基于第一性原理研究O缺陷的MoO3对丙酮的吸附
First Principles Study on the Adsorption of Acetone by MoO3 with O Defects
DOI: 10.12677/cmp.2024.134006, PDF, HTML, XML,   
作者: 王秀丽:天津工业大学物理科学与技术学院,天津
关键词: MoO3第一性原理缺陷丙酮MoO3 First Principles Defects Acetone
摘要: 金属半导体氧化物因其易于制造、低功耗和高灵敏度等优点已被研究作为气体传感器材料,其中三氧化钼(MoO3)因具有响应速度快、易于操控、可调性高、可持续性和无毒等特点而得到了广泛的研究。尤其是在研究丙酮气体传感器领域,MoO3发挥了很大作用。在这个背景下,我们进一步探讨了MoO3对丙酮气体的吸附机理,通过在MoO3(010)晶面制造缺陷和掺杂其他金属以提高其对丙酮的吸附性能。本文通过在本征MoO3(010)晶面引入了三种氧空位缺陷,计算了氧缺陷MoO3(010)晶面的电学性能及其对丙酮的吸附性能参数,分析了态密度和差分电荷密度,对比了吸附前后晶面的结构变化。结果表明,氧空位缺陷可以使MoO3禁带宽度变窄,不同的氧空位缺陷对丙酮的最佳吸附位置都在暴露的Mo原子上方,吸附能在−0.4 eV~−0.5 eV之间,暴露Mo原子得到电子0.1 e~0.2 e之间,吸附距离2.1 Å~2.4 Å之间。综上所述,本研究得出丙酮在氧缺陷的MoO3(010)晶面的吸附为化学吸附,且一配位氧缺陷和二配位氧缺陷对丙酮的吸附性能几乎完全相同,氧空位缺陷MoO3(010)晶面对丙酮的吸附性能比本征MoO3(010)晶面明显提高。
Abstract: Metal semiconductor oxides have been studied as gas sensor materials due to their ease of fabrication, low power consumption, and high sensitivity, among which molybdenum trioxide (MoO3) has been widely investigated due to its fast response time, ease of manipulation, high tunability, sustainability, and non-toxicity. Especially in the field of acetone gas sensors, MoO3 plays a great role. In this context, we further explored the adsorption mechanism of MoO3 on acetone gas, and its adsorption performance on acetone has been improved by fabricating defects on the crystal surface of MoO3(010) and doping with other metals. In this paper, three oxygen vacancy defects were fabricated on the intrinsic MoO3(010) crystal surface, and the electrical properties of the oxygen-deficient MoO3(010) crystal surface and its adsorption performance parameters of acetone were calculated, and the density of states and differential charge densities were analyzed, and the structural changes of the crystal surface before and after the adsorption were compared. The results show that the oxygen vacancy defects can narrow the MoO3 forbidden band width and the optimal adsorption positions of different oxygen vacancy defects for acetone are above the exposed Mo atoms, with adsorption energies in the range of −0.4 eV to −0.5 eV, the exposed Mo atoms getting electrons in the range of 0.1 e to 0.2 e, and the adsorption distances in the range of 2.1 Å~2.4 Å. In summary, this study concludes that the adsorption of acetone on the oxygen-deficient MoO3(010) crystal surface is chemisorption, and the adsorption properties of acetone on the one-coordinated oxygen defects and the two-coordinated oxygen defects are almost identical, and the adsorption performance of acetone on the oxygen vacancy-deficient MoO3(010) crystal surface is significantly improved compared with that of the intrinsic MoO3(010) crystal surface.
文章引用:王秀丽. 基于第一性原理研究O缺陷的MoO3对丙酮的吸附[J]. 凝聚态物理学进展, 2024, 13(4): 45-54. https://doi.org/10.12677/cmp.2024.134006

1. 引言

金属氧化物表面的氧缺陷可以调节晶体的导电性、电子结构和表面活性位点,在提高金属氧化物的气敏性能中发挥着显著作用。金属氧化物材料表面氧缺陷可以为氧气分子的吸附提供较强的吸附位点,从而在一定程度上促进游离氧气的吸附和氧负离子的转化。根据目前主流观点表明,吸附氧和氧负离子的数量与金属氧化物的气体传感性能呈现明显的正相关。因此,研究者们常常认为氧缺陷可以导致氧负离子增多,是属氧化物气体传感性能增强的重要原因之一[1]-[3]。除此之外,氧缺陷不仅可以通过提供电子增强金属氧化物的电子导电性,还可以作为气体分子的活性吸附位点。众所周知,金属氧化物的气敏特性往往取决于气固相的表面相互作用,调控金属氧化物表面的氧缺陷浓度,即可从一定程度上增加材料表面的活性位点数量,从而显著改善金属氧化物的气敏性能[4]-[6]

由于MoO3材料中Mo原子被一层氧原子覆盖住形成了致密的氧屏蔽层,这会在一定程度上阻止活性Mo原子吸附目标气体。因此对MoO3(010)晶面制造缺陷使金属Mo原子暴露或悬挂,使其成为活跃的边缘吸附位点,提高对吸附目标气体吸附性能。

2. O缺陷的MoO3(010)表面模型的构建

理论模型的构建依然是在Materials Studio软件中CASTEP模块进行的。交换相关势选取选用广义梯度近似(GGA) [7]。基组选用带有极化函数的双数值基组DNP,赝势选择OTFG Ultrasoft [8]

关于几何结构优化部分,k点网格设置为2 × 2 × 1。最大迭代能量设置为1.0 × 105 Ha,最大受力设置为0.03 eV/Å,原子最大位移分别设置为0.001 Å。平面波展开的截断能设置为570 eV。将晶格参数(a = 3.9628 Å, b = 13.8550 Å, c = 3.6964 Å, α = β = γ = 90˚)的MoO3表面优化后,选取MoO3(010)晶面建立(3 × 3)的超胞。为避免计算气体分子吸附时周期性边界条件所带来的影响。MoO3(010)表面上方添加15 Å真空层,新建立的MoO3 (a = 11.0627 Å, b = 11.8180 Å, c = 21.3592 Å, α = β = γ = 90˚)体系由72个O原子和18个Mo原子组成。首先对本征MoO3(010)面优化,然后对优化后的本征MoO3(010)面进行修剪,得到单层MoO3(010)面结构。本征MoO3(010)面构建的结构模型的俯视图如图1(a)所示(该图为了便于观察表面,隐藏了表面之下的原子,但在实际计算中并未缺失)。

为了使征Mo原子暴露或悬挂,本章一共设计了三种方案使征MoO3(010)表面形成O空位缺陷,分别是VO1构型:一配位O1缺陷;VO2构型:二配位O2缺陷;VO123构型:一二三配位O1、O2、O3都缺陷。

Figure 1. (a) Top view of the intrinsic MoO3(010) crystal plane; (b) VO1 configuration: One coordination O1 defect; (c) VO2 configuration: dual coordinated O2 defect; (d) VO123 configuration: One, two, three coordination O1, O2, O3 are all defective

1. (a) 本征MoO3(010)晶面俯视图;(b) VO1构型:一配位O1缺陷;(c) VO2构型:二配位O2缺陷;(d) VO123构型:一二三配位O1、O2、O3都缺陷

在对含有缺陷的MoO3(010)进行结构优化后,首先计算了这三种缺陷结构的形成能 E form [9]

E from = E defectiveMoO 3 + i n i E i E MoO 3 (4-1)

其中 E defectiveMoO 3 E MoO 3 分别代表含有缺陷的MoO3和本征MoO3的能量; n i 为增加的  i 类原子的个数, E i 为单个 i 类原子的能量,其中 i=O E form >0 说明该过程需要吸收能量,该反应需要外界干预才可能发生; E form <0 说明该过程放出能量,即该反应可以自发生不需要外界干预。计算结果如表1所示:VO1缺陷结构的形成能是最低的,说明在实验中最容易观测到单O1空位。

Table 1. Formation energies of three defect configurations

1. 三种缺陷构型的形成能

缺陷类型

VO1

VO2

VO123

形成能(eV)

3.22

5.22

20.00

对于总态密度图而言,费米能级以上导带为非占据态,非占据态的能量高,表现为空轨道惰性,体系不容易得到电子;费米能级以下的价带为占据态,占据态能量低,表现为电子惰性,体系不易失去电子[9] [10]图2对比了MoO3三种缺陷形成前后总态密度图,三种具有缺陷的MoO3(010)晶面态密度图的波峰比本征MoO3(010)晶面的波峰均有降低,且向低能方向偏移,表现为不易失去电子,且更容易得到电子。从图中可以看到VO123构型的态密度偏移比VO1和VO2构型的态密度向低能方向偏移更多,表现为VO123构型更容易失去电子,更不容易得到电子。除此之外,还观察到具有缺陷的MoO3(010)晶面总态密度图的禁带宽度明显变窄,并且在VO123构型中出现杂质峰,导致其禁带宽度比VO1和VO2构型的禁带宽度小得多,使电子更容易从价带跃迁至导带,提高了电子迁移率[11] [12]

Figure 2. Total density of states before and after the formation of three types of defects in MoO3

2. MoO3三种缺陷形成前后总态密度图

3. 丙酮在O缺陷MoO3(010)表面的吸附

3.1. 吸附前后结构比

为了研究丙酮分子在掺杂表面上的吸附行为,将气体分子分别放在了三种缺陷构型的表面,且在每个缺陷构型中一共设计了四个吸附位点:即一配位O1上方、两个非对称二配位O2上方和三配位O3上方。尽管表面有很多吸附位点,但是经过几何优化以后,所有的丙酮分子都以O端朝下吸附到了暴露的Mo原子上方,如图3所示。在图3中a、b、c图分别为丙酮在缺陷构型VO1、VO2、VO123表面的最佳吸附位置吸附前后的对比图。观察图3中(a)~(c)图可知丙酮在三种缺陷构型表面的吸附前后基底的结构变化:VO1缺陷构型二配位氧原子向下移动到原位置附近,VO2缺陷构型原一配位的氧原子移动到缺陷的二配位氧原子O2处,丙酮的氧原子吸附在原一配位的氧原子O1处,VO123缺陷构型变化较小暴露的Mo原子向上移动少许。对比发现吸附前后三种缺陷构型中VO1、VO2的结构发生了明显的变化,可以确定二者为化学吸附。

Figure 3. (a) shows the comparison of the optimal adsorption position of acetone on the defect configuration VO1 surface before and after adsorption; (b) Comparison of the optimal adsorption position of acetone on the defect configuration VO2 surface before and after adsorption; (c) Comparison of the optimal adsorption position of acetone on the defect configuration VO123 surface before and after adsorption

3. (a) 图丙酮在缺陷构型VO1表面的最佳吸附位置吸附前后对比图;(b) 图丙酮在缺陷构型VO2表面的最佳吸附位置吸附前后对比图;(c) 丙酮在缺陷构型VO123表面的最佳吸附位置吸附前后对比图

表2可知三种缺陷构型中:VO123构型对丙酮吸附能(−0.433 eV)小于其余两种构型的吸附能(VO1: −0.454 eV, VO2: −0.467 eV);可以看到(VO1: 0.15 e, VO2: 0.15 e) VO123构型对丙酮吸附的电荷转移数(0.13 e)小于其余两种构型对丙酮吸附的电荷转移数[13]-[15],这恰与图2三种缺陷形成前后总态密度图得到的结论“VO123构型的态密度偏移的比VO1和VO2构型的态密度向低能方向偏移更多,表现为VO123构型更容易失去电子,更不容易得到电子”。相呼应,由于VO123构型更不容易得到电子因而在丙酮吸附时电荷转移量最小。VO123构型对丙酮吸附距离(2.35 Å)大于其余两种构型的吸附距离(VO1: −2.13 Å, VO2: 2.14 Å),从吸附距离的角度上看,可以确定VO1、VO2和VO123缺陷构型对丙酮的吸附为化学吸附。因此可以得到结论,制造缺陷可以提高晶面对丙酮的吸附性能,在三种缺陷构型中VO123缺陷构型比VO1和VO2缺陷构型对丙酮的吸附相对而言更弱。

Table 2. Adsorption performance parameters of acetone on defect configurations VO1, VO2, and VO123 surfaces

2. 丙酮在缺陷构型VO1、VO2、VO123缺陷构型表面吸附性能参数

吸附构型

吸附能ΔEads (eV)

电荷转移Q (e)

吸附距离D (Å)

VO1

−0.454

0.15

2.13

VO2

−0.467

0.15

2.14

VO123

−0.433

0.13

2.35

3.2. 态密度图分析

为了更深入研究吸附丙酮气体分子对氧缺陷的MoO3(010)表面的电学性能影响的内部机理,分别计算了三种氧缺陷的MoO3(010)晶面对丙酮气体吸附前后的总态密度和暴露Mo原子的s、p、d轨道和丙酮O原子的s、p轨道的分波态密度以及丙酮吸附前后O的分波态密度图,结果如图4~6所示。

Figure 4. Comparison of total density of states of MoO3(010) with three types of oxygen defects before and after adsorption of acetone gas

4. 三种氧缺陷的MoO3(010)对丙酮气体吸附前后的总态密度对比图

在研究气体小分子吸附行为时,气体小分子对整个吸附体系态密度的贡献被认为是关键因素之一[16]。首先观察图4总态密度图,发现对于含有VO1、VO2和VO123三种缺陷结构的MoO3(010)表面丙酮气体吸附体系,丙酮分子的吸附对基底总态密度的影响为使总的态密度向低能方向偏移,并且VO1和VO2缺陷构型的态密度比VO123缺陷构型的态密度向低能方向偏移的更多,说明吸附丙酮气体使这些材料的电学性能发生了改变。这证明了这三种缺陷构型的吸附为化学吸附。

Figure 5. Partial wave density of states of s, p, and d orbitals of Mo atoms and s and p orbitals of acetone O atoms exposed by three adsorption models exposed by three adsorption models

5. 三种吸附模型暴露Mo原子的s、p、d轨道和丙酮O原子的s、p道的分波态密度

Figure 6. Density of states of O before and after adsorption of acetone on MoO3(010) surface with three types of O defects

6. 丙酮在三种O缺陷的MoO3(010)表面吸附前后O的分波态密度图

观察图5可以看到VO2构型相比于VO1构型,Mo的s轨道向低能方向偏移更多,且Mo的d轨道在2 ev的位置缺少了波峰。VO123构型相对于其他两种构型Mo的s轨道向低能方向偏移的更多,且波峰态密度[17]也更小,关于丙酮处于−3 eV~1 eV区间的O的p轨道向高能方向偏移。丙酮分子吸附后其O的s和p轨道均向低能方向偏移。在−8 eV~4 eV区间内,Mo的d轨道与O的p轨道有较多的重叠,说明Mo的d轨道与O的p轨道发生简并,Mo原子和O原子成键,又进一步说明三种缺陷构型的吸附为化学吸附。

观察图6可以看到丙酮分子吸附之后,O原子的s能级和p能级均向低能方向偏移,说明吸附之后丙酮分子O原子的分波态密度发生明显变化,再次证明了这三种缺陷构型的吸附为化学吸附。

3.3. 差分电荷密度分析

为了对吸附体系内部电子转移情况进行更深入的研究,又分别计算了丙酮在三种缺陷构型吸附的差分电荷密度[18]结果如图7所示,为了更加清晰地呈现O原子和暴露Mo原子差分电荷密度图选取了其某一角度的切面图,如图8图,其中红色代表电荷密度减少,蓝色代表电荷密度增加[19] [20]。从图中可以观察到丙酮O原子电荷密度减小,暴露的Mo原子电荷密度增加。由图8可以看出丙酮的氧原子与缺陷表面暴露的Mo原子之间红蓝对比十分强烈,且与O缺陷的MoO3(010)晶面内的Mo原子和O原子之间的红蓝对比十分相似,这说明暴露的Mo原子与丙酮的O原子之间形成化学键,因而得到丙酮在O缺陷的MoO3(010)晶面的吸附为化学吸附。但是c图的丙酮的氧原子与缺陷表面暴露的Mo原子之间红蓝对比略弱于a图和b图,说明丙酮在VO123缺陷构型表面的吸附略弱于在VO1缺陷构型和VO2缺陷构型表面的吸附。

Figure 7. Differential charge density maps (a), (b), and (c) of acetone adsorbed on the surfaces of three defect configurations: VO1, VO2, and VO123

7. 丙酮在VO1、VO2和VO123三种缺陷构型表面吸附的差分电荷密度图(a) (b) (c)

Figure 8. Cross sectional views of differential charge density of acetone adsorbed on the surfaces of three defect configurations, VO1, VO2, and VO123 (a), (b), and (c)

8. 丙酮在VO1、VO2和VO123三种缺陷构型表面吸附的差分电荷密度切面图(a) (b) (c)

基于第一性原理计算方法,首先研究了VO1、VO2和VO123三种缺陷的形成对MoO3电学性质的影响,发现MoO3带隙发生不同程度的减小,其中VO123缺陷构型的带隙减小的最多。在此基础上,又对比研究了VO1、VO2和VO123三种缺陷构型对丙酮气体吸附。通过分析丙酮在三种缺陷构型表面的吸附距离:DVO1(2.13 Å)、DVO2(2.14 Å)、DVO2(2.35 Å),三者均小于范德瓦尔斯吸附距离;吸附前后基底的结构变化:VO1缺陷构型二配位氧原子向下移动到原位置附近,VO2缺陷构型原一配位的氧原子移动到缺陷的二配位氧原子O2处,丙酮的氧原子吸附在原一配位的氧原子O1处,VO123缺陷构型变化较小暴露的Mo原子向上移动少许;Mulliken电荷布居:QVO1为0.15 e、QVO2为0.15 e、QVO123为0.13 e,丙酮在VO123缺陷构型晶面电荷转移数略少于VO1、VO2缺陷构型晶面的电核转移数目;总态密度图:丙酮分子的吸附对基底总态密度的影响为使总的态密度向低能方向偏移,并且VO1和VO2缺陷构型的态密度比VO123缺陷构型的态密度向低能方向偏移得更多,说明吸附丙酮气体使VO1和VO2缺陷构型晶面电学性能改变得更多,吸附作用更强烈;分波态密度图:VO123构型相对于其他两种构型Mo的s轨道向低能方向偏移得更多,且波峰态密度也更小,关于丙酮处于−3 eV~−1 eV区间的O的p轨道向高能方向偏移;差分电荷密度图:丙酮在VO123缺陷构型表面吸附的氧原子与缺陷表面暴露的Mo原子之间红蓝对比略弱于VO1和VO2缺陷构型的颜色对比,说明丙酮在VO123缺陷构型表面的吸附略弱于在VO1缺陷构型和VO2缺陷构型表面的吸附。

4. 总结

综上所述,从吸附计算结果表明,引入缺陷可以改变MoO3的电子性能,从而进一步提高MoO3对丙酮气体的吸附能力。对于含有VO1、VO2和VO123缺陷结构的单层MoO3与丙酮气体吸附体系,通过对比吸附距离、吸附前后基底态密度变化、差分电荷密度图、吸附前后丙酮态密变化和吸附后Mo的d轨道与O的p轨道的重叠程度,可以判断丙酮分子与含有这三种缺陷的MoO3基底之间主要是化学吸附。并且丙酮在VO123缺陷构型表面的吸附略弱于在VO1缺陷构型和VO2缺陷构型表面的吸附。

参考文献

[1] Ritter, T., Hagen, G., Kita, J., et al. (2017) Self-Heated HTCC-Based Ceramic Disc for Mixed Potential Sensors and for Direct Conversion Sensors for Automotive Catalysts. Sensors and Actuators B: Chemical, 248, 793-802.
https://doi.org/10.1016/j.snb.2016.11.079
[2] Roncero, O., Aguado, A., Batista-Romero, F.A., Bernal-Uruchurtu, M.I. and Hernández-Lamoneda, R. (2015) Density-Difference-Driven Optimized Embedding Potential Method to Study the Spectroscopy of Br2 in Water Clusters. Journal of Chemical Theory and Computation, 11, 1155-1164.
https://doi.org/10.1021/ct501140p
[3] Baltrus, J.P., Holcomb, G.R., Tylczak, J.H. and Ohodnicki, P.R. (2017) Factors Influencing the Stability of Au-Incorporated Metal-Oxide Supported Thin Films for Optical Gas Sensing. Journal of The Electrochemical Society, 164, B159-B167.
https://doi.org/10.1149/2.1451704jes
[4] Hadi Ismail, A. and Sulaiman, Y. (2021) Review on the Utilisation of Sensing Materials for Intrinsic Optical NH3 Gas Sensors. Synthetic Metals, 280, Article 116860.
https://doi.org/10.1016/j.synthmet.2021.116860
[5] Yan, M., Tylczak, J., Yu, Y., Panagakos, G. and Ohodnicki, P. (2018) Multi-Component Optical Sensing of High Temperature Gas Streams Using Functional Oxide Integrated Silica Based Optical Fiber Sensors. Sensors and Actuators B: Chemical, 255, 357-365.
https://doi.org/10.1016/j.snb.2017.08.026
[6] Devendiran, S. and Sastikumar, D. (2017) Gas Sensing Based on Detection of Light Radiation from a Region of Modified Cladding (Nanocrystalline ZnO) of an Optical Fiber. Optics & Laser Technology, 89, 186-191.
https://doi.org/10.1016/j.optlastec.2016.10.013
[7] Buttner, W.J., Post, M.B., Burgess, R. and Rivkin, C. (2011) An Overview of Hydrogen Safety Sensors and Requirements. International Journal of Hydrogen Energy, 36, 2462-2470.
https://doi.org/10.1016/j.ijhydene.2010.04.176
[8] Lv, L., Wang, Y., Cheng, P., Zhang, B., Dang, F. and Xu, L. (2019) Ultrasonic Spray Pyrolysis Synthesis of Three-Dimensional ZnFe2O4-Based Macroporous Spheres for Excellent Sensitive Acetone Gas Sensor. Sensors and Actuators B: Chemical, 297, Article 126755.
https://doi.org/10.1016/j.snb.2019.126755
[9] Akshya, S. and Juliet, A.V. (2021) A Computational Study of a Chemical Gas Sensor Utilizing Pd-rGO Composite on SnO2 Thin Film for the Detection of NOx. Scientific Reports, 11, Article No. 970.
https://doi.org/10.1038/s41598-020-78586-7
[10] Drmosh, Q.A., Wajih, Y.A.A., Al-Rammah, R., Qamar, M. and Yamani, Z.H. (2020) Surface-Engineered WO3 Thin Films for Efficient NO2 Sensing. Applied Surface Science, 517, Article 146235.
https://doi.org/10.1016/j.apsusc.2020.146235
[11] Zhang, W., Fan, Y., Yuan, T., Lu, B., Liu, Y., Li, Z., et al. (2019) Ultrafine Tungsten Oxide Nanowires: Synthesis and Highly Selective Acetone Sensing and Mechanism Analysis. ACS Applied Materials & Interfaces, 12, 3755-3763.
https://doi.org/10.1021/acsami.9b19706
[12] Paknahad, M., Mcintosh, C. and Hoorfar, M. (2019) Selective Detection of Volatile Organic Compounds in Microfluidic Gas Detectors Based on “Like Dissolves Like”. Scientific Reports, 9, Article No. 161.
https://doi.org/10.1038/s41598-018-36615-6
[13] Yoon, J., Choi, S.H., Kim, J., Jang, H.W., Kang, Y.C. and Lee, J. (2016) Trimodally Porous SnO2 Nanospheres with Three-Dimensional Interconnectivity and Size Tunability: A One-Pot Synthetic Route and Potential Application as an Extremely Sensitive Ethanol Detector. NPG Asia Materials, 8, e244-e244.
https://doi.org/10.1038/am.2016.16
[14] Song, W., Chen, L., Wan, L., Jing, M. and Li, Z. (2022) The Influence of Doping Amount on the Catalytic Oxidation of Formaldehyde by Mn-CeO2 Mixed Oxide Catalyst: A Combination of DFT and Microkinetic Study. Journal of Hazardous Materials, 425, Article 127985.
https://doi.org/10.1016/j.jhazmat.2021.127985
[15] Zeng, G., Wen, B. and Selloni, A. (2021) Structure and Stability of Pristine and Carboxylate-Covered Anatase TiO2(001) in Aqueous Environment. The Journal of Physical Chemistry C, 125, 15910-15917.
https://doi.org/10.1021/acs.jpcc.1c03623
[16] Wang, T., Huang, Z., Yu, Z., Wang, B., Wang, H., Sun, P., et al. (2016) Low Operating Temperature Toluene Sensor Based on Novel α-Fe2O3/SnO2 Heterostructure Nanowire Arrays. RSC Advances, 6, 52604-52610.
https://doi.org/10.1039/c6ra05313k
[17] Choi, S., Lee, I., Jang, B., Youn, D., Ryu, W., Park, C.O., et al. (2013) Selective Diagnosis of Diabetes Using Pt-Functionalized WO3 Hemitube Networks as a Sensing Layer of Acetone in Exhaled Breath. Analytical Chemistry, 85, 1792-1796.
https://doi.org/10.1021/ac303148a
[18] Dong, X., Han, Q., Kang, Y., Li, H., Huang, X., Fang, Z., et al. (2022) Rational Construction and Triethylamine Sensing Performance of Foam Shaped α-MoO3@SnS2 Nanosheets. Chinese Chemical Letters, 33, 567-572.
https://doi.org/10.1016/j.cclet.2021.06.022
[19] Fu, H., Yang, X., Wu, Z., He, P., Xiong, S., Han, D., et al. (2022) Gas-Sensing Performance of In2O3@MoO3 Hollow Core-Shell Nanospheres Prepared by a Two-Step Hydrothermal Method. Sensors and Actuators B: Chemical, 352, Article 131007.
https://doi.org/10.1016/j.snb.2021.131007
[20] Jiang, W., Meng, L., Zhang, S., Chuai, X., Zhou, Z., Hu, C., et al. (2019) Design of Highly Sensitive and Selective Xylene Gas Sensor Based on Ni-Doped MoO3 Nano-Pompon. Sensors and Actuators B: Chemical, 299, Article 126888.
https://doi.org/10.1016/j.snb.2019.126888