFP without Navigator Echoes. Magnetic Resonance in Medicine, 50, 821-829. https://doi.org/10.1002/mrm.10593
|
[48]
|
Hikishima, K., Yagi, K., Numano, T., Homma, K., Nitta, N., Nakatani, T., et al. (2008) Volumetric Q-Space Imaging by 3D Diffusion-Weighted MRI. Magnetic Resonance Imaging, 26, 437-445. https://doi.org/10.1016/j.mri.2007.09.001
|
[49]
|
Wang, J., Yarnykh, V.L. and Yuan, C. (2010) Enhanced Image Quality in Black‐Blood MRI Using the Improved Motion‐sensitized Driven‐Equilibrium (IMSDE) Sequence. Journal of Magnetic Resonance Imaging, 31, 1256-1263. https://doi.org/10.1002/jmri.22149
|
[50]
|
Thomas, D.L., Pell, G.S., Lythgoe, M.F., Gadian, D.G. and Ordidge, R.J. (1998) A Quantitative Method for Fast Diffusion Imaging Using Magnetization‐Prepared Turboflash. Magnetic Resonance in Medicine, 39, 950-960. https://doi.org/10.1002/mrm.1910390613
|
[51]
|
Obara, M., Takahara, T., Honda, M., et al. (2011) Diffusion Weighted MR Nerve Sheath Imaging (DW-NSI) Using Diffusion-Sensitized Driven-Equilibrium (DSDE).
|
[52]
|
Engström, M., Mårtensson, M., Avventi, E. and Skare, S. (2014) On the Signal‐to‐Noise Ratio Efficiency and Slab‐banding Artifacts in Three‐Dimensional Multislab Diffusion‐Weighted Echo‐Planar Imaging. Magnetic Resonance in Medicine, 73, 718-725. https://doi.org/10.1002/mrm.25182
|
[53]
|
相丽. 64排128层螺旋CT图像重建技术对胆脂瘤型中耳炎的术前评估价值[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2011.
|
[54]
|
刘大鹏, 许佳, 孙军. 256排CT扫描鼓室盾板在胆脂瘤型中耳炎诊断中的价值[J]. 中国卫生标准管理, 2024, 15(7): 114-117.
|
[55]
|
周津如, 李培培, 范真真. 320排CT容积扫描对中耳胆脂瘤听骨链破坏的诊断应用[J]. 中国医学计算机成像杂志, 2023, 29(1): 9-13.
|
[56]
|
Watanabe, T., Ito, T., Furukawa, T., Futai, K., Kubota, T., Kanoto, M., et al. (2015) The Efficacy of Color Mapped Fusion Images in the Diagnosis and Treatment of Cholesteatoma Using Transcanal Endoscopic Ear Surgery. Otology & Neurotology, 36, 763-768. https://doi.org/10.1097/mao.0000000000000675
|
[57]
|
Watanabe, T., Ito, T., Furukawa, T., Futai, K., Kubota, T., Kanoto, M., et al. (2015) The Efficacy of Color-Mapped Diffusion-Weighted Images Combined with CT in the Diagnosis and Treatment of Cholesteatoma Using Transcanal Endoscopic Ear Surgery. Otology & Neurotology, 36, 1663-1668. https://doi.org/10.1097/mao.0000000000000878
|
[58]
|
Alzahrani, M., Alhazmi, R., Bélair, M. and Saliba, I. (2016) Postoperative Diffusion Weighted MRI and Preoperative CT Scan Fusion for Residual Cholesteatoma Localization. International Journal of Pediatric Otorhinolaryngology, 90, 259-263. https://doi.org/10.1016/j.ijporl.2016.09.034
|
[59]
|
Hall, E.J. and Brenner, D.J. (2008) Cancer Risks from Diagnostic Radiology. The British Journal of Radiology, 81, 362-378. https://doi.org/10.1259/bjr/01948454
|
[60]
|
Hall, E.J. and Brenner, D.J. (2012) Cancer Risks from Diagnostic Radiology: The Impact of New Epidemiological Data. The British Journal of Radiology, 85, e1316-e1317. https://doi.org/10.1259/bjr/13739950
|
[61]
|
赵琦, 钱永红, 王琨, 等. CT、MRI 图像融合技术在头部肿瘤放疗中的应用[J]. 中国医师杂志, 2014(z2): 163-164.
|
[62]
|
李青, 李润睿, 强彦, 等. 人工智能在医学CT图像重建中的研究进展[J]. 太原理工大学学报, 2023, 54(1): 1-16.
|
[63]
|
Luo, F., Wu, D., Pino, L.R. and Ding, W. (2025) A Novel Multimodel Medical Image Fusion Framework with Edge Enhancement and Cross-Scale Transformer. Scientific Reports, 15, Article No. 11657. https://doi.org/10.1038/s41598-025-93616-y
|
[64]
|
Bhutto, J.A., Tian, L., Du, Q., Sun, Z., Yu, L. and Tahir, M.F. (2022) CT and MRI Medical Image Fusion Using Noise-Removal and Contrast Enhancement Scheme with Convolutional Neural Network. Entropy, 24, Article No. 393. https://doi.org/10.3390/e24030393
|