不同脂肪库与动脉粥样硬化的研究进展
Research Progress of Different Fat Pools and Atherosclerosis
DOI: 10.12677/acm.2025.1551536, PDF, HTML, XML,   
作者: 张 真, 向 波*:重庆医科大学附属永川医院放射科,重庆
关键词: 肥胖异位脂肪动脉粥样硬化心血管疾病Obesity Ectopic Fat Atherosclerosis Cardiovascular Disease
摘要: 超重和肥胖是指人体脂肪堆积过多和/或分布异常,已被充分证实是冠状动脉粥样硬化、高血压、心力衰竭等心血管疾病的独立危险因素。相较于脂肪组织的总体含量,脂肪组织的异位分布情况与疾病的发生发展关系更为密切。在这篇综述中,我们重点关注不同脂肪库在心脏代谢和血管风险中的作用和临床意义。
Abstract: Overweight and obesity refer to excessive accumulation and/or abnormal distribution of body fat, which has been fully proven to be an independent risk factor for cardiovascular diseases such as coronary atherosclerosis, hypertension and heart failure. Compared with the total content of adipose tissue, the ectopic distribution of adipose tissue is more closely related to the occurrence and development of disease. In this review, we focus on the role and clinical significance of different fat pools in cardiometabolic and vascular risk.
文章引用:张真, 向波. 不同脂肪库与动脉粥样硬化的研究进展[J]. 临床医学进展, 2025, 15(5): 1628-1634. https://doi.org/10.12677/acm.2025.1551536

1. 引言

高血压、冠心病等心血管疾病(cardiovascular disease, CVD)在我国城乡居民全因死亡构成比中常年居于首位,发病率、死亡率居高不下且持续上升,严重威胁我国居民健康,其核心病理基础是动脉粥样硬化(atherosclerosis) [1]。在过去的几十年里,超重和肥胖在我国乃至全球的患病率呈显著线性增长。据世界肥胖联盟统计,2020年全球超重和肥胖人口已达26亿,预计2025年全球超重和肥胖人口将突破40亿,超过全球总人口的50% [2]。多项研究表明,超重和肥胖是CVD的独立危险因素,即无论有无高胆固醇血症、糖尿病等合并症的存在,超重和肥胖始终与动脉粥样硬化的发生发展密切相关[3]-[5]。近年来不少学者提出,相对于脂肪的堆积程度,脂肪在肝脏、肾脏、骨骼肌、心外膜等非典型代谢部位的异位分布情况,可以驱动更为复杂、更为显著的病理生理反应[6] [7]。本文将从异位脂肪的分布特征及其促动脉粥样硬化的分子机制两方面进行综述,旨在深入探讨异位脂肪在心血管疾病中的病理生理作用及其临床意义。

2. 脂肪组织的分类和组成

脂肪组织主要由大量脂肪细胞聚集而成,这些细胞群被薄层疏松的结缔组织分隔成多个小叶结构。根据细胞的形态特征和生理功能,脂肪组织可分为三种类型:棕色脂肪组织、白色脂肪组织和米色脂肪组织[8]。棕色脂肪组织具有独特的细胞结构,其脂肪细胞内含有大量线粒体和多个小脂滴,主要功能是通过氧化代谢产生热量从而维持体温;白色脂肪组织由含有巨大脂滴的单泡脂肪细胞构成,主要承担能量储存功能,同时还能分泌瘦素、脂联素等多种代谢调节因子;米色脂肪组织作为一种特殊类型,其细胞来源与白色脂肪组织相似,但在生理功能上更接近棕色脂肪细胞[9]

3. 异位脂肪的定义和分布

人体脂肪主要以皮下脂肪(subcutaneous fat)、内脏脂肪(visceral fat)和异位脂肪(ectopic fat)三种形式存在。皮下脂肪主要位于皮肤和肌肉之间,是人体储存脂肪的生理部位,占全身脂肪的82%~97%,主要作用是绝热保温、储存能量、缓冲保护,因其代谢活性较低,且炎症反应较弱,通常被认为是“好脂肪”[10]-[11]。然而Manolopoulos等学者提出,并非所有皮下脂肪都能对机体起到保护作用,例如臀股皮下脂肪有助于降低糖尿病、血脂异常等代谢疾病风险,而腹部皮下脂肪则可能提高心血管疾病风险[12]。内脏脂肪主要位于腹腔内,包裹在肝脏、胰腺、肠道等脏器周围,占全身脂肪的10%~20% (男性)或5%~10% (女性),适量的内脏脂肪能够对腹腔脏器提供支撑和保护,一旦堆积过多,则会因其较高的脂解活性导致罹患高血压、心肌梗死等心血管疾病的风险增加[13]-[15]

异位脂肪是指脂肪组织在非典型代谢部位的病理性沉积,它们在空间分布、代谢功能方面呈现出显著的异质性,可以分为全身作用的脂肪库和局部作用的脂肪库。全身作用的脂肪库包括肝脏脂肪(fat in liver)、肌肉脂肪(fat in muscle)和颈部脂肪(fat in neck)等。肝脏脂肪与非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)密切相关,通过促进极低密度脂蛋白(very low density lipoprotein, VLDL)分泌和促炎因子释放,进一步加剧全身炎症反应[16]。肌肉脂肪通过脂毒性作用干扰胰岛素信号通路,导致骨骼肌葡萄糖摄取能力下降,从而加剧胰岛素抵抗(insulin resistance, IR)和代谢综合征(metabolism syndrome, MS) [17]。局部作用脂肪库包括心包脂肪(pericardial fat)、心外膜脂肪(epicardial fat)、血管周围脂肪(perivascular fat)如冠状动脉周围脂肪(pericoronary fat)等。心包脂肪位于心包腔外,心外膜脂肪和冠周脂肪直接包裹冠状动脉,它们可以分泌炎症因子,直接或间接浸润冠状动脉的血管壁,破坏血管内皮细胞功能,增加通透性,并激活平滑肌细胞增殖迁移,促进脂质沉积,最终导致斑块形成[18]

4. 内脏脂肪与动脉粥样硬化的关系

内脏脂肪组织(visceral abdominal adipose tissue, VAT)是腹部脂肪的主要组成部分,具有独特的生物学特性,已被证实是动脉粥样硬化的独立危险因素,可以通过脂质代谢异常、胰岛素抵抗、炎症反应、内皮功能障碍及脂肪因子分泌等途径促进动脉粥样硬化的发生发展。

VAT具有较高的脂肪分解活性,导致大量游离脂肪酸(free fatty acids, FFAs)释放入血,并经门静脉进入肝脏,过量的FFAs在肝脏中进一步转化为VLDL,引起血浆甘油三酯(triglyceride, TG)水平升高,并减少高密度脂蛋白(high density lipoprotein, HDL)的清除能力[19]。此外,FFAs可直接损伤血管内皮细胞,通过激活蛋白激酶C (protein kinase C, PKC)途径诱导细胞凋亡,同时促进氧化应激,使低密度脂蛋白(low density lipoprotein, LDL)氧化为氧化型LDL (ox-LDL),这正是动脉粥样硬化斑块内泡沫细胞形成的关键诱因[20]。IR是VAT致病网络的关键节点。VAT对胰岛素的低敏感性与其高表达的肿瘤坏死因子-α (TNF-α)密切相关,后者通过抑制胰岛素受体底物-1 (IRS-1)的磷酸化,阻断胰岛素信号传导通路[21]。IR不仅引发高血糖,还通过激活脂蛋白脂肪酶(lipoprotein lipase, LPL)减少HDL合成,同时促进LDL氧化修饰,形成致动脉粥样硬化的脂质谱。VAT的巨噬细胞浸润密度显著高于皮下脂肪组织(subcutaneous adipose tissue, SAT),其分泌的炎性细胞因子如TNF-α、白细胞介素-6 (IL-6)不仅可以激活C反应蛋白(C-reactive protein, CRP)的合成,引发全身性的炎症状态,而且可以通过NF-κB信号通路,促进单核细胞黏附于血管内皮并迁移到内膜层,加速动脉粥样硬化斑块的形成[22] [23]。VAT分泌的炎性细胞因子和FFAs通过多种途径损害血管内皮功能。TNF-α和IL-6可抑制一氧化氮(NO)的合成,降低血管舒张能力,FFAs可诱导内皮细胞凋亡和通透性增加[24]。内皮功能障碍不仅促进单核细胞黏附和血小板聚集,还可上调黏附分子如VCAM-1、ICAM-1的表达,加重动脉粥样硬化的病变程度[25]。VAT分泌的脂肪因子如脂联素、瘦素在调节能量代谢和炎症反应中同样发挥着关键作用。脂联素水平因VAT增多而降低,故其抗炎和胰岛素增敏作用随之被削弱;瘦素水平升高则激活交感神经系统,促进血管收缩与氧化应激[26]

5. 肝脏脂肪与动脉粥样硬化的关系

肝脏通过复杂的代谢网络调控脂质稳态和能量平衡,其功能紊乱可能导致病理性肝脏脂肪沉积,即非酒精性脂肪肝病(non-alcoholic fatty liver disease, NAFLD)。根据组织病理学标准,当肝细胞内脂肪含量达到或超过5%时即可确诊NAFLD,当脂肪含量超过30%时则提示病情已进展至严重阶段[27]。作为最常见的慢性肝病之一,全球约有1/4的人口患有NAFLD [28]。在所有NAFLD患者中,约有10%~25%会并发非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH),甚至进一步发展为肝硬化、肝癌和肝功能衰竭等严重疾病[29] [30]

然而,NAFLD患者的首要死亡原因不是肝硬化、肝癌等肝脏疾病,而是CVD,约占死亡人数的1/3 [31]。尽管NAFLD促进CVD的分子机制与血脂异常、胰岛素抵抗等传统危险因素存在交叉,但是其病理学意义远远超过这些因素的简单叠加。大量临床研究证实,即使在缺乏传统心血管危险因素以及代谢综合征的情况下,NAFLD仍可作为CVD的独立预测因子[32] [33]。Ma等对7507名华东地区人群的研究发现,在调整了已确定的CVD危险因素后,NAFLD与冠状动脉钙化(coronary artery calcification, CAC)呈显著相关性,并且随着NAFLD严重程度的增加而增加[34]。此外,一项荟萃分析显示,大约60%的NAFLD患者患有高血压,这表明高血压在影响肝脏脂肪沉积方面的潜在作用[35]。支持这一点的是,分析了1051名参与者的弗雷明汉心脏研究的数据显示,肝脏脂肪升高的个体患高血压的风险更高。

6. 心外膜脂肪与动脉粥样硬化的关系

心外膜脂肪组织(epicardial adipose tissue, EAT)位于心肌表面和心包脏层之间,属于胸廓内脏脂肪,其脂肪细胞是白色脂肪组织,在胚胎起源上和肠系膜、大网膜的脂肪细胞一致[36]。生理状态下,EAT大多分布于房室间沟、冠状动脉分支处,与心肌、冠状动脉紧密接触,既无筋膜分割,也不存在解剖界限[37]。由于其特殊的解剖位置,EAT能够减少因心脏搏动和血管运动所产生的机械性损伤,发挥缓冲保护的重要作用。正常情况下,EAT的脂质代谢处于精细的调控网络中,以维持脂肪酸的摄取、合成、储存和氧化等过程的平衡。一方面,EAT可作为游离脂肪酸的重要储存库,为心肌的持续收缩和舒张提供稳定的能量来源,满足心肌的能量代谢需求;另一方面,当心肌周围的游离脂肪酸堆积过多时,EAT能够对多余的脂肪酸进行清除和溶解,维持心肌细胞内脂肪酸的动态平衡,降低心肌脂毒性[8]。然而,当机体处于病理状态时,EAT的体积会显著增大,甚至能够覆盖整个心室和心外膜表面,这一变化会占据原本有限的心包腔容积,进而限制心脏的正常搏动功能,最终导致心脏舒张功能受损[38]。同时,EAT的脂质代谢发生紊乱,分泌模式发生改变,炎性细胞因子的释放显著增加,而具有保护作用的脂联素等脂肪因子分泌减少,从而导致巨噬细胞浸润加剧,破坏微血管系统,激活纤维化途径,这一病理过程与VAT介导的动脉粥样硬化过程具有相似性,原因可能与二者脂肪细胞的胚胎起源一致有关。然而,EAT直接毗邻于心肌、冠状动脉,这使得EAT除了通过血管内分泌的方式以外,还可以通过旁分泌的方式进行信号通路传导,能够更加迅速、准确地作用于心肌细胞和血管内皮细胞,对其功能和代谢造成影响[39]。Chen等通过大鼠动物实验揭示了EAT分泌的瘦素在代谢综合征相关性心肌损伤中的分子机制,研究表明瘦素通过激活PKC/NADPH氧化酶/ROS信号通路,一方面诱导线粒体氧化应激及功能障碍,进而促进线粒体依赖性凋亡途径,另一方面通过介导激活蛋白1 (AP-1)的核易位,显著增强炎症反应[40]

Mahabadi等针对多种族人群的研究证实,EAT的异常蓄积是冠状动脉粥样硬化的独立风险因素,EAT的厚度、体积不仅在病例组和对照组具有显著差异性,而且在病例组亚组也具有统计学意义,即不稳定型心绞痛患者的EAT的厚度、体积明显高于稳定型心绞痛或非典型胸痛患者[41]。Tachibana等进一步研究发现,EAT的厚度、体积与冠状动脉粥样硬化斑块的易损性呈正性相关[42] [43]。随着影像技术的发展,越来越多的学者发现,除了EAT的体积,EAT的密度也与血管炎症、纤维化和微血管重塑密切相关,甚至在反映斑块的易损性方面起着更加重要的作用,如今已超越EAT体积成为斑块风险评估的优先影像学标志物[44]。Oikonomou等提出,当EAT密度 ≥ −70.1 HU,是全因死亡率的强有力预测指标,其预测效能远远超过临床风险因素、斑块累及范围、高危斑块特征数量、冠状动脉钙化积分以及EAT体积[45]

7. 不同脂肪库的临床评估方法

目前,评价人体脂肪组织分布情况的方法,主要包括传统人体测量学指标与影像学技术。传统人体测量学指标如BMI、腰围、腰高比等操作简便,可初步反映腹部脂肪聚集情况,然而对于脂肪分布情况的精准评估能力欠佳。常用的影像学方法包括超声、计算机断层扫描(computed tomography, CT)、磁共振成像(magnetic resonance imaging, MRI)等。超声通过肝脏回声增强和深部衰减评估脂肪变性程度,因其成本低、操作便捷,故是临床上评估脂肪肝最常用的影像学方法。国际糖尿病联盟推荐CT或MRI作为腹部脂肪分布的金标准,二者均可精确测量VAT、SAT的面积和体积[46],此外,CT可以通过EAT密度衰减值预测全因死亡风险,通过肝脏密度衰减值评估脂肪变性程度,具有扫描速度快、成本适中的优势,但存在辐射暴露风险;MRI可以通过质子密度脂肪分数(PDFF)定量分析肝脏、胰腺等组织的脂肪含量,结合磁共振波谱(MRS)还可以检测心肌内脂质含量,其优势在于无辐射、重复性高,但受限于设备成本高、扫描时间长以及空间环境要求严格。其他方法如生物电阻抗分析(BIA)和双能X线吸收法(DEXA)虽具备一定临床价值,但前者易受体液变化影响,后者对深层脂肪分布的解析能力较弱,故在精确评估需求中常作为辅助手段。综合而言,临床选择需根据目标人群、评估精度及资源条件进行权衡。

8. 结语

不同部位的脂肪库可以被认为是一个独立的内分泌器官,能够分泌具有生物活性的脂肪因子。尽管有些脂肪库在胚胎起源上具有一致性,但是不同脂肪库的生物分泌功能还是具有特异性。研究表明这些脂肪库可以通过代谢紊乱、胰岛素抵抗、炎症反应、脂毒性作用等多途径促进动脉粥样硬化,其临床意义远远超越传统的BMI评估。未来研究可以利用影像组学、深度学习算法分析颈动脉、冠状动脉、下肢动脉等动脉粥样硬化斑块内脂质核心、钙化分布及周围脂肪特征,探索异位脂肪与动脉粥样硬化斑块易损性、狭窄程度的相关性,为开发精准干预策略提供理论依据和技术支撑。

NOTES

*通讯作者。

参考文献

[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2023概要[J]. 中国循环杂志, 2024, 39(7): 625-660.
[2] Global Obesity Observatory (2023) World Obesity Atlas 2023.
https://data.worldobesity.org/publications/?cat=19
[3] Flint, A.J., Hu, F.B., Glynn, R.J., Caspard, H., Manson, J.E., Willett, W.C., et al. (2010) Excess Weight and the Risk of Incident Coronary Heart Disease among Men and Women. Obesity, 18, 377-383.
https://doi.org/10.1038/oby.2009.223
[4] Hu, G., Barengo, N.C., Tuomilehto, J., Lakka, T.A., Nissinen, A. and Jousilahti, P. (2004) Relationship of Physical Activity and Body Mass Index to the Risk of Hypertension: A Prospective Study in Finland. Hypertension, 43, 25-30.
https://doi.org/10.1161/01.hyp.0000107400.72456.19
[5] Khot, U.N. (2003) Prevalence of Conventional Risk Factors in Patients with Coronary Heart Disease. JAMA, 290, 898-904.
https://doi.org/10.1001/jama.290.7.898
[6] Després, J. (2012) Body Fat Distribution and Risk of Cardiovascular Disease: An Update. Circulation, 126, 1301-1313.
https://doi.org/10.1161/circulationaha.111.067264
[7] Lim, S. and Meigs, J.B. (2014) Links between Ectopic Fat and Vascular Disease in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1820-1826.
https://doi.org/10.1161/atvbaha.114.303035
[8] Wang, W. and Seale, P. (2016) Control of Brown and Beige Fat Development. Nature Reviews Molecular Cell Biology, 17, 691-702.
https://doi.org/10.1038/nrm.2016.96
[9] 李雁鸣, 沈成兴, 申锷. 心外膜脂肪组织与心血管疾病的研究进展[J]. 中华心血管病杂志, 2022, 50(7): 723-727.
[10] Gastaldelli, A. and Basta, G. (2010) Ectopic Fat and Cardiovascular Disease: What Is the Link? Nutrition, Metabolism and Cardiovascular Diseases, 20, 481-490.
https://doi.org/10.1016/j.numecd.2010.05.005
[11] Roden, M. (2006) Mechanisms of Disease: Hepatic Steatosis in Type 2 Diabetes—Pathogenesis and Clinical Relevance. Nature Clinical Practice Endocrinology & Metabolism, 2, 335-348.
https://doi.org/10.1038/ncpendmet0190
[12] Manolopoulos, K.N., Karpe, F. and Frayn, K.N. (2010) Gluteofemoral Body Fat as a Determinant of Metabolic Health. International Journal of Obesity, 34, 949-959.
https://doi.org/10.1038/ijo.2009.286
[13] Lee, M., Wu, Y. and Fried, S.K. (2013) Adipose Tissue Heterogeneity: Implication of Depot Differences in Adipose Tissue for Obesity Complications. Molecular Aspects of Medicine, 34, 1-11.
https://doi.org/10.1016/j.mam.2012.10.001
[14] Abraham, T.M., Pedley, A., Massaro, J.M., Hoffmann, U. and Fox, C.S. (2015) Association between Visceral and Subcutaneous Adipose Depots and Incident Cardiovascular Disease Risk Factors. Circulation, 132, 1639-1647.
https://doi.org/10.1161/circulationaha.114.015000
[15] Diaz, A.A., Young, T.P., Kurugol, S., Eckbo, E., Muralidhar, N., Chapman, J.K., et al. (2015) Abdominal Visceral Adipose Tissue Is Associated with Myocardial Infarction in Patients with COPD. Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation, 2, 8-16.
https://doi.org/10.15326/jcopdf.2.1.2015.0127
[16] Manolis, A.A., Manolis, T.A., Vouliotis, A. and Manolis, A.S. (2025) Metabolic Dysfunction-Associated Steatotic Liver Disease and the Cardiovascular System. Trends in Cardiovascular Medicine, 35, 258-265.
https://doi.org/10.1016/j.tcm.2025.01.001
[17] Henin, G., Loumaye, A., Leclercq, I.A. and Lanthier, N. (2024) Myosteatosis: Diagnosis, Pathophysiology and Consequences in Metabolic Dysfunction-Associated Steatotic Liver Disease. JHEP Reports, 6, Article 100963.
https://doi.org/10.1016/j.jhepr.2023.100963
[18] Patel, V.B., Shah, S., Verma, S. and Oudit, G.Y. (2017) Epicardial Adipose Tissue as a Metabolic Transducer: Role in Heart Failure and Coronary Artery Disease. Heart Failure Reviews, 22, 889-902.
https://doi.org/10.1007/s10741-017-9644-1
[19] Ibrahim, M.M. (2009) Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obesity Reviews, 11, 11-18.
https://doi.org/10.1111/j.1467-789x.2009.00623.x
[20] Mosalmanzadeh, N. and Pence, B.D. (2024) Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. International Journal of Molecular Sciences, 25, Article 11386.
https://doi.org/10.3390/ijms252111386
[21] Scott, D.A., Ponir, C., Shapiro, M.D. and Chevli, P.A. (2024) Associations between Insulin Resistance Indices and Subclinical Atherosclerosis: A Contemporary Review. American Journal of Preventive Cardiology, 18, Article 100676.
https://doi.org/10.1016/j.ajpc.2024.100676
[22] Hotamisligil, G.S., Shargill, N.S. and Spiegelman, B.M. (1993) Adipose Expression of Tumor Necrosis Factor-Α: Direct Role in Obesity-Linked Insulin Resistance. Science, 259, 87-91.
https://doi.org/10.1126/science.7678183
[23] Lim, S. and Meigs, J.B. (2013) Ectopic Fat and Cardiometabolic and Vascular Risk. International Journal of Cardiology, 169, 166-176.
https://doi.org/10.1016/j.ijcard.2013.08.077
[24] Smith, S.R. and Wilson, P.W.F. (2006) Free Fatty Acids and Atherosclerosis—Guilty or Innocent? The Journal of Clinical Endocrinology & Metabolism, 91, 2506-2508.
https://doi.org/10.1210/jc.2006-1018
[25] Van Gaal, L.F., Mertens, I.L. and De Block, C.E. (2006) Mechanisms Linking Obesity with Cardiovascular Disease. Nature, 444, 875-880.
https://doi.org/10.1038/nature05487
[26] Stamler, J., Stamler, R., Neaton, J.D., Wentworth, D., Daviglus, M.L., Garside, D., et al. (1999) Low Risk-Factor Profile and Long-Term Cardiovascular and Noncardiovascular Mortality and Life Expectancy: Findings for 5 Large Cohorts of Young Adult and Middle-Aged Men and Women. JAMA, 282, 2012-2018.
https://doi.org/10.1001/jama.282.21.2012
[27] Brunt, E.M. (2001) Nonalcoholic Steatohepatitis: Definition and Pathology. Seminars in Liver Disease, 21, 3-16.
https://doi.org/10.1055/s-2001-12925
[28] Younossi, Z.M., Koenig, A.B., Abdelatif, D., Fazel, Y., Henry, L. and Wymer, M. (2016) Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta‐Analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology, 64, 73-84.
https://doi.org/10.1002/hep.28431
[29] Diehl, A.M. and Day, C. (2017) Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis. New England Journal of Medicine, 377, 2063-2072.
https://doi.org/10.1056/nejmra1503519
[30] Stefan, N., Häring, H. and Cusi, K. (2019) Non-Alcoholic Fatty Liver Disease: Causes, Diagnosis, Cardiometabolic Consequences, and Treatment Strategies. The Lancet Diabetes & Endocrinology, 7, 313-324.
https://doi.org/10.1016/s2213-8587(18)30154-2
[31] Allen, A.M., Therneau, T.M., Larson, J.J., Coward, A., Somers, V.K. and Kamath, P.S. (2018) Nonalcoholic Fatty Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year‐Community Study. Hepatology, 67, 1726-1736.
https://doi.org/10.1002/hep.29546
[32] Ekstedt, M., Hagström, H., Nasr, P., Fredrikson, M., Stål, P., Kechagias, S., et al. (2015) Fibrosis Stage Is the Strongest Predictor for Disease‐Specific Mortality in NAFLD after up to 33 Years of Follow‐Up. Hepatology, 61, 1547-1554.
https://doi.org/10.1002/hep.27368
[33] Castillo-Núñez, Y., Almeda-Valdes, P., González-Gálvez, G. and Arechavaleta-Granell, M.R. (2024) Metabolic Dysfunction-Associated Steatotic Liver Disease and Atherosclerosis. Current Diabetes Reports, 24, 158-166.
https://doi.org/10.1007/s11892-024-01542-6
[34] Ma, G., Xu, G. and Huang, H. (2025) Correlation between Metabolic Dysfunction-Associated Steatotic Liver Disease and Subclinical Coronary Atherosclerosis in Eastern China. Diabetology & Metabolic Syndrome, 17, Article No. 16.
https://doi.org/10.1186/s13098-025-01577-z
[35] Platek, A.E. and Szymanska, A. (2023) Metabolic Dysfunction-Associated Steatotic Liver Disease as a Cardiovascular Risk Factor. Clinical and Experimental Hepatology, 9, 187-192.
https://doi.org/10.5114/ceh.2023.130744
[36] Iacobellis, G. (2015) Local and Systemic Effects of the Multifaceted Epicardial Adipose Tissue Depot. Nature Reviews Endocrinology, 11, 363-371.
https://doi.org/10.1038/nrendo.2015.58
[37] Bodenstab, M.L., Varghese, R.T. and Iacobellis, G. (2024) Cardio-Lipotoxicity of Epicardial Adipose Tissue. Biomolecules, 14, Article 1465.
https://doi.org/10.3390/biom14111465
[38] Corradi, D., Maestri, R., Callegari, S., Pastori, P., Goldoni, M., Luong, T.V., et al. (2004) The Ventricular Epicardial Fat Is Related to the Myocardial Mass in Normal, Ischemic and Hypertrophic Hearts. Cardiovascular Pathology, 13, 313-316.
https://doi.org/10.1016/j.carpath.2004.08.005
[39] Ansaldo, A.M., Montecucco, F., Sahebkar, A., Dallegri, F. and Carbone, F. (2019) Epicardial Adipose Tissue and Cardiovascular Diseases. International Journal of Cardiology, 278, 254-260.
https://doi.org/10.1016/j.ijcard.2018.09.089
[40] Chen, H., Liu, L., Li, M., Zhu, D. and Tian, G. (2023) Epicardial Adipose Tissue-Derived Leptin Promotes Myocardial Injury in Metabolic Syndrome Rats through PKC/NADPH Oxidase/ROS Pathway. Journal of the American Heart Association, 12, e029415.
https://doi.org/10.1161/jaha.123.029415
[41] Mahabadi, A.A., Massaro, J.M., Rosito, G.A., Levy, D., Murabito, J.M., Wolf, P.A., et al. (2008) Association of Pericardial Fat, Intrathoracic Fat, and Visceral Abdominal Fat with Cardiovascular Disease Burden: The Framingham Heart Study. European Heart Journal, 30, 850-856.
https://doi.org/10.1093/eurheartj/ehn573
[42] Tachibana, M., Miyoshi, T., Osawa, K., Toh, N., Oe, H., Nakamura, K., et al. (2016) Measurement of Epicardial Fat Thickness by Transthoracic Echocardiography for Predicting High-Risk Coronary Artery Plaques. Heart and Vessels, 31, 1758-1766.
https://doi.org/10.1007/s00380-016-0802-5
[43] Aprigliano, G., Scuteri, L., Iafelice, I., Li Volsi, L., Cuko, B., Palloshi, A., et al. (2015) Epicardial Adipose Tissue Thickness and Acute Coronary Syndrome: A Matter of How Much or How? International Journal of Cardiology, 199, 8-9.
https://doi.org/10.1016/j.ijcard.2015.06.168
[44] Nogajski, Ł., Mazuruk, M., Kacperska, M., Kurpias, M., Mączewski, M., Nowakowski, M., et al. (2024) Epicardial Fat Density Obtained with Computed Tomography Imaging—More Important than Volume? Cardiovascular Diabetology, 23, Article No. 389.
https://doi.org/10.1186/s12933-024-02474-x
[45] Oikonomou, E.K., Marwan, M., Desai, M.Y., Mancio, J., Alashi, A., Hutt Centeno, E., et al. (2018) Non-Invasive Detection of Coronary Inflammation Using Computed Tomography and Prediction of Residual Cardiovascular Risk (The CRISP CT Study): A Post-Hoc Analysis of Prospective Outcome Data. The Lancet, 392, 929-939.
https://doi.org/10.1016/s0140-6736(18)31114-0
[46] Alberti, K.G.M.M., Zimmet, P. and Shaw, J. (2006) Metabolic Syndrome—A New World‐Wide Definition. a Consensus Statement from the International Diabetes Federation. Diabetic Medicine, 23, 469-480.
https://doi.org/10.1111/j.1464-5491.2006.01858.x