[1]
|
Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., et al. (2015) Systems Integration for Global Sustainability. Science, 347, Article 1258832. https://doi.org/10.1126/science.1258832
|
[2]
|
侯明, 邵志刚, 俞红梅, 衣宝廉. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150.
|
[3]
|
衣宝廉. 燃料电池-原理∙技术∙应用[M]. 北京: 化学工业出版社, 1998.
|
[4]
|
Kim, M., Firestein, K.L., Fernando, J.F.S., Xu, X., Lim, H., Golberg, D.V., et al. (2022) Strategic Design of Fe and N Co-Doped Hierarchically Porous Carbon as Superior ORR Catalyst: From the Perspective of Nanoarchitectonics. Chemical Science, 13, 10836-10845. https://doi.org/10.1039/d2sc02726g
|
[5]
|
Steele, B.C.H. and Heinzel, A. (2001) Materials for Fuel-Cell technologies. Nature, 414, 345-352. https://doi.org/10.1038/35104620
|
[6]
|
Winter, M. and Brodd, R.J. (2004) What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 104, 4245-4270. https://doi.org/10.1021/cr020730k
|
[7]
|
Varcoe, J.R. and Slade, R.C.T. (2005) Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells. Fuel Cells, 5, 187-200. https://doi.org/10.1002/fuce.200400045
|
[8]
|
Merle, G., Wessling, M. and Nijmeijer, K. (2011) Anion Exchange Membranes for Alkaline Fuel Cells: A Review. Journal of Membrane Science, 377, 1-35. https://doi.org/10.1016/j.memsci.2011.04.043
|
[9]
|
Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J., Wu, G., et al. (2011) Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuelcells. Energy Environ. Sci., 4, 114-130. https://doi.org/10.1039/c0ee00011f
|
[10]
|
Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Sun, G., et al. (2003) Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 107, 6292-6299. https://doi.org/10.1021/jp022505c
|
[11]
|
Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., et al. (2011) Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano, 6, 205-211. https://doi.org/10.1021/nn203393d
|
[12]
|
Borghei, M., Lehtonen, J., Liu, L. and Rojas, O.J. (2017) Advanced Biomass‐Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 30, Article No. 27. https://doi.org/10.1002/adma.201703691
|
[13]
|
Deng, J., Li, M. and Wang, Y. (2016) Biomass-Derived Carbon: Synthesis and Applications in Energy Storage and Conversion. Green Chemistry, 18, 4824-4854. https://doi.org/10.1039/c6gc01172a
|
[14]
|
Dessalle, A., Quílez-Bermejo, J., Fierro, V., Xu, F. and Celzard, A. (2023) Recent Progress in the Development of Efficient Biomass-Based ORR Electrocatalysts. Carbon, 203, 237-260. https://doi.org/10.1016/j.carbon.2022.11.073
|
[15]
|
Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281, 237-240. https://doi.org/10.1126/science.281.5374.237
|
[16]
|
尹增芳, 樊汝坟. 植物细胞壁的研究进展[J]. 植物研究, 1999, 19(4): 407-414.
|
[17]
|
张豁中, 温玉麟, 编著. 动物活性成分化学[M]. 天津: 天津科学技术出版社, 1900.
|
[18]
|
蔡庆生. 植物生理学[J]. 北京: 中国农业大学出版社, 2011.
|
[19]
|
史建华, 赵建国, 邢宝岩. 以生物质为催化剂化学气相沉积制备碳纳米管[J]. 新型炭材料, 2012, 27(3): 175-180.
|
[20]
|
Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399. https://doi.org/10.1039/c6cp00174b
|
[21]
|
Zhao, Q., Ma, Q., Pan, F., Wang, Z., Yang, B., Zhang, J., et al. (2016) Facile Synthesis of Nitrogen-Doped Carbon Nanosheets as Metal-Free Catalyst with Excellent Oxygen Reduction Performance in Alkaline and Acidic Media. Journal of Solid State Electrochemistry, 20, 1469-1479. https://doi.org/10.1007/s10008-016-3157-z
|
[22]
|
He, D., Zhao, W., Li, P., Liu, Z., Wu, H., Liu, L., et al. (2019) Bifunctional Biomass-Derived 3D Nitrogen-Doped Porous Carbon for Oxygen Reduction Reaction and Solid-State Supercapacitor. Applied Surface Science, 465, 303-312. https://doi.org/10.1016/j.apsusc.2018.09.185
|
[23]
|
Huang, B., Liu, Y., Guo, Q., Fang, Y., Titirici, M., Wang, X., et al. (2020) Porous Carbon Nanosheets from Biological Nucleobase Precursor as Efficient pH-Independent Oxygen Reduction Electrocatalyst. Carbon, 156, 179-186. https://doi.org/10.1016/j.carbon.2019.09.056
|
[24]
|
Gao, Q., Wang, Y., Yang, M., Shen, W., Jiang, Y., He, R., et al. (2021) N, S-Codoped Porous Carbon as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 25, 1765-1773. https://doi.org/10.1007/s10008-021-04947-5
|
[25]
|
Maliutina, K., He, C., Huang, J., Yu, J., Li, F., He, C., et al. (2021) Structural and Electronic Engineering of Biomass-Derived Carbon Nanosheet Composite for Electrochemical Oxygen Reduction. Sustainable Energy & Fuels, 5, 2114-2126. https://doi.org/10.1039/d0se01631d
|
[26]
|
Wang, S., Chen, Y., Zhao, Y., Wei, G., Li, D. and Liu, X. (2022) Mesopore-Dominated N, S Co-Doped Carbon as Advanced Oxygen Reduction Reaction Electrocatalysts for Zn-Air Battery. Journal of Materials Science, 57, 19431-19446. https://doi.org/10.1007/s10853-022-07784-7
|
[27]
|
赵冬梅, 李振伟, 刘领弟. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2): 185-200.
|
[28]
|
Li, M., Xiong, Y., Liu, X., Han, C., Zhang, Y., Bo, X., et al. (2015) Iron and Nitrogen Co-Doped Carbon Nanotube@hollow Carbon Fibers Derived from Plant Biomass as Efficient Catalysts for the Oxygen Reduction Reaction. Journal of Materials Chemistry A, 3, 9658-9667. https://doi.org/10.1039/c5ta00958h
|
[29]
|
Liu, Z., Wang, F., Li, M. and Ni, Z. (2016) N, S and P-Ternary Doped Carbon Nano-Pore/Tube Composites Derived from Natural Chemicals in Waste Sweet Osmanthus Fruit with Superior Activity for Oxygen Reduction in Acidic and Alkaline Media. RSC Advances, 6, 37500-37505. https://doi.org/10.1039/c6ra08371d
|
[30]
|
Zhou, Q., Thokchom, A.K., Kim, D. and Kim, T. (2017) Inkjet-Printed Ag Micro-/Nanostructure Clusters on Cu Substrates for in-situ Pre-Concentration and Surface-Enhanced Raman Scattering. Sensors and Actuators B: Chemical, 243, 176-183. https://doi.org/10.1016/j.snb.2016.11.134
|
[31]
|
张金超, 杨康宁, 张海松. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 2(5): 397-408.
|
[32]
|
闻雷, 刘成名, 宋仁升. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 7(2): 333-344.
|
[33]
|
张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 7(2): 367-377.
|
[34]
|
Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399. https://doi.org/10.1039/c6cp00174b
|
[35]
|
Zhou, H., Zhang, J., Zhu, J., Liu, Z., Zhang, C. and Mu, S. (2016) A Self-Template and KOH Activation Co-Coupling Strategy to Synthesize Ultrahigh Surface Area Nitrogen-Doped Porous Graphene for Oxygen Reduction. RSC Advances, 6, 73292-73300. https://doi.org/10.1039/c6ra16703a
|
[36]
|
Liu, Y., Sun, K., Cui, X., Li, B. and Jiang, J. (2020) Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc-Air Batteries. ACS Sustainable Chemistry & Engineering, 8, 2981-2989. https://doi.org/10.1021/acssuschemeng.9b07621
|
[37]
|
Wang, K., Wang, H., Ji, S., Feng, H., Linkov, V. and Wang, R. (2013) Biomass-Derived Activated Carbon as High-Performance Non-Precious Electrocatalyst for Oxygen Reduction. RSC Advances, 3, 12039-12042. https://doi.org/10.1039/c3ra41978a
|
[38]
|
Liang, K., Xu, Y., Wang, L., Liu, Y. and Liu, Y. (2019) Alkali‐Driven Assembly of Protein‐Rich Biomass Boosts the Electrocatalytic Activity of the Derived Carbon Materials for Oxygen Reduction. ChemCatChem, 11, 4822-4829. https://doi.org/10.1002/cctc.201901247
|
[39]
|
Wu, H., Geng, J., Ge, H., Guo, Z., Wang, Y. and Zheng, G. (2016) Egg‐derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 6, Article No. 8. https://doi.org/10.1002/aenm.201600794
|
[40]
|
Guo, C., Liao, W., Li, Z. and Chen, C. (2015) Exploration of the Catalytically Active Site Structures of Animal Biomass-Modified on Cheap Carbon Nanospheres for Oxygen Reduction Reaction with High Activity, Stability and Methanol-Tolerant Performance in Alkaline Medium. Carbon, 85, 279-288. https://doi.org/10.1016/j.carbon.2015.01.007
|
[41]
|
Zheng, J., Guo, C., Chen, C., Fan, M., Gong, J., Zhang, Y., et al. (2015) High Content of Pyridinic-and Pyrrolic-Nitrogen-Modified Carbon Nanotubes Derived from Blood Biomass for the Electrocatalysis of Oxygen Reduction Reaction in Alkaline Medium. Electrochimica Acta, 168, 386-393. https://doi.org/10.1016/j.electacta.2015.03.173
|
[42]
|
Chaudhari, N.K., Song, M.Y. and Yu, J. (2014) Heteroatom-Doped Highly Porous Carbon from Human Urine. Scientific Reports, 4, Article No. 5221. https://doi.org/10.1038/srep05221
|
[43]
|
Tran, T., Song, M.Y., Kang, T., Samdani, J., Park, H., Kim, H., et al. (2018) Iron Phosphide Incorporated into Iron‐treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 5, 1944-1953. https://doi.org/10.1002/celc.201800091
|
[44]
|
Maciel, D., Veres, S.P., Kreuzer, H.J. and Kreplak, L. (2016) Quantitative Phase Measurements of Tendon Collagen Fibres. Journal of Biophotonics, 10, 111-117. https://doi.org/10.1002/jbio.201500263
|
[45]
|
Pusztahelyi, T. (2018) Chitin and Chitin-Related Compounds in Plant-Fungal Interactions. Mycology, 9, 189-201. https://doi.org/10.1080/21501203.2018.1473299
|
[46]
|
Wang, R., Wang, K., Wang, Z., Song, H., Wang, H. and Ji, S. (2015) Pig Bones Derived N-Doped Carbon with Multi-Level Pores as Electrocatalyst for Oxygen Reduction. Journal of Power Sources, 297, 295-301. https://doi.org/10.1016/j.jpowsour.2015.07.107
|
[47]
|
Song, H., Li, H., Wang, H., Key, J., Ji, S., Mao, X., et al. (2014) Chicken Bone-Derived N-Doped Porous Carbon Materials as an Oxygen Reduction Electrocatalyst. Electrochimica Acta, 147, 520-526. https://doi.org/10.1016/j.electacta.2014.09.146
|
[48]
|
Liu, Q., Duan, Y., Zhao, Q., Pan, F., Zhang, B. and Zhang, J. (2014) Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir, 30, 8238-8245. https://doi.org/10.1021/la404995y
|
[49]
|
Liu, R., Zhang, H., Liu, S., Zhang, X., Wu, T., Ge, X., et al. (2016) Shrimp-Shell Derived Carbon Nanodots as Carbon and Nitrogen Sources to Fabricate Three-Dimensional N-Doped Porous Carbon Electrocatalysts for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 18, 4095-4101. https://doi.org/10.1039/c5cp06970j
|
[50]
|
Zhang, J., Wu, S., Chen, X., Cheng, K., Pan, M. and Mu, S. (2014) An Animal Liver Derived Non-Precious Metal Catalyst for Oxygen Reduction with High Activity and Stability. RSC Advances, 4, 32811-32816. https://doi.org/10.1039/c4ra06495j
|
[51]
|
Zhang, J., Zhou, H., Liu, X., Zhang, J., Peng, T., Yang, J., et al. (2016) Keratin-Derived S/N Co-Doped Graphene-Like Nanobubble and Nanosheet Hybrids for Highly Efficient Oxygen Reduction. Journal of Materials Chemistry A, 4, 15870-15879. https://doi.org/10.1039/c6ta06212a
|
[52]
|
Zhang, J., Wu, C., Wang, J., Xia, M., Li, S., Liu, L., et al. (2024) DFT-Guided Synthesis of N, B Dual-Doped Porous Carbon from Saccharina Japonica for Enhanced Oxygen Reduction Catalysis. Frontiers in Chemistry, 12, Article 1478560. https://doi.org/10.3389/fchem.2024.1478560
|