1. 引言
磷(P)是地球上不可再生的非金属矿产资源[1]。随着人口增长以及人类生活水平不断提高,磷消耗量越来越大。而每年通过污水流失的磷可满足40%~50%的农业磷肥需求[2],使得污水成为“第二磷矿”[3]。污泥焚烧技术能够将污水中约90%的磷富集于污泥焚烧飞灰中[4],相较于直接从污水中回收磷,从污泥焚烧飞灰中回收具有工艺简单、效率高等优势。
污泥焚烧飞灰中磷主要以钙磷化合物(Ca-P)、铝磷化合物(Al-P)和铁磷化合物(Fe-P)等形式存在。从飞灰中回收磷的关键在于实现磷酸盐矿物的相转化和重金属的有效去除,通常包含三个关键步骤:1) 通过化学或物理方法破坏原有磷酸盐矿物结构;2) 将磷元素与重金属等杂质分离;3) 根据实际需求将磷转化为可利用形态。磷提取方法主要有生物浸提法、湿式化学法和热化学法[5] [6]。生物浸提法依赖于微生物代谢产生的无机酸或有机酸实现磷释放。湿式化学法通过改变污泥焚烧飞灰浸出的酸碱环境,以增大磷的溶解度,之后将磷与重金属分离并沉淀得到磷产品。在低pH环境下,污泥焚烧飞灰中的磷几乎能够被全部提取,但重金属溶解程度也十分显著[7]。热化学法是在高温条件下通过氯化钾、氯化镁、聚氯乙烯等氯供体形成新的矿物相来提高磷的生物利用度[8]-[10]。同时在高温环境中(1500℃~2000℃)气化重金属及其化合物,再经过分离装置分离磷与重金属,实现磷提取与纯化[11]。与湿式化学法相比,热化学法可在高温下回收磷,减少强酸和强碱试剂的使用,且避免重金属浸出。
本文进一步探讨硫酸盐(Na2SO4和K2SO4)对污泥焚烧飞灰高温煅烧过程磷酸盐转化和磷的生物有效性的影响。相较于氯化物,硫酸盐拥有广泛的工业来源,如冶金废渣、脱酸废液等,因此这使得硫酸盐的资源化利用成为一种具有较高潜力的选择,能实现废弃物的高值化利用。Herzel等人提出,在还原性气氛下对污泥焚烧飞灰和Na2SO4在不同温度下进行热化学处理,可以有效去除污泥焚烧飞灰中的重金属,并生成植物可用性良好的CaNaPO4 [12],这为硫酸盐在磷回收中的应用提供了有力支持。本研究旨在探讨在高温条件下,利用Na2SO4和K2SO4添加剂对污泥焚烧飞灰进行煅烧处理,分析不同添加比例对磷形态转化及生物有效性的影响,评估其在磷回收中的应用潜力。
2. 实验材料与方法
2.1. 实验原料
本实验所用污泥焚烧飞灰取自上海某污泥焚烧厂,取样后分装于塑料桶中。污泥焚烧飞灰粒径主要分布于1~100 μm范围内,外观近似圆球状,呈黄色。采用X射线荧光光谱仪(XRF)分析了污泥焚烧飞灰的主要化学组成,结果如表1所示。
Table 1. Main chemical composition of incinerated sewage sludge ash
表1. 污泥焚烧飞灰主要化学组成
化学组成(质量分数)/% |
|
SiO2 |
Al2O3 |
CaO |
Fe2O3 |
P2O5 |
MgO |
29.83 |
35.22 |
5.08 |
14.41 |
8.41 |
3.39 |
2.2. 煅烧实验
在卧式管式炉中进行了污泥焚烧飞灰和硫酸盐(Na2SO4和K2SO4)的煅烧实验。分别按照污泥焚烧飞灰质量的5%、10%和20%添加Na2SO4和K2SO4,同时设置未添加硫酸盐的空白对照组(0%)。具体操作如下:称取5 g污泥焚烧飞灰与硫酸盐添加剂充分混合后,均匀地分散在石英舟内,并将石英舟放置在石英管管口预热。通过可编程控温仪将升温速率设置为30℃/min,当管式炉升温至设定温度时,通入流量为1.5 mL/min氮气10 min,以保证样品推入瞬间管内有充足的氮气,将石英舟推入到管式炉中间部位煅烧30 min;若推入过程中管式炉温降超过10℃,则重新准备样品进行煅烧。30 min后,等待管式炉冷却至室温后,取出石英舟称重。Herzel等研究发现,飞灰在950℃~1000℃范围内处理能有效促进重金属去除,同时有利于形成生物有效性的磷酸盐[12],选择1000℃作为煅烧温度。
Figure 1. Process diagram of P fractions
图1. 磷形态分级提取流程图
2.3. 分析方法
2.3.1. 磷形态分析
本研究采用SMT方法进行磷分级,该方法广泛应用于湖泊沉积物、污泥、污泥衍生的碳氢化合物和污泥焚烧飞灰等[13]-[16]。磷通常被分为TP、OP、IP、AP (Ca和Mg结合态磷)和NAIP (Fe和Al结合态磷) [17]。一般地,由SMT法测得的5种形态磷之间理论上存在着两种等量关系,即TP = OP + IP和IP = AP + NAIP。磷分级的具体操作流程如图1所示,将所有得到的上清液进行稀释、过0.45 μm滤膜,滤液用钼蓝显色法测定其中磷含量。实验中磷酸盐浓度–吸光度标准曲线如图2所示,其回归方程为:y = 1.9943x − 0.0148,相关系数R2 = 0.999,说明曲线拟合程度较好,可在后续实验中使用。
Figure 2. Standard curve for P concentration determination
图2. 磷含量测定标准曲线
2.3.2. 磷生物有效性测定
采用柠檬酸萃取法评估煅烧灰渣中磷的生物有效性。用天平称取0.100 g样品于50 ml离心管中,添加30 ml 2%柠檬酸溶液(pH = 2.11),利用超声分散设备对样品超声分散25 min,在室温下230 rpm频率下振荡1 h,振荡过后以10000 rpm转速离心25 min后,利用Whatman滤纸过滤上清液,对上清液进行稀释,利用钼蓝比色法对滤液中
含量进行测量。为保证实验数据的准确性,同时对两组实验样品进行测量分析,作为重复实验。
2.3.3. XRD分析
采用Bruker D8 advance对固体样品进行XRD分析,检测时仪器扫描角度为2˚/min,扫描范围为5˚~90˚,波长为0.15206 nm,电压为40 KV,电流为40 mA。利用MDI Jade软件对输出数据进行分析,通过其峰值和对样品物相进行定性分析。
3. 结果与讨论
3.1. Na2SO4对污泥焚烧飞灰磷形态转化的影响
采用SMT法分析了Na2SO4添加比对煅烧过程中污泥焚烧飞灰磷形态转化的影响。各磷形态分布情况如图3所示,随着Na2SO4添加比增加,煅烧灰渣中TP含量呈现下降趋势,具体表现为:从未添加Na2SO4时的62.04 mg/g降至添加比20%时的57.14 mg/g,这是由于增加Na2SO4添加比会导致在同样质量下污泥焚烧飞灰占比减小,从而产生了稀释效应,使得TP含量有所下降。值得注意的是,IP的变化趋势与TP类似,IP含量由未添加Na2SO4时的60.24 mg/g降至Na2SO4添加比例为20%的55.33 mg/g。OP含量略降,维持在在1.46至3.65 mg/g的较低范围内波动。与此同时,添加Na2SO4对无机磷转化的影响最为显著。当Na2SO4的添加比例达到10%时,NAIP含量由未添加Na2SO4的30.69 mg/g降至14.7 mg/g,占IP比例由50.72%降至24.91%;与此同时,AP的含量则达到最大值,为43.76 mg/g,占IP比例上升至76.59%,这一结果表明了NAIP向AP的转化。而当添加比例超过10%时,AP含量反而下降,NAIP含量显著回升,说明系统出现了AP向NAIP的逆向转化。这一现象可能与反应平衡的位移以及过量Na2SO4改变体系离子强度有关,为后续工艺优化提供了定量依据。结果表明,10%的Na2SO4添加比例展现出最佳的AP转化效果。
Figure 3. The effect of adding Na2SO4 on the concentration (A) and proportion (B) of various forms of P during the calcination process of incinerated sewage sludge ash
图3. 添加Na2SO4对污泥焚烧飞灰煅烧过程中各形态磷含量(A)和占比(B)的影响
图4为添加Na2SO4煅烧后灰渣X射线衍射图。可以发现,SiO2、Al2O3和Fe2O3存在于每个灰渣中,且为灰渣主要矿物相。灰渣中存在AlPO4、CaP2O6、Ca2P2O7、CaNaPO4、Al4(PO4)3(OH)3和Ca9Fe(PO4)7等主要含磷物相,还发现NaAlSi3O8、Ca2Al2O5、CaFe2O4、Al2O3·SiO2和Fe2SiO4等高熔点化合物。在Na2SO4添加比为5%和10%中,AlPO4和Al4(PO4)3(OH)3的衍射峰强度逐渐消失,CaP2O6和Ca2P2O7衍射峰强度逐渐增强,反应过程如式(1)、(2)和(3) [15] [18] [19]。并同时出现Ca9Fe(PO4)7和CaNaPO4物质,Ca9Fe(PO4)7的出现是由于Ca3(PO4)2在其结构中有5个金属位置(M1~M5)和3个磷位置(P1~P3),其中金属位置M4和M5容易被Fe和Al等元素占据[20]。所鉴定的含磷矿物CaNaPO4具有高的生物有效性,这与Herzel等人的研究一致,即在950℃~1000℃范围能产生完全生物可利用的CaNaPO4的含磷矿物[12]。上述含磷化合物的出现验证了SMT法分析结果煅烧灰渣中NAIP向AP的转化[21]。当Na2SO4添加比达到20%时,检测出新的含磷物NaPO3和Na5P3O10,同时含磷物质Ca2P2O7和CaNaPO4衍射峰强度降低,CaP2O6和Ca9Fe(PO4)7衍射峰消失。由SMT流程可知(图1),在用NaOH提取NAIP时,它们率先作为非磷石灰磷被提取出来,这印证了当Na2SO4添加比超过10%时,会导致AP向NAIP的逆向转化。
(1)
(2)
(3)
Figure 4. X-ray diffraction pattern of ash residue after calcination with Na2SO4 added
图4. 添加Na2SO4煅烧后灰渣X射线衍射图
3.2. K2SO4对污泥焚烧飞灰磷形态转化的影响
在煅烧过程中,K2SO4添加剂对污泥焚烧飞灰中磷形态转化的影响同样显著。如图5(A)所示,TP含量由于稀释效应从62.04 mg/g降至56.49 mg/g。煅烧灰渣中IP含量的变化趋势与TP基本一致,从未添加K2SO4时的60.49 mg/g降至添加比20%时的55.47 mg/g。OP含量略降,保持在1.53至1.38 mg/g范围内波动,波动幅度小于10%,表明K2SO4主要影响无机磷形态的转化。当K2SO4添加比例从0%增至10%时,NAIP含量显著降低(降至21.79 mg/g),同时AP含量虽维持在30.53~31.92 mg/g的水平,但其在IP中的占比由51.78%提高至55.41%,反映出较为显著的NAIP向AP转化趋势。随着K2SO4添加比例超过10%后,出现了明显的逆向转化趋势,添加量提高到20%时,NAIP的含量回升至32.11 mg/g,表明10%的K2SO4添加比例展现出最佳的AP转化效果。这一发现与Na2SO4添加剂的研究相类似,证实了硫酸盐添加剂在促进污泥飞灰中磷形态转化方面存在最佳添加比。
Figure 5. The effect of adding K2SO4 on the concentration (A) and proportion (B) of various forms of P during the calcination process of incinerated sewage sludge ash
图5. 添加K2SO4对污泥焚烧飞灰煅烧过程中各形态磷含量(A)和占比(B)的影响
图6为添加K2SO4煅烧后灰渣X射线衍射图。原始污泥焚烧飞灰分中含磷物质主要为AlPO4和Al4(PO4)3(OH)3。在K2SO4添加比为5%和10%时,检测出新含磷物相CaP2O6和Ca2P2O7,其强度随添加剂比例增加而增强;同时,原始含磷相AlPO4衍射峰强度明显减弱,Al4(PO4)3(OH)3特征峰则完全消失。这表明添加K2SO4促进了铝磷化合物向钙磷化合物转变,与SMT法检测到的NAIP向AP转化趋势相吻合。值得注意的是,当K2SO4添加比例达到20%时,X射线衍射图图中检测到新相KHP2O4,同时CaP2O6和Ca2P2O7衍射峰强度明显下降,说明AP向NAIP逆转的机理同样存在,这一现象也与Na2SO4体系中观察到的逆向转化一致。根据SMT流程(图1),在NaOH提取NAIP过程中,KHP2O4以非磷灰石磷的形式被溶出,所以导致NAIP含量增加。从物相角度揭示了K2SO4添加量为20%时AP向NAIP转化的机理。
Figure 6. X-ray diffraction pattern of ash residue after calcination with K2SO4 added
图6. 添加K2SO4煅烧后灰渣X射线衍射图
3.3. 磷的生物有效性评估
Figure 7. Effect of adding Na2SO4 (A) and K2SO4 (B) on P bioavailability during the calcination process of incinerated sewage sludge ash
图7. 添加Na2SO4 (A)和K2SO4 (B)后对污泥焚烧飞灰煅烧过程中磷生物有效性的影响
采用柠檬酸萃取法评估了Na2SO4和K2SO4添加比对煅烧灰渣中磷生物有效性的影响。图7(A)和图7(B)显示了Na2SO4和K2SO4添加比对磷的溶解度的影响。随着Na2SO4添加比增加,磷的溶解度呈先降后升趋势,溶解度由未添加Na2SO4的35.37%下降至Na2SO4添加比为5%时的30.52%。此后,随着Na2SO4添加比进一步增加,磷的溶解度开始上升,并在添加比20%时达到最高值,为41.8%,说明磷的生物有效性提高。图7(B)也展示了类似的趋势,K2SO4添加比增加同样导致磷的溶解度在5%添加比时最小,随后随着K2SO4添加比增大,磷的溶解度逐渐上升,并在20%添加时达到高峰,为48.8%。这表明Na2SO4和K2SO4均能提高磷的生物有效性,其最佳效果均在20%添加比下实现。
值得注意的是,图3和图5中各磷形态转化分析表明,AP含量与磷的柠檬酸溶解度呈现出相反的趋势。在Na2SO4和K2SO4添加比为10%时,尽管AP的含量最高,但其生物有效性(柠檬酸溶解度)相对较低。这种现象说明AP并不全是生物有效性磷,不同类型的AP生物可利用度存在差异[22]。从X射线衍射图可知(图4和图6),Na2SO4和K2SO4添加比为5%和10%时,SMT法提取出的AP主要包括CaP2O6和Ca2P2O7,但CaP2O6不溶于柠檬酸,Meng等也报道了类似的现象[23]。添加比在20%,CaP2O6衍射峰强度消失,同时分别检测到新的可溶性含磷物相NaPO3和KHP2O4,其出现使得柠檬酸溶解度显著提高,进而使得磷的生物有效性分别提升至41.8%和48.8%,这一结果表明,尽管两种硫酸盐均能改善飞灰中磷的生物有效性,但最佳效果出现在20%添加条件下,且K2SO4的效果优于Na2SO4。
4. 结论
本研究探讨了硫酸盐添加剂(Na2SO4和K2SO4)对污泥焚烧飞灰中磷形态转化及磷生物有效性的影响,得出以下结论:
1) Na2SO4能够促进NAIP向AP的转化,在添加比10%时AP占IP比例最佳,达76.59%,但其磷的生物有效性相对较低。
2) 当K2SO4添加比为10%时,AP转化效果最优,AP占IP比例为55.41%,与Na2SO4转化规律相似,同样表现出较低的生物有效性。
3) Na2SO4和K2SO4添加比为20%时,煅烧灰渣中磷的生物有效性达到最高,分别为41.8%和48.8%。并非所有形式的AP都为生物有效性磷,如CaP2O6,虽以AP形式存在,但在柠檬酸溶液中溶解性较差。
NOTES
*通讯作者。