|
[1]
|
Li, B., Ng, S.J., Han, J., Li, M., Zeng, J., Guo, D., et al. (2023) Network Evolution and Risk Assessment of the Global Phosphorus Trade. Science of the Total Environment, 860, Article ID: 160433. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Egle, L., Rechberger, H., Krampe, J. and Zessner, M. (2016) Phosphorus Recovery from Municipal Wastewater: An Integrated Comparative Technological, Environmental and Economic Assessment of P Recovery Technologies. Science of the Total Environment, 571, 522-542. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Hu, Y., Guo, J., An, D., Qian, Y., Chen, J. and Zhou, Z. (2024) Phosphorus Recovery from Sewage Sludge via Mg-Air Battery System. Science of the Total Environment, 926, Article ID: 171805. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Liang, S., Yang, L., Chen, H., Yu, W., Tao, S., Yuan, S., et al. (2021) Phosphorus Recovery from Incinerated Sewage Sludge Ash (ISSA) and Reutilization of Residues for Sludge Pretreated by Different Conditioners. Resources, Conservation and Recycling, 169, Article ID: 105524. [Google Scholar] [CrossRef]
|
|
[5]
|
Boniardi, G., Paini, E., Seljak, T., Azzellino, A., Volonterio, A., Canziani, R., et al. (2024) Optimization of Phosphorus Wet Acid Extraction from Sewage Sludge Ashes: Detailed Process Insight via Multi-Variate Statistical Techniques. Journal of Cleaner Production, 458, Article ID: 142491. [Google Scholar] [CrossRef]
|
|
[6]
|
Jama-Rodzeńska, A., Sowiński, J., Koziel, J.A. and Białowiec, A. (2021) Phosphorus Recovery from Sewage Sludge Ash Based on Cradle-to-Cradle Approach—Mini-Review. Minerals, 11, Article No. 985. [Google Scholar] [CrossRef]
|
|
[7]
|
Fang, L., Zhang, Z., Mei, Y., Xu, L. and Ren, Z. (2023) Phosphorus Recovery and Simultaneous Heavy Metal Removal from ISSA in a Two-Compartment Cell. Water, 15, Article No. 226. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, J., Fu, J., Ning, X., Sun, S., Wang, Y., Xie, W., et al. (2015) An Experimental and Thermodynamic Equilibrium Investigation of the Pb, Zn, Cr, Cu, Mn and Ni Partitioning during Sewage Sludge Incineration. Journal of Environmental Sciences, 35, 43-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Nowak, B., Frías Rocha, S., Aschenbrenner, P., Rechberger, H. and Winter, F. (2012) Heavy Metal Removal from MSW Fly Ash by Means of Chlorination and Thermal Treatment: Influence of the Chloride Type. Chemical Engineering Journal, 179, 178-185. [Google Scholar] [CrossRef]
|
|
[10]
|
Vogel, C., Exner, R.M. and Adam, C. (2012) Heavy Metal Removal from Sewage Sludge Ash by Thermochemical Treatment with Polyvinylchloride. Environmental Science & Technology, 47, 563-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
郝晓地, 于晶伦, 刘然彬, 等. 剩余污泥焚烧灰分磷回收及其技术进展[J]. 环境科学学报, 2020, 40(4): 1149-1159.
|
|
[12]
|
Herzel, H., Stemann, J., Simon, S. and Adam, C. (2021) Comparison of Thermochemical Treatment of Sewage Sludge Ash with Sodium Sulphate in Laboratory-Scale and Pilot-Scale Experiments. International Journal of Environmental Science and Technology, 19, 1997-2006. [Google Scholar] [CrossRef]
|
|
[13]
|
Ruban, V., López-Sánchez, J.F., Pardo, P., Rauret, G., Muntau, H. and Quevauviller, P. (2001) Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments—A Synthesis of Recent Works. Fresenius’ Journal of Analytical Chemistry, 370, 224-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, L., Guo, X., Liang, S., Yang, F., Wen, M., Yuan, S., et al. (2023) A Sustainable Strategy for Recovery of Phosphorus as Vivianite from Sewage Sludge via Alkali-Activated Pyrolysis, Water Leaching and Crystallization. Water Research, 233, Article ID: 119769. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, Y., Ren, Q. and Na, Y. (2019) Potential Utilization of Phosphorus in Fly Ash from Industrial Sewage Sludge Incineration with Biomass. Fuel Processing Technology, 188, 16-21. [Google Scholar] [CrossRef]
|
|
[16]
|
Zheng, X., Jiang, Z., Ying, Z., Song, J., Chen, W. and Wang, B. (2020) Role of Feedstock Properties and Hydrothermal Carbonization Conditions on Fuel Properties of Sewage Sludge-Derived Hydrochar Using Multiple Linear Regression Technique. Fuel, 271, Article ID: 117609. [Google Scholar] [CrossRef]
|
|
[17]
|
Guo, Q., Wang, Y., Zhao, L., Yu, F., Zhang, Z., Zhou, N., et al. (2024) Bioavailability Transition Path of Phosphorus Species during the Sewage Sludge Incineration Process. Environmental Research, 247, Article ID: 118167. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Druppel, K., Hosch, A. and Franz, G. (2007) The System Al2O3-P2O5-H2O at Temperatures below 200 ˚C: Experimental Data on the Stability of Variscite and Metavariscite AlPO4·2H2O. American Mineralogist, 92, 1695-1703. [Google Scholar] [CrossRef]
|
|
[19]
|
Tosić, M.B. (2003) The Crystallization of Calcium Phosphate Glass with the Ratio. Journal of Materials Science, 38, 1983-1994. [Google Scholar] [CrossRef]
|
|
[20]
|
Li, L., Ren, Q., Li, S. and Lu, Q. (2013) Effect of Phosphorus on the Behavior of Potassium during the Co-Combustion of Wheat Straw with Municipal Sewage Sludge. Energy & Fuels, 27, 5923-5930. [Google Scholar] [CrossRef]
|
|
[21]
|
Hu, W., Jin, Z., Qiu, Y., Zhang, P., Feng, Y. and Tang, Y. (2024) Thermochemical Treatment of Fly Ash and Desulfurization Wastewater from Municipal Sewage Sludge Incineration Plant for Phosphorus Recycling. Journal of Cleaner Production, 485, Article ID: 144282. [Google Scholar] [CrossRef]
|
|
[22]
|
徐杰, 黄群星, 孟详东, 等. 钙基添加剂对污水污泥在水热炭化过程中磷形态及生物有效性的影响[J]. 化工进展, 2020, 40(6): 3507-3514.
|
|
[23]
|
Meng, X., Huang, Q., Gao, H., Tay, K. and Yan, J. (2018) Improved Utilization of Phosphorous from Sewage Sludge (as Fertilizer) after Treatment by Low-Temperature Combustion. Waste Management, 80, 349-358. [Google Scholar] [CrossRef] [PubMed]
|