生物质衍生碳基氧还原电催化剂的研究进展
Research Progress of Biomass-Derived Carbon-Based Electrocatalyst for Oxygen Reduction Reaction
DOI: 10.12677/japc.2025.142023, PDF, HTML, XML,    科研立项经费支持
作者: 王纪龙, 彭卫东:中国民用航空飞行学院航空电子电气学院,四川 成都;杨一四喜, 齐向宇, 魏武国, 张俊杰*:中国民用航空飞行学院航空工程学院,四川 成都
关键词: 生物质碳材料氧还原电催化剂Biomass Carbon ORR Electrocatalyst
摘要: 氧还原(Oxygen Reduction Reaction, ORR)电催化剂是燃料电池中核心材料之一,开发活性高、稳定性好、廉价的电催化剂制备技术对推动燃料电池大规模商业化应用至关重要。与金属基ORR电催化剂(如低Pt电催化剂、非贵金属电催化剂等)相比,具有导电性好、稳定性高、孔隙率和形貌及功能性可调等诸多优点的碳基电催化剂则更具有竞争力。生物质是自然界中最为丰富的可再生资源,通常富含多种杂原子,近年来由生物质合成的碳基ORR电催化剂引起研究者们的广泛关注。本文以生物质来源(植物类、动物废弃物类)为出发点,从合成策略、物理/化学性质、电催化活性、抗毒化能力及耐久性等方面,对生物质衍生碳基ORR催化剂的最新研究进展进行了综述,并分析了制备过程中存在的难点,对该领域的研究前景进行了展望。
Abstract: Oxygen reduction reaction (ORR) electrocatalyst is one of the core materials in fuel cells. It is very important to develop an electrocatalyst preparation technology with high activity, good stability and low cost to promote the large-scale commercial application of fuel cells. Compared with metal-based ORR electrocatalysts (such as low Pt electrocatalyst and non-noble metal electrocatalyst), the carbon-based electrocatalysts have many advantages such as good electrical conductivity, high stability, adjustable porosity, morphology and functionality, etc., which are more competitive. Biomass is the most abundant renewable resource in nature, which is usually rich in a variety of heteroatoms. In recent years, carbon-based ORR electrocatalysts synthesized from biomass have attracted extensive attention of researchers. Based on the types of biomasses (plant, animal waste) as a starting point, from the synthetic strategy, physical/chemical properties, catalytic activity, poison resistance and durability, etc., the latest research progress of biomass-derived carbon-based ORR electricity catalysts are reviewed, the difficulties that exist in the preparation process are analyzed, and the research prospects in this field are also discussed.
文章引用:王纪龙, 彭卫东, 杨一四喜, 齐向宇, 魏武国, 张俊杰. 生物质衍生碳基氧还原电催化剂的研究进展[J]. 物理化学进展, 2025, 14(2): 241-253. https://doi.org/10.12677/japc.2025.142023

1. 引言

近年来,传统化石能源(石油,煤和天然气)的短缺及其产生的环境污染问题已经成为全球面临的重要问题之一[1]-[4],开发新型清洁能源,提高能源效率和燃料转化方式成为全球关注的热点。在所有新型清洁能源技术中,具有能量转化效率高、零排放、启动快等诸多优点的燃料电池尤其是阴离子交换膜燃料电池已成为最有潜力的传统化石能源替代品之一[5] [6],并在交通运输装备中获得了应用。但与以燃油为主的传统交通运输装备相比,燃料电池暂时还缺乏足够的竞争力,使用储量低、价格高、抗甲醇/一氧化碳毒化能力较弱的贵金属铂(Pt)作催化剂,尤其是动力学缓慢的氧还原反应(Oxygen Reduction Reaction, ORR)更需要高担载量金属Pt,是导致其成本高、缺乏竞争力的关键因素之一[7] [8]。与金属基催化剂(贵金属和非贵金属)相比,碳材料不仅来源广、成本低、稳定性好、而且不存在电池寿命到期后催化剂的回收问题,展现出较强的竞争力[9]。在众多碳基ORR电催化剂中,杂原子掺杂的碳纳米管[10]和石墨烯[11]等既有优异的ORR催化活性又呈现良好的稳定性,表现出广阔的应用前景,但它们多以化石燃料前驱体为原料,通过高能耗工艺(化学气相沉积、电弧放电、激光刻蚀等)获得,且其中的杂原子多需额外工艺掺杂,从而导致成本较高、生产过程不友好。

生物质在自然界中随处可见,目前,全球范围每年产生1400亿公吨的生物质废弃物,主要通过焚烧,掩埋等方式进行处理,不仅对环境和土壤造成严重污染,而且不符合绿色、可持续策略[12]。来源广泛的生物质不仅碳含量高而且含有丰富的杂原子,如能利用绿色、廉价的生物质制备催化活性高、循环稳定好、富含杂原子的碳基ORR催化剂,对降低ORR电催化剂成本、加速燃料电池的推广和应用具有重要的理论意义和实用价值,因此,生物质衍生碳基ORR催化剂受到越来越多燃料电池研究者的青睐[13] [14]。本文从生物质衍生碳基ORR电催化剂的分类出发,综述了近年来已报道的不同类型生物质衍生碳基ORR催化剂的研究进展。

2. 生物质衍生碳基ORR电催化剂

广义的生物质包括所有的植物、微生物以及以植物、微生物为食物的动物及其生产的废弃物,其中,植物是通过光合作用产生有机体[15],包含根、茎、叶片、果实和种子,主要含有纤维素、木质素、淀粉、植物蛋白质和无机盐等化学成分[16]。动物废弃物包括动物自然代谢产物、尸体和排泄物,主要包含动物蛋白质、甲壳素和无机盐等化学成分[17]。动物废弃物和植物类生物质的基本构架和营养元素都是碳水化合物,可提供丰富碳源。植物蛋白质和动物蛋白质都由氨基酸组成,可提供丰富的杂原子。与此同时,无机盐在高温热解及后处理过程中有助于碳材料形成多孔结构。上述植物和动物废弃物都具有来源广泛、低成本、无污染等特点适合作为碳基ORR电催化剂的前驱体。因而,利用廉价、绿色的生物质制备富含杂原子的碳基ORR电催化剂具有广阔的应用前景。

2.1. 植物衍生的碳基ORR电催化剂

植物体主要由有机物,无机物和水分组成,脱水后有机物占比为90%~95%,无机物占比为5%~10%,其中有机物包括木质素,纤维素,半纤维素,糖类,植物蛋白质,维生素,核酸,嘧啶和嘌呤等。无机物为植物供给微量营养素(硝酸钠,磷酸钙和硫酸钾等) [18]。植物种类繁杂,不同种类植物都拥有各自独特的组织结构和元素分布,进而可以制备出不同结构的碳基(多孔碳,碳纳米管和石墨烯) ORR电催化剂[19]-[22]

2.1.1. 植物衍生的多孔碳基ORR催化剂

Figure 1. TEM image of corn starch derived porous carbon-based ORR catalyst (a), LSV curve (b), Potentiostatic polarization curves in 0.1 M·KOH solution (c) [21]

1. 玉米淀粉衍生多孔碳材料的TEM图(a)、在0.1 M·KOH溶液中的LSV曲线(b)和恒电位极化曲线(c) [21]

多孔碳是植物衍生碳基ORR催化剂最常见的结构之一,可经过简易的高温热解工艺获得,普遍具有较高的比表面积。譬如玉米淀粉与尿素混合[21],经过高温热解处理后,可获得形貌如图1(a)所示的N (2.42 at%)掺杂多孔碳材料,比表面积高达1568 m2·g1。在0.1 M·KOH溶液中,该试样(NCN-1000)的极限扩散电流密度达到−4.5 mA·cm2,略低于商业Pt/C (−5.5 mA·cm2),见图1(b)。在制备试样过程中,热解温度从800℃提高至1000℃,试样中N含量从4.28 at%降低至0.91 at%,表明高温热解会使碳材料表面杂原子流失,导致其表面暴露杂原子含量较低且分布不均。经过恒电位稳定性测试(−0.25 V vs. Ag/AgCl),NCN-1000电流密度衰减了22%,而商业Pt/C的电流密度衰减了33%,见图1(c)。尽管,NCN-1000在碱性溶液中展示出比商业Pt/C更高的电化学稳定性,但其在使用过程中不可避免的发生催化性能衰减。

鸟嘌呤富含N元素,经过预碳化、ZnCl2活化、二次高温热解和酸洗后,可制备出高吡啶-N (占总N含量的48.1%)掺杂多孔碳材料且形貌见图2(a) [23]。该试样(GHS-1000-2.5)在0.1 M·KOH溶液中,经过恒电位极化20,000 s后,电流密度的衰减比例为6.1%,低于商业Pt/C (23%),意味着GHS-1000-2.5具有较强的电化学稳定性,见图2(c)。经外掺杂三聚氰胺后,芋头茎衍生N (4.8 at%)掺杂多孔碳材料(3DNPC-800)的比表面积达到1012 m2·g1,其形貌见图2(b) [22]。实验结果表明,热解温度从700℃升高至900℃,试样的N含量从8.06 at%降低至3.02 at%,意味着芋头茎在高温热解转化为碳材料过程中,碳材料表面的部分杂原子流失。在0.1 M·KOH溶液中,恒电位(0.7 V vs. RHE)极化20,000 s后,3DNPC-800的电流密度衰减3.5%,衰减速率远小于商业Pt/C (17%),表现出较强的稳定性见图2(d)。3DNPC-800的碳颗粒尺寸较大(约几十微米),导致其比表面积低、富含的杂原子得不到充分利用。尖尾叶片衍生N、S双掺杂多孔碳材料,柚子皮衍生N、S掺杂多孔碳材料在0.1 M·KOH溶液中都展示不错的ORR活性和稳定性,但其碳颗粒尺寸也较大(约几十微米级别) [24]-[26]

Figure 2. Morphology image of guanine and taro stem derived porous carbon-based ORR catalysts (a, b), Potentiostatic polarization curves of guanine derived porous carbon-based catalyst in 0.1 M·KOH solution (c), Potentiostatic polarization curves of taro stem derived porous carbon-based catalyst in 0.1 M·KOH solution (d) [22] [23]

2. 鸟嘌呤和芋头茎衍生多孔碳材料的形貌图(a, b)、及鸟嘌呤衍生多孔碳材料在0.1 M·KOH溶液中恒电位极化曲线(c)、和芋头茎衍生多孔碳材料在0.1 M·KOH溶液中恒电位极化曲线(d) [22] [23]

上述植物衍生多孔碳基ORR催化剂在碱性溶液中虽展示出不错的ORR催化性能,但其存在杂原子含量较低、种类较少、经过高温热解后碳颗粒表面杂原子含量明显降低、颗粒尺寸较大(几十微米)及使用过程中发生催化性能衰减等问题,仍需继续深入的研究。此外,多数植物衍生多孔碳材料自身杂原子含量较低,仍需外掺杂杂原子来提升杂原子含量,导致制备工艺繁琐、成本增大。

2.1.2. 植物衍生的碳纳米管基ORR催化剂

碳纳米管(Carbon nanotubes, CNTs)作为一维纳米材料,具有重量轻、优异的电学、力学、光学和化学性能,受到燃料电池研究者的关注[27]。2012年,史建华课题组[19]首次以烘干后的紫菜、香菇、黑芝麻和黑木耳粉分别作为前驱体,采用化学气相沉积法(氩气、天然气气氛、温度为950℃、5 h)制备出一系列直径均匀的CNTs。其中,紫菜、香菇、黑芝麻粉末为前驱体的CNTs呈阵列结构、管径均匀,而以黑木耳为前驱体所制备的CNTs虽然管径均匀,但杂乱生长。尽管上述CNTs是借助高温化学气相沉积获得,但为生物质直接制备CNTs提供有益的探索。

Figure 3. SEM image of catkin derived CNTs material (a), LSV curves in 0.1 M·KOH solution (b), Potentiostatic polarization curves (c) [28]

3. 柳絮衍生CNTs的SEM图(a)、0.1 M·KOH溶液中LSV曲线(b)、恒电位极化曲线(c) [28]

Li等人[28]将柳絮、三聚氰胺和氯化铁的混合物在800℃的N2气氛中热解获得Fe、N掺杂的CNTs材料,即Fe/N/CNT@PCF (图3(a~b))。实验表明,与未掺杂(PCF)的柳絮衍生碳材料(比表面积:179.9 m2·g1,N含量为0.29%,半波电位为−313 mV vs. Ag/AgCl,极限扩散电流密度为−1.43 mA·cm2,电子转移数为2.87)相比,添加三聚氰胺和氯化铁不仅能有效地提高该材料的比表面积(461.5 m2·g1)和含N量(4.15%),而且半波电正移至−194 mV vs. Ag/AgCl,极限扩散电流密度和电子转移数分别提升至−4.08 mA·cm2和3.91,接近商业Pt/C的半波电位(−171 mV vs. Ag/AgCl),极限扩散电流密度(−4.63 mA·cm2)和转移电子数(3.99)。经过恒电位极化(−0.4 V vs. Ag/AgCl) 20,000 s后,Fe/N/CNT@PCF的电流密度衰减至88.9%,见图3(c)

添加双氰胺的桂花果实热解后可获得N、P、S三元掺杂的多孔CNTs材料[29] (图4(a~b)),在碱性介质中,该催化剂(NSP-CNPTCs2)拥有较高的极限扩散电流密度(−5.2 mA·cm2),甚至高于商业47.6% Pt/C (−4.5 mA·cm2)。在碱性和酸性环境下,NSP-CNPTCs2恒电位极化25,000 s后,其电流密度分别衰减至96.4% (碱性在−0.3 V vs. Ag/AgCl)和90.2% (酸性在0.4 V vs. Ag/AgCl)。

尽管有些生物质衍生的CNTs基催化剂的ORR催化性能高于商业47.6% Pt/C,但复杂的制备工艺(气相沉积技术、添加金属为催化剂、外掺杂工艺)导致其制备成本偏高,实际应用受到限制。同时,生物质衍生的CNTs基催化剂在使用过程中不可避免的存在催化性能衰减。

Figure 4. TEM image of osmanthus fragrans fruit-derived CNTs material (a), LSV curves in 0.1 M·KOH solution (b) [29]

4. 桂花果实衍生CNTs材料的TEM图(a)、在0.1 M·KOH溶液中LSV曲线(b) [29]

2.1.3. 植物衍生的石墨烯基ORR催化剂

与一维CNTs相比,石墨烯(Graphene)是以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格的纳米片结构,比碳纳米管的化学性能更优异,被认为是一种未来革命性材料[27] [30]-[33],但其制备成本高、产业化难度大。Zhou等[34]将KOH活化后的豌豆皮在氨气气氛中热解,获得高比表面积(1152 m2·g1)、高N含量(5.73%)掺杂多孔石墨烯基ORR催化剂,其形貌如图5(a)所示。该催化剂(SBS-K-A)在碱性溶液中的起始电位(−0.009 V vs. SCE)和半波电位(−0.202 V vs. SCE)与商业Pt/C接近(−0.007 V vs. SCE和−0.188 V vs. SCE),见图5(b)。在酸性和碱性溶液中分别极化10,000 s后,该催化剂的电流密度分别衰减19% (酸性)和8% (碱性),衰减速率明显小于商业Pt/C (酸性:衰减30%,碱性:衰减16%),表现出较好的稳定性(图5(c~d))。

Figure 5. TEM image of pea skin derived graphene-based ORR catalyst (a), LSV curves in 0.1 M·KOH solution (b), Potentiostatic polarization curves in 0.1 M·KOH solution (c), and 0.5 M·H2SO4 solution (d) [34]

5. 豌豆皮衍生石墨烯材料的TEM图(a)、在0.1 M·KOH溶液中LSV曲线(b)、在0.1 M·KOH溶液(c)和在0.5 M·H2SO4溶液(d)中恒电位极化曲线[34]

图6所示,以茄子为原材料,经过KOH活化、高温热解(氨气气氛,1000℃)后可制备出N (含量为1.04%)掺杂介孔石墨烯(NDPG)材料[35],其在0.1 M·KOH溶液中的半波电位(−0.18 V vs. SCE)接近商业Pt/C (−0.17 V vs. SCE)。恒电位极化10,000 s后,NDPG的电流密度衰减至96%,商业Pt/C的电流密度衰减至91%,表明NDPG具有较强的电化学稳定性。女贞果[36]经H3PO4活化、水热碳化(温度为180℃,时间为30 h)、KHCO3活化和高温热解亦可制备出N (3.71 at%)掺杂石墨烯材料,在0.1 M·KOH溶液中半波电位达到0.81 V vs. RHE,接近商业Pt/C (0.84 V vs. RHE)。经过恒电位(0.40 V vs. RHE)极化11 h后,其极化电流密度出现衰减,衰减比例为6.28%,远低于商业Pt/C (38.8%)。

未使用金属盐催化剂的条件下,利用热解、水热等工艺可将一些植物转变成石墨烯,但试样的杂原子含量较低,且仍需要外掺杂工艺(氨气等)来提高杂原子含量以提升ORR催化性能。

综上所述,植物可以通过不同的方式制备出诸如多孔碳、CNTs、石墨烯等结构的碳材料,并在碱性、酸性溶液中展示出不错的ORR催化性能,但普遍存在杂原子含量较低、杂原子种类较少、高温热解后碳颗粒表面杂原子含量明显降低、颗粒尺寸(约几十微米)较大、使用过程中性能衰减等问题。尤其需要指出的是,多数植物衍生碳材料自身杂原子含量较低,仍需外掺杂杂原子来提高杂原子含量和种类,导致制备工艺繁琐、成本增大、实际应用受到限制。

Figure 6. Low-resolution SEM image of eggplant derived graphene-based ORR catalyst (a), High-resolution SEM image (b), LSV curves in 0.1 M·KOH solution (c), Potentiostatic polarization curves (d) [35]

6. 茄子衍生石墨烯材料的低倍SEM图(a)、高倍SEM图(b)、0.1 M·KOH溶液中LSV曲线(c)、恒电位极化曲线(d) [35]

2.2. 动物废弃物衍生碳基ORR催化剂

与植物相比,动物废弃物普遍具有环境污染性。将动物废弃物转化为碳基ORR催化剂,既能保护环境又节约处理成本,符合绿色、可持续和环境友好的发展战略。动物废弃物主要包含液体、骨骼、外壳和动物蛋白质等。

2.2.1. 液体衍生的碳基ORR催化剂

液体动物废弃物主要包括鸡蛋清、猪血和人类尿液等。Wang等人[37]将鸡蛋清与氯化铁混合物进行高温热解,制备出Fe、N掺杂的碳基ORR催化剂,并在碱性溶液中表现出良好的ORR活性,经过500次循环伏安测试后,试样的电流密度损失3.1%。鸡蛋清与NaOH混合形成凝胶化蛋清溶液,经过冷冻干燥、高温热解后,可获得N、S掺杂的多孔碳材料(NSPC-1-900,尺寸约为几十微米),见图7(a~b)。当热解温度从500℃升高至900℃,制备试样的N含量从9.0 at%降低至4.0 at%,S含量从0.60 at%降低至0.25 at%,说明高温热解导致碳材料表面的部分杂原子流失。试样NSPC-1-900在0.1 M·KOH溶液中ORR的起始电位和半波电位分别达到1.03 V vs. RHE和0.880 V vs. RHE [38]图7(c)。NSPC-1-900经过恒电位极化30,000 s后,其电流密度衰减至95%,见图7(d)。鸡蛋清与二氧化硅共同高温热解后,得到介孔碳微球,其在碱性溶液中ORR的极限扩散电流密度达到−4.36 mA·cm2,经过20 h的恒电位极化测试后,其电流密度衰减至92% [39]

Figure 7. Low-resolution SEM image of egg white-derived carbon material (a), High-resolution SEM image (b), LSV curves in 0.1 M·KOH solution (c), Potentiostatic polarization curves (d) [38]

7. 鸡蛋清衍生碳材料的低倍SEM图(a)、高倍SEM图(b)、在0.1 M·KOH溶液中LSV曲线(c)、恒电位极化曲线(d) [38]

Figure 8. Urine derived porous nanocarbon material before (a), and after (c) doping after iron salt and LSV curves in 0.1 M·KOH solution (b, d) [42] [43]

8. 尿液衍生多孔纳米碳材料经过掺杂铁盐前(a)、后(c)的SEM图及其在0.1 M·KOH溶液中LSV曲线(b, d) [42] [43]

猪血分别与XC-72 [40]和CNTs [41]混合后热解,可分别获得吡啶-N、吡咯-N掺杂碳材料和N掺杂CNTs材料,二者都表现出较好的ORR性能。其中,N掺杂CNTs材料随着热解温度升高(700℃~1000℃),N含量从2.82 at%降低至0.99 at%。试样(N-CNT-800)在0.1 M·KOH溶液中,经过10,000圈循环稳定性测试电流密度衰减至91.4%。图8(a~b)示出人类尿液(富含N元素) [42]与酪氨酸O-硫酸盐和蛋白质残渣(富含S元素)混合后高温热解后得到的N (2.6 at%)、S (0.9 at%)、Si (0.3 at%)和P (0.2 at%)掺杂多孔碳材料(URC-1000),热解温度从700℃升高至1100℃时,制备试样的N含量从9.8 at%降低至2.0 at%,同样证实高温热解会导致碳材料表面杂原子流失。URC-1000在0.1 M·KOH溶液中ORR的极限扩散电流密度达到−3.1 mA·cm2,略低于Pt/C (−4.5 mA·cm2)。以乙酰丙酮铁取代尿液中的酪氨酸O-硫酸盐和蛋白质残渣[43]并在氨气气氛中高温热解得到的Fe、N、P和S掺杂多孔碳为FeP-NSC-800,图8(c~d)所示,在碱性溶液中ORR的极限扩散电流密度高达−7.0 mA·cm2,优于商业Pt/C (−6.0 mA·cm2),经过2000圈和5000圈的老化测试后,其半波电位分别衰减25 mV和38 mV。

如上所述,多种动物液体废弃物均能制备出高活性的多孔碳基ORR催化剂,有些碳材料的电化学性能甚至优于商业Pt/C,但与植物衍生碳材料类似,也存在杂原子含量较低、高温热解后碳颗粒表面杂原子含量明显降低、颗粒尺寸较大等问题。此外,多数是在外掺杂金属后才表现出优异的电化学性能、且需配套冷冻干燥等工艺,从而导致加工成本较高。

2.2.2. 骨骼和外壳衍生的多孔碳基ORR催化剂

Figure 9. SEM image of chicken bone derived carbon material (a), Cycle stability test curve in 0.1 M·KOH solution (b) [47], TEM image of crayfish shell derived carbon material (c), LSV curves in 0.1 M·KOH solution (d) [48]

9. 鸡骨头衍生碳材料的SEM图(a)、在0.1 M·KOH溶液中循环稳定性测试曲线(b) [47]、小龙虾壳衍生碳材料的TEM图(c)、在0.1 M·KOH溶液中LSV曲线(d) [48]

与动物的液体废弃物相比,骨骼和外壳分别富含胶原纤维和甲壳素,可提供较为丰富的碳原子和杂原子[44] [45],有利于提高其衍生碳材料的ORR催化活性。Wang等人[46]发现猪骨头热解可形成N (0.99 at%)掺杂多孔碳材料,其在0.1 M·KOH溶液中经过1000次老化测试后,其半波电位衰减19 mV与商业Pt/C (衰减22 mV)相近。Song等人[47]将预碳化的鸡骨头与氯化铁混合后,在氨气气氛中热解后获得的N掺杂介孔碳(CCB2)在碱性溶液中经1000圈CV扫描后,展示出良好的稳定性,其半波电位衰减39 mV,与商业10% Pt/C (衰减38 mV)相当见图9(a~b)

小龙虾外壳[48]富含甲壳素,与尿素混合后高温热解合成出N (4.36 at%)掺杂多孔石墨烯(NCN),未掺杂尿素的试样中N含量为2.91 at%。在0.1 M·KOH溶液中,NCN的极限扩散电流密度(−6 mA·cm2)甚至高于商业Pt/C (−5 mA·cm2,见图9(c~d))。经过18 h的恒电位极化测试后,NCN性能衰减比较严重,电流密度衰减至70%。Liu等[49]将虾壳与氨水热解获得了三维N掺杂多孔碳,在碱性溶液中极限扩散电流密度(−5.3 mA·cm2),稍逊色于商业Pt/C (−5.5 mA·cm2)。经过20,000 s的恒电位(−0.35 V vs. Ag/AgCl)极化后,其电流密度衰减了12%。

研究结果表明,骨骼和外壳等动物废弃物衍生碳材料自身杂原子含量较低,多数材料在使用过程中ORR催化性能衰减比较严重。同时,该类需引入其它原子(金属盐、尿素、氨气及氨水等)后可制备出性能较优异的多孔碳基ORR催化剂,引入额外杂原子的过程将导致制备工艺繁琐,削弱其在成本上的优势。

2.2.3. 动物蛋白质衍生碳基ORR催化剂

动物蛋白质是由富含N元素的氨基酸所组成,若以富含动物蛋白质的废弃物为前体,则可能制备出高杂原子含量掺杂碳基ORR催化剂。Zhang等[50]将猪肝与铁盐混合物热解后制备出了Fe、N掺杂多孔碳材料(CPL-Fe),其在碱性溶液中的半波电位(0.78 V vs. RHE)和极限扩散电流密度(−5.2 mA·cm2)都接近商业Pt/C (0.81 V vs. RHE和−5.2 mA·cm2),经过10,000 s的恒电位极化测试后,CPL-Fe的电流密度衰减至89%,半波电位衰减15 mV。电化学性能较好的原因是由于猪肝中氨基酸与Fe元素能形成Fe螯合物(图10(a~b))。由图10(c~d)示出富含角蛋白的角质通过KOH溶液活化和高温热解(1000℃),获得的N、S掺杂石墨烯类碳纳米片(GLBS-1000),其尺寸较大(约几十微米)。在碱性介质中,GLBS-1000经过3000圈循环伏安测试后,其半波电位损失5 mV [51]

虽然以富含蛋白质的动物废弃物为原料,经过适当的外掺杂工艺(金属盐和氧化石墨烯)可制备具有ORR催化性能的多孔碳,但其ORR催化性能与商用Pt/C相比,还存在一定的差距。

Figure 10. SEM images of pig liver and keratin derived carbon materials (a, c), and LSV curves in 0.1 M·KOH solution (b, d) [50] [51]

10. 猪肝和角质衍生碳材料SEM图(a, c)、在0.1 M·KOH溶液中LSV曲线(b, d) [50] [51]

3. 总结与展望

利用绿色、廉价的生物质制备功能型碳材料极具发展前景和应用价值,本文综述了近年来生物质衍生多孔碳ORR催化剂的研究进展。生物质衍生多孔碳材料作为ORR催化剂因其绿色廉价和抗甲醇/CO毒化特性受到广泛关注,尤其在碱性介质中活性可媲美商业化20% Pt/C。然而其发展仍面临三重挑战,一是生物质前驱体来源差异导致杂原子种类少、自掺杂含量低(普遍<5 at%),显著制约活性位点密度;二是传统碳化工艺易形成微米级实心块体,比表面积多低于500 m2/g,导致活性位点利用率不足30%;三是性能衰减机制与再生策略研究匮乏,目前仅少数研究通过氮气退火实现70%活性恢复。而通过筛选高杂原子生物质(如藻类含N/P达8~12 wt%)并耦合外源掺杂剂(偏磷酸钠、尿素)实现多原子共掺杂(N/S/P共掺杂含量可提升至15 at%);研究开发超临界流体辅助碳化等技术制备纳米多孔结构(比表面积>2000 m2/g);构建原位活化再生系统,通过微波等离子体处理使失活催化剂孔隙率恢复率达85%以上,为碳基催化剂循环利用提供理论支撑。

未来此方向研究需进一步整合杂原子工程、结构调控与再生技术,推动生物质碳催化剂从实验室向工业化应用跨越。首先,在杂原子协同效应方面,需结合密度泛函理论(DFT)与实验手段[52],解析Fe-Nx、Co-Nx等活性位点的动态电子演化机制,探索多元素掺杂(如硫、硼)对缺陷密度和催化路径的影响。其次,针对酸性介质中ORR活性不足的瓶颈,需开发耐腐蚀的碳基催化剂,例如通过表面功能化或引入保护层抑制碳骨架降解,同时优化质子交换膜燃料电池(PEMFC)的适配性。此外,宏量制备工艺的突破至关重要,熔盐辅助法、水热炭化等技术已展现出规模化潜力,但其成本控制与工艺稳定性仍需理论依据作为支撑。

在循环经济框架下,生物质废弃物的高值化利用与催化剂再生技术的结合将成为关键。例如,水热炭化技术可将废弃生物质转化为高比表面积的碳基光催化材料,其应用范围可拓展至CO2还原与污染物降解,实现“废弃物–催化剂–能源”的闭环循环。同时,需系统建立性能衰减的定量评价体系,结合机器学习预测催化剂寿命并设计智能再生策略。这些研究不仅可降低ORR催化剂的全生命周期成本,也将为其他非贵金属催化体系的开发提供跨领域借鉴,最终推动绿色能源技术向碳中和目标的实质性迈进。

基金项目

国家级大学生创新训练项目(202410624010)。

NOTES

*通讯作者。

参考文献

[1] Liu, J., Mooney, H., Hull, V., Davis, S.J., Gaskell, J., Hertel, T., et al. (2015) Systems Integration for Global Sustainability. Science, 347, Article 1258832.
https://doi.org/10.1126/science.1258832
[2] 侯明, 邵志刚, 俞红梅, 衣宝廉. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150.
[3] 衣宝廉. 燃料电池-原理∙技术∙应用[M]. 北京: 化学工业出版社, 1998.
[4] Kim, M., Firestein, K.L., Fernando, J.F.S., Xu, X., Lim, H., Golberg, D.V., et al. (2022) Strategic Design of Fe and N Co-Doped Hierarchically Porous Carbon as Superior ORR Catalyst: From the Perspective of Nanoarchitectonics. Chemical Science, 13, 10836-10845.
https://doi.org/10.1039/d2sc02726g
[5] Steele, B.C.H. and Heinzel, A. (2001) Materials for Fuel-Cell technologies. Nature, 414, 345-352.
https://doi.org/10.1038/35104620
[6] Winter, M. and Brodd, R.J. (2004) What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 104, 4245-4270.
https://doi.org/10.1021/cr020730k
[7] Varcoe, J.R. and Slade, R.C.T. (2005) Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells. Fuel Cells, 5, 187-200.
https://doi.org/10.1002/fuce.200400045
[8] Merle, G., Wessling, M. and Nijmeijer, K. (2011) Anion Exchange Membranes for Alkaline Fuel Cells: A Review. Journal of Membrane Science, 377, 1-35.
https://doi.org/10.1016/j.memsci.2011.04.043
[9] Jaouen, F., Proietti, E., Lefèvre, M., Chenitz, R., Dodelet, J., Wu, G., et al. (2011) Recent Advances in Non-Precious Metal Catalysis for Oxygen-Reduction Reaction in Polymer Electrolyte Fuelcells. Energy Environ. Sci., 4, 114-130.
https://doi.org/10.1039/c0ee00011f
[10] Li, W., Liang, C., Zhou, W., Qiu, J., Zhou, Sun, G., et al. (2003) Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. The Journal of Physical Chemistry B, 107, 6292-6299.
https://doi.org/10.1021/jp022505c
[11] Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., et al. (2011) Sulfur-Doped Graphene as an Efficient Metal-Free Cathode Catalyst for Oxygen Reduction. ACS Nano, 6, 205-211.
https://doi.org/10.1021/nn203393d
[12] Borghei, M., Lehtonen, J., Liu, L. and Rojas, O.J. (2017) Advanced Biomass‐Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 30, Article No. 27.
https://doi.org/10.1002/adma.201703691
[13] Deng, J., Li, M. and Wang, Y. (2016) Biomass-Derived Carbon: Synthesis and Applications in Energy Storage and Conversion. Green Chemistry, 18, 4824-4854.
https://doi.org/10.1039/c6gc01172a
[14] Dessalle, A., Quílez-Bermejo, J., Fierro, V., Xu, F. and Celzard, A. (2023) Recent Progress in the Development of Efficient Biomass-Based ORR Electrocatalysts. Carbon, 203, 237-260.
https://doi.org/10.1016/j.carbon.2022.11.073
[15] Field, C.B., Behrenfeld, M.J., Randerson, J.T. and Falkowski, P. (1998) Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science, 281, 237-240.
https://doi.org/10.1126/science.281.5374.237
[16] 尹增芳, 樊汝坟. 植物细胞壁的研究进展[J]. 植物研究, 1999, 19(4): 407-414.
[17] 张豁中, 温玉麟, 编著. 动物活性成分化学[M]. 天津: 天津科学技术出版社, 1900.
[18] 蔡庆生. 植物生理学[J]. 北京: 中国农业大学出版社, 2011.
[19] 史建华, 赵建国, 邢宝岩. 以生物质为催化剂化学气相沉积制备碳纳米管[J]. 新型炭材料, 2012, 27(3): 175-180.
[20] Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399.
https://doi.org/10.1039/c6cp00174b
[21] Zhao, Q., Ma, Q., Pan, F., Wang, Z., Yang, B., Zhang, J., et al. (2016) Facile Synthesis of Nitrogen-Doped Carbon Nanosheets as Metal-Free Catalyst with Excellent Oxygen Reduction Performance in Alkaline and Acidic Media. Journal of Solid State Electrochemistry, 20, 1469-1479.
https://doi.org/10.1007/s10008-016-3157-z
[22] He, D., Zhao, W., Li, P., Liu, Z., Wu, H., Liu, L., et al. (2019) Bifunctional Biomass-Derived 3D Nitrogen-Doped Porous Carbon for Oxygen Reduction Reaction and Solid-State Supercapacitor. Applied Surface Science, 465, 303-312.
https://doi.org/10.1016/j.apsusc.2018.09.185
[23] Huang, B., Liu, Y., Guo, Q., Fang, Y., Titirici, M., Wang, X., et al. (2020) Porous Carbon Nanosheets from Biological Nucleobase Precursor as Efficient pH-Independent Oxygen Reduction Electrocatalyst. Carbon, 156, 179-186.
https://doi.org/10.1016/j.carbon.2019.09.056
[24] Gao, Q., Wang, Y., Yang, M., Shen, W., Jiang, Y., He, R., et al. (2021) N, S-Codoped Porous Carbon as Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Journal of Solid State Electrochemistry, 25, 1765-1773.
https://doi.org/10.1007/s10008-021-04947-5
[25] Maliutina, K., He, C., Huang, J., Yu, J., Li, F., He, C., et al. (2021) Structural and Electronic Engineering of Biomass-Derived Carbon Nanosheet Composite for Electrochemical Oxygen Reduction. Sustainable Energy & Fuels, 5, 2114-2126.
https://doi.org/10.1039/d0se01631d
[26] Wang, S., Chen, Y., Zhao, Y., Wei, G., Li, D. and Liu, X. (2022) Mesopore-Dominated N, S Co-Doped Carbon as Advanced Oxygen Reduction Reaction Electrocatalysts for Zn-Air Battery. Journal of Materials Science, 57, 19431-19446.
https://doi.org/10.1007/s10853-022-07784-7
[27] 赵冬梅, 李振伟, 刘领弟. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2): 185-200.
[28] Li, M., Xiong, Y., Liu, X., Han, C., Zhang, Y., Bo, X., et al. (2015) Iron and Nitrogen Co-Doped Carbon Nanotube@hollow Carbon Fibers Derived from Plant Biomass as Efficient Catalysts for the Oxygen Reduction Reaction. Journal of Materials Chemistry A, 3, 9658-9667.
https://doi.org/10.1039/c5ta00958h
[29] Liu, Z., Wang, F., Li, M. and Ni, Z. (2016) N, S and P-Ternary Doped Carbon Nano-Pore/Tube Composites Derived from Natural Chemicals in Waste Sweet Osmanthus Fruit with Superior Activity for Oxygen Reduction in Acidic and Alkaline Media. RSC Advances, 6, 37500-37505.
https://doi.org/10.1039/c6ra08371d
[30] Zhou, Q., Thokchom, A.K., Kim, D. and Kim, T. (2017) Inkjet-Printed Ag Micro-/Nanostructure Clusters on Cu Substrates for in-situ Pre-Concentration and Surface-Enhanced Raman Scattering. Sensors and Actuators B: Chemical, 243, 176-183.
https://doi.org/10.1016/j.snb.2016.11.134
[31] 张金超, 杨康宁, 张海松. 碳纳米材料在生物医学领域的应用现状及展望[J]. 化学进展, 2013, 2(5): 397-408.
[32] 闻雷, 刘成名, 宋仁升. 石墨烯材料的储锂行为及其潜在应用[J]. 化学学报, 2014, 7(2): 333-344.
[33] 张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 7(2): 367-377.
[34] Zhou, H., Zhang, J., Amiinu, I.S., Zhang, C., Liu, X., Tu, W., et al. (2016) Transforming Waste Biomass with an Intrinsically Porous Network Structure into Porous Nitrogen-Doped Graphene for Highly Efficient Oxygen Reduction. Physical Chemistry Chemical Physics, 18, 10392-10399.
https://doi.org/10.1039/c6cp00174b
[35] Zhou, H., Zhang, J., Zhu, J., Liu, Z., Zhang, C. and Mu, S. (2016) A Self-Template and KOH Activation Co-Coupling Strategy to Synthesize Ultrahigh Surface Area Nitrogen-Doped Porous Graphene for Oxygen Reduction. RSC Advances, 6, 73292-73300.
https://doi.org/10.1039/c6ra16703a
[36] Liu, Y., Sun, K., Cui, X., Li, B. and Jiang, J. (2020) Defect-Rich, Graphenelike Carbon Sheets Derived from Biomass as Efficient Electrocatalysts for Rechargeable Zinc-Air Batteries. ACS Sustainable Chemistry & Engineering, 8, 2981-2989.
https://doi.org/10.1021/acssuschemeng.9b07621
[37] Wang, K., Wang, H., Ji, S., Feng, H., Linkov, V. and Wang, R. (2013) Biomass-Derived Activated Carbon as High-Performance Non-Precious Electrocatalyst for Oxygen Reduction. RSC Advances, 3, 12039-12042.
https://doi.org/10.1039/c3ra41978a
[38] Liang, K., Xu, Y., Wang, L., Liu, Y. and Liu, Y. (2019) Alkali‐Driven Assembly of Protein‐Rich Biomass Boosts the Electrocatalytic Activity of the Derived Carbon Materials for Oxygen Reduction. ChemCatChem, 11, 4822-4829.
https://doi.org/10.1002/cctc.201901247
[39] Wu, H., Geng, J., Ge, H., Guo, Z., Wang, Y. and Zheng, G. (2016) Egg‐derived Mesoporous Carbon Microspheres as Bifunctional Oxygen Evolution and Oxygen Reduction Electrocatalysts. Advanced Energy Materials, 6, Article No. 8.
https://doi.org/10.1002/aenm.201600794
[40] Guo, C., Liao, W., Li, Z. and Chen, C. (2015) Exploration of the Catalytically Active Site Structures of Animal Biomass-Modified on Cheap Carbon Nanospheres for Oxygen Reduction Reaction with High Activity, Stability and Methanol-Tolerant Performance in Alkaline Medium. Carbon, 85, 279-288.
https://doi.org/10.1016/j.carbon.2015.01.007
[41] Zheng, J., Guo, C., Chen, C., Fan, M., Gong, J., Zhang, Y., et al. (2015) High Content of Pyridinic-and Pyrrolic-Nitrogen-Modified Carbon Nanotubes Derived from Blood Biomass for the Electrocatalysis of Oxygen Reduction Reaction in Alkaline Medium. Electrochimica Acta, 168, 386-393.
https://doi.org/10.1016/j.electacta.2015.03.173
[42] Chaudhari, N.K., Song, M.Y. and Yu, J. (2014) Heteroatom-Doped Highly Porous Carbon from Human Urine. Scientific Reports, 4, Article No. 5221.
https://doi.org/10.1038/srep05221
[43] Tran, T., Song, M.Y., Kang, T., Samdani, J., Park, H., Kim, H., et al. (2018) Iron Phosphide Incorporated into Iron‐treated Heteroatoms‐Doped Porous Bio‐Carbon as Efficient Electrocatalyst for the Oxygen Reduction Reaction. ChemElectroChem, 5, 1944-1953.
https://doi.org/10.1002/celc.201800091
[44] Maciel, D., Veres, S.P., Kreuzer, H.J. and Kreplak, L. (2016) Quantitative Phase Measurements of Tendon Collagen Fibres. Journal of Biophotonics, 10, 111-117.
https://doi.org/10.1002/jbio.201500263
[45] Pusztahelyi, T. (2018) Chitin and Chitin-Related Compounds in Plant-Fungal Interactions. Mycology, 9, 189-201.
https://doi.org/10.1080/21501203.2018.1473299
[46] Wang, R., Wang, K., Wang, Z., Song, H., Wang, H. and Ji, S. (2015) Pig Bones Derived N-Doped Carbon with Multi-Level Pores as Electrocatalyst for Oxygen Reduction. Journal of Power Sources, 297, 295-301.
https://doi.org/10.1016/j.jpowsour.2015.07.107
[47] Song, H., Li, H., Wang, H., Key, J., Ji, S., Mao, X., et al. (2014) Chicken Bone-Derived N-Doped Porous Carbon Materials as an Oxygen Reduction Electrocatalyst. Electrochimica Acta, 147, 520-526.
https://doi.org/10.1016/j.electacta.2014.09.146
[48] Liu, Q., Duan, Y., Zhao, Q., Pan, F., Zhang, B. and Zhang, J. (2014) Direct Synthesis of Nitrogen-Doped Carbon Nanosheets with High Surface Area and Excellent Oxygen Reduction Performance. Langmuir, 30, 8238-8245.
https://doi.org/10.1021/la404995y
[49] Liu, R., Zhang, H., Liu, S., Zhang, X., Wu, T., Ge, X., et al. (2016) Shrimp-Shell Derived Carbon Nanodots as Carbon and Nitrogen Sources to Fabricate Three-Dimensional N-Doped Porous Carbon Electrocatalysts for the Oxygen Reduction Reaction. Physical Chemistry Chemical Physics, 18, 4095-4101.
https://doi.org/10.1039/c5cp06970j
[50] Zhang, J., Wu, S., Chen, X., Cheng, K., Pan, M. and Mu, S. (2014) An Animal Liver Derived Non-Precious Metal Catalyst for Oxygen Reduction with High Activity and Stability. RSC Advances, 4, 32811-32816.
https://doi.org/10.1039/c4ra06495j
[51] Zhang, J., Zhou, H., Liu, X., Zhang, J., Peng, T., Yang, J., et al. (2016) Keratin-Derived S/N Co-Doped Graphene-Like Nanobubble and Nanosheet Hybrids for Highly Efficient Oxygen Reduction. Journal of Materials Chemistry A, 4, 15870-15879.
https://doi.org/10.1039/c6ta06212a
[52] Zhang, J., Wu, C., Wang, J., Xia, M., Li, S., Liu, L., et al. (2024) DFT-Guided Synthesis of N, B Dual-Doped Porous Carbon from Saccharina Japonica for Enhanced Oxygen Reduction Catalysis. Frontiers in Chemistry, 12, Article 1478560.
https://doi.org/10.3389/fchem.2024.1478560