[1]
|
余景芝, 王烜, 蔡剑英, 等. 水动力条件对浅水湖泊沉积物氮磷释放的影响[J]. 中国环境科学, 2023, 43(8): 4219-4228.
|
[2]
|
刘静玲, 杨志峰, 林超, 等. 流域生态需水规律研究[J]. 中国水利, 2006(13): 18-21.
|
[3]
|
秦伯强. 太湖水环境面临的主要问题、研究动态与初步进展[J]. 湖泊科学, 1998, 10(4): 1-9.
|
[4]
|
李寿年. 凤凰山区岩源磷对巢湖水体富营养化的影响[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2014.
|
[5]
|
袁轶君, 何鹏程, 刘娜娜, 等. 温度与扰动对鄱阳湖沉积物氮释放的影响[J]. 东华理工大学学报(自然科学版), 2020, 43(5): 495-500.
|
[6]
|
Garber, K.J. and Hartman, R.T. (1985) Internal Phosphorus Loading to Shallow Edinboro Lake in Northwestern Pennsylvania. Hydrobiologia, 122, 45-52. https://doi.org/10.1007/bf00018958
|
[7]
|
王伟, 卢少勇, 金相灿, 等. 洞庭湖沉积物及上覆水体氮的空间分布[J]. 环境科学与技术, 2010, 33(S2): 6-10.
|
[8]
|
王书锦, 刘云根, 梁启斌, 等. 罗时江河口湿地沉积物磷的空间分布及污染风险评价[J]. 环境工程学报, 2016, 10(2): 955-962.
|
[9]
|
濮培民, 王国祥, 胡春华, 等. 底泥疏浚能控制湖泊富营养化吗? [J]. 湖泊科学, 2000, 12(3): 269-279.
|
[10]
|
Lijklema, L. (1986) Phosphorus Accumulation in Sediments and Internal Loading. Hydrobiological Bulletin, 20, 213-224. https://doi.org/10.1007/bf02291164
|
[11]
|
Berner, A. and Early, D. (1980) A Theoretical Approach. Princeton University Press.
|
[12]
|
Lerman, A. (1978) Chemical Exchange across Sediment-Water Interface. Annual Review of Earth and Planetary Sciences, 6, 281-303. https://doi.org/10.1146/annurev.ea.06.050178.001433
|
[13]
|
Mortimer, C.H. (1941) The Exchange of Dissolved Substances between Mud and Water in Lakes. The Journal of Ecology, 29, 280. https://doi.org/10.2307/2256395
|
[14]
|
Albrecht, A., Reiser, R., Lück, A., Stoll, J.A. and Giger, W. (1998) Radiocesium Dating of Sediments from Lakes and Reservoirs of Different Hydrological Regimes. Environmental Science & Technology, 32, 1882-1887. https://doi.org/10.1021/es970946h
|
[15]
|
Kemp, A.L.W. and Mudrochova, A. (1972) Distribution and Forms of Nitrogen in a Lake Ontario Sediment Core. Limnology and Oceanography, 17, 855-867. https://doi.org/10.4319/lo.1972.17.6.0855
|
[16]
|
Keeney, D.R., Konrad, J.G. and Chesters, G. (1970) Nitrogen Distribution in Some Wisconsin Lake Sediments. Journal Water Pollution Control Federation, 42, 411-417.
|
[17]
|
Mortimer, C.H. (1971) Chemical Exchanges between Sediments and Water in the Great Lakes‐Speculations on Probable Regulatory Mechanisms1. Limnology and Oceanography, 16, 387-404. https://doi.org/10.4319/lo.1971.16.2.0387
|
[18]
|
Wang, S. and Wu, Z. (2016) The Basic Theory of P-Process at Sediment/Water Interface (SWI) in Lake. In: Wang, S. and Wu, Z., Eds., DGT-Based Measurement of Phosphorus in Sediment Microzones and Rhizospheres, Springer, 3-25. https://doi.org/10.1007/978-981-10-0721-7_1
|
[19]
|
安敏, 黄岁樑. 海河干流表层沉积物总磷、总铁和有机质的含量及相关性分析[J]. 环境科学研究, 2007, 20(3): 63-67.
|
[20]
|
李鑫. 浅水湖泊沉积物中氮的迁移转化机制研究[D]: [博士学位论文]. 天津: 天津大学, 2012.
|
[21]
|
万国江. 环境质量的地球化学原理[M]. 北京: 中国环境科学出版社, 1988.
|
[22]
|
王敬富, 陈权, 金祖雪, 等. 湖泊沉积物内源磷通量定量方法与研究展望[J]. 矿物岩石地球化学通报, 2023, 42(4): 903-913.
|
[23]
|
Bozau, E., Bechstedt, T., Friese, K., Frömmichen, R., Herzsprung, P., Koschorreck, M., et al. (2007) Biotechnological Remediation of an Acidic Pit Lake: Modelling the Basic Processes in a Mesocosm Experiment. Journal of Geochemical Exploration, 92, 212-221. https://doi.org/10.1016/j.gexplo.2006.08.007
|
[24]
|
李宝, 丁士明, 范成新, 等. 滇池福保湾沉积物-水界面微量重金属扩散通量估算[J]. 环境化学, 2008, 27(6): 800-804.
|
[25]
|
黄绍基, 赵海洲, 方满萍. 质量衡算模型计算太湖底泥磷的交换量[J]. 环境科学, 1992, 13(1): 83-84, 97.
|
[26]
|
王敬富, 陈敬安, 罗婧, 等. 红枫湖沉积物内源磷释放通量估算方法的对比研究[J]. 地球与环境, 2018, 46(1): 1-6.
|
[27]
|
薛惊雅, 姜星宇, 姚晓龙, 等. 傀儡湖沉积物-水界面硝酸盐异养还原过程研究[J]. 中国环境科学, 2018, 38(6): 2289-2296.
|
[28]
|
杜奕衡, 刘成, 陈开宁, 等. 白洋淀沉积物氮磷赋存特征及其内源负荷[J]. 湖泊科学, 2018, 30(6): 1537-1551.
|
[29]
|
范成新, 张路, 秦伯强, 等. 太湖沉积物-水界面生源要素迁移机制及定量化——1.铵态氮释放速率的空间差异及源-汇通量[J]. 湖泊科学, 2004, 16(1): 10-20.
|
[30]
|
王志齐, 李宝, 梁仁君, 等. 南四湖内源氮磷释放的对比研究[J]. 环境科学学报, 2013, 33(2): 487-493.
|
[31]
|
Yang, L., Choi, J.H. and Hur, J. (2014) Benthic Flux of Dissolved Organic Matter from Lake Sediment at Different Redox Conditions and the Possible Effects of Biogeochemical Processes. Water Research, 61, 97-107. https://doi.org/10.1016/j.watres.2014.05.009
|
[32]
|
Doan, P.T.K., Watson, S.B., Markovic, S., Liang, A., Guo, J., Mugalingam, S., et al. (2018) Phosphorus Retention and Internal Loading in the Bay of Quinte, Lake Ontario, Using Diagenetic Modelling. Science of The Total Environment, 636, 39-51. https://doi.org/10.1016/j.scitotenv.2018.04.252
|
[33]
|
朱广伟, 秦伯强, 张路, 等. 太湖底泥悬浮中营养盐释放的波浪水槽试验[J]. 湖泊科学, 2005, 17(1): 61-68.
|
[34]
|
尤本胜, 王同成, 范成新, 等. 太湖沉积物再悬浮模拟方法[J]. 湖泊科学, 2007, 19(5): 611-617.
|
[35]
|
罗婧, 陈敬安, 王敬富, 等. 利用薄膜扩散梯度技术估算红枫湖沉积物磷释放通量[J]. 矿物岩石地球化学通报, 2015, 34(5): 1014-1020.
|
[36]
|
徐健, 赵保成, 魏思奇, 等. 数字孪生流域可视化技术研究与实践[J]. 水利水电快报, 2023, 44(8): 127-130.
|