[1]
|
Gopal, G.J. and Kumar, A. (2013) Strategies for the Production of Recombinant Protein in Escherichia coli. The Protein Journal, 32, 419-425. https://doi.org/10.1007/s10930-013-9502-5
|
[2]
|
Rosano, G.L., Morales, E.S. and Ceccarelli, E.A. (2019) New Tools for Recombinant Protein Production in Escherichia coli: A 5‐Year Update. Protein Science, 28, 1412-1422. https://doi.org/10.1002/pro.3668
|
[3]
|
Guo, M., Wei, J., Huang, X., Huang, Y. and Qin, Q. (2012) Antiviral Effects of Β-Defensin Derived from Orange-Spotted Grouper (Epinephelus coioides). Fish & Shellfish Immunology, 32, 828-838. https://doi.org/10.1016/j.fsi.2012.02.005
|
[4]
|
刘帆, 刘鑫鑫, 宋彩霞, 等. 大口黑鲈Nesfatin-1蛋白的原核表达及多克隆抗体制备[J]. 南方水产科学, 2023, 19(4): 98-104.
|
[5]
|
Tripathi, N., Sathyaseelan, K., Jana, A.M. and Rao, P.V.L. (2009) High Yield Production of Heterologous Proteins with Escherichia coli. Defence Science Journal, 59, 137-146. https://doi.org/10.14429/dsj.59.1501
|
[6]
|
Brondyk, W.H. (2009) Chapter 11. Selecting an Appropriate Method for Expressing a Recombinant Protein. In: Methods in Enzymology, Elsevier, 131-147. https://doi.org/10.1016/s0076-6879(09)63011-1
|
[7]
|
Sahdev, S., Khattar, S.K. and Saini, K.S. (2007) Production of Active Eukaryotic Proteins through Bacterial Expression Systems: A Review of the Existing Biotechnology Strategies. Molecular and Cellular Biochemistry, 307, 249-264. https://doi.org/10.1007/s11010-007-9603-6
|
[8]
|
Yang, H., Jiang, X., Li, B., Yang, H.J., Miller, M., Yang, A., et al. (2017) Mechanisms of mTORC1 Activation by RHEB and Inhibition by PRAS40. Nature, 552, 368-373. https://doi.org/10.1038/nature25023
|
[9]
|
Vera, A., González‐Montalbán, N., Arís, A. and Villaverde, A. (2006) The Conformational Quality of Insoluble Recombinant Proteins Is Enhanced at Low Growth Temperatures. Biotechnology and Bioengineering, 96, 1101-1106. https://doi.org/10.1002/bit.21218
|
[10]
|
Esposito, D. and Chatterjee, D.K. (2006) Enhancement of Soluble Protein Expression through the Use of Fusion Tags. Current Opinion in Biotechnology, 17, 353-358. https://doi.org/10.1016/j.copbio.2006.06.003
|
[11]
|
Zhang, B., Zhu, T. and Huang, X. (2022) Enhanced Soluble Expression of Linoleic Acid Isomerase by Coordinated Regulation of Promoter and Fusion Tag in Escherichia coli. Foods, 11, Article No. 1515. https://doi.org/10.3390/foods11101515
|
[12]
|
Young, J.C., Agashe, V.R., Siegers, K. and Hartl, F.U. (2004) Pathways of Chaperone-Mediated Protein Folding in the Cytosol. Nature Reviews Molecular Cell Biology, 5, 781-791. https://doi.org/10.1038/nrm1492
|
[13]
|
de Marco, A. (2007) Protocol for Preparing Proteins with Improved Solubility by Co-Expressing with Molecular Chaperones in Escherichia coli. Nature Protocols, 2, 2632-2639. https://doi.org/10.1038/nprot.2007.400
|
[14]
|
Su, Y., Liu, C., Fang, H. and Zhang, D. (2020) Bacillus subtilis: A Universal Cell Factory for Industry, Agriculture, Biomaterials and Medicine. Microbial Cell Factories, 19, Article No. 173. https://doi.org/10.1186/s12934-020-01436-8
|
[15]
|
Yang, H., Ma, Y., Zhao, Y., Shen, W. and Chen, X. (2020) Systematic Engineering of Transport and Transcription to Boost Alkaline Α-Amylase Production in Bacillus subtilis. Applied Microbiology and Biotechnology, 104, 2973-2985. https://doi.org/10.1007/s00253-020-10435-z
|
[16]
|
Erfanimoghadam, M.R. and Homaei, A. (2023) Identification of New Amylolytic Enzymes from Marine Symbiotic Bacteria of Bacillus Species. Catalysts, 13, Article No. 183. https://doi.org/10.3390/catal13010183
|
[17]
|
Alan, K.L.N., Gigi, C.C.L., Keith, W.Y.K., et al. (2016) Enhancement of Fish Growth Employing Feed Supplemented with Recombinant Fish Growth Hormone Expressed in Bacillus subtilis. Research Journal of Biotechnology, 11, 1-11.
|
[18]
|
Liu, H., Wang, S., Cai, Y., Guo, X., Cao, Z., Zhang, Y., et al. (2017) Dietary Administration of Bacillus subtilis HAINUP40 Enhances Growth, Digestive Enzyme Activities, Innate Immune Responses and Disease Resistance of Tilapia, Oreochromis Niloticus. Fish & Shellfish Immunology, 60, 326-333. https://doi.org/10.1016/j.fsi.2016.12.003
|
[19]
|
Castillo-Hair, S.M., Fujita, M., Igoshin, O.A. and Tabor, J.J. (2019) An Engineered B. subtilis Inducible Promoter System with over 10000-Fold Dynamic Range. ACS Synthetic Biology, 8, 1673-1678. https://doi.org/10.1021/acssynbio.8b00469
|
[20]
|
Vrancken, K. and Anné, J. (2009) Secretory Production of Recombinant Proteins by Streptomyces. Future Microbiology, 4, 181-188. https://doi.org/10.2217/17460913.4.2.181
|
[21]
|
Hamed, M.B., Karamanou, S., Ólafsdottir, S., Basílio, J.S.M., Simoens, K., Tsolis, K.C., et al. (2017) Large-Scale Production of a Thermostable Rhodothermus marinus Cellulase by Heterologous Secretion from Streptomyces lividans. Microbial Cell Factories, 16, Article No. 232. https://doi.org/10.1186/s12934-017-0847-x
|
[22]
|
Berini, F., Marinelli, F. and Binda, E. (2020) Streptomycetes: Attractive Hosts for Recombinant Protein Production. Frontiers in Microbiology, 11, Article 1958. https://doi.org/10.3389/fmicb.2020.01958
|
[23]
|
Chakraborty, C., Nandi, S. and Sinha, S. (2004) Overexpression, Purification and Characterization of Recombinant Salmon Calcitonin, a Therapeutic Protein, in Streptomyces avermitilis. Protein & Peptide Letters, 11, 165-173. https://doi.org/10.2174/0929866043478266
|
[24]
|
Hwang, S., Lee, Y., Kim, J.H., Kim, G., Kim, H., Kim, W., et al. (2021) Streptomyces as Microbial Chassis for Heterologous Protein Expression. Frontiers in Bioengineering and Biotechnology, 9, Article 804295. https://doi.org/10.3389/fbioe.2021.804295
|
[25]
|
Sun, N., Wang, Z., Wu, H., Mao, X. and Li, Y. (2012) Construction of Over-Expression Shuttle Vectors in Streptomyces. Annals of Microbiology, 62, 1541-1546. https://doi.org/10.1007/s13213-011-0408-1
|
[26]
|
Safder, I., Khan, S., Islam, I.U., Ali, M.K., Bibi, Z. and Waqas, M. (2018) Pichia pastoris Expression System: A Potential Candidate to Express Protein in Industrial and Biopharmaceutical Domains. Biomedical Letters, 4, 1-14.
|
[27]
|
Yu, X., Lin, S., Kobayashi, M. and Ge, W. (2008) Expression of Recombinant Zebrafish Follicle-Stimulating Hormone (FSH) in Methylotropic Yeast Pichia pastoris. Fish Physiology and Biochemistry, 36, 273-281. https://doi.org/10.1007/s10695-008-9244-z
|
[28]
|
Chen, J., Yu, D., Li, Y., Xia, H., Xia, L., Lei, Y., et al. (2022) Study on the Expression of NK-Lysin from Nile tilapia (Oreochromis niloticus) in Pichia pastoris and Its Biological Function. Aquaculture, 557, Article ID: 738321. https://doi.org/10.1016/j.aquaculture.2022.738321
|
[29]
|
Eskandari, A., Nezhad, N.G., Leow, T.C., Rahman, M.B.A. and Oslan, S.N. (2023) Current Achievements, Strategies, Obstacles, and Overcoming the Challenges of the Protein Engineering in Pichia pastoris Expression System. World Journal of Microbiology and Biotechnology, 40, Article No. 39. https://doi.org/10.1007/s11274-023-03851-6
|
[30]
|
Schmidt, F.R. (2004) Recombinant Expression Systems in the Pharmaceutical Industry. Applied Microbiology and Biotechnology, 65, 363-372. https://doi.org/10.1007/s00253-004-1656-9
|
[31]
|
Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. and Gorwa-Grauslund, M.F. (2007) Towards Industrial Pentose-Fermenting Yeast Strains. Applied Microbiology and Biotechnology, 74, 937-953. https://doi.org/10.1007/s00253-006-0827-2
|
[32]
|
Wang, L., Yang, M., Luo, S., Yang, G., Lu, X., Lu, J., et al. (2023) Oral Vaccination of Recombinant Saccharomyces cerevisiae Expressing ORF132 Induces Protective Immunity against Cyprinid Herpesvirus-2. Vaccines, 11, Article No. 186. https://doi.org/10.3390/vaccines11010186
|
[33]
|
Yang, M., Liang, J., Luo, S., Zhang, S., Zhou, Q., Lu, J., et al. (2024) Oral Vaccination with Recombinant Saccharomyces cerevisiae Expressing Micropterus Salmoides Rhabdovirus G Protein Elicits Protective Immunity in Largemouth Bass. Fish & Shellfish Immunology, 145, Article ID: 109364. https://doi.org/10.1016/j.fsi.2024.109364
|
[34]
|
Hitchman, R., Possee, R. and King, L. (2009) Baculovirus Expression Systems for Recombinant Protein Production in Insect Cells. Recent Patents on Biotechnology, 3, 46-54. https://doi.org/10.2174/187220809787172669
|
[35]
|
Martínez-Solís, M., Herrero, S. and Targovnik, A.M. (2018) Engineering of the Baculovirus Expression System for Optimized Protein Production. Applied Microbiology and Biotechnology, 103, 113-123. https://doi.org/10.1007/s00253-018-9474-7
|
[36]
|
Luckow, V.A., Lee, S.C., Barry, G.F. and Olins, P.O. (1993) Efficient Generation of Infectious Recombinant Baculoviruses by Site-Specific Transposon-Mediated Insertion of Foreign Genes into a Baculovirus Genome Propagated in Escherichia coli. Journal of Virology, 67, 4566-4579. https://doi.org/10.1128/jvi.67.8.4566-4579.1993
|
[37]
|
Kwang, T.W., Zeng, X. and Wang, S. (2016) Manufacturing of AcMNPV Baculovirus Vectors to Enable Gene Therapy Trials. Molecular Therapy—Methods & Clinical Development, 3, 15050. https://doi.org/10.1038/mtm.2015.50
|
[38]
|
Wu, P., Shang, Q., Dweteh, O.A., Huang, H., Zhang, S., Zhong, J., et al. (2019) Over Expression of bmo-miR-2819 Suppresses BmNPV Replication by Regulating the BmNPV ie-1 Gene in Bombyx mori. Molecular Immunology, 109, 134-139. https://doi.org/10.1016/j.molimm.2019.03.013
|
[39]
|
Hutchinson, A. and Seitova, A. (2021) Production of Recombinant PRMT Proteins Using the Baculovirus Expression Vector System. Journal of Visualized Experiments, No. 173, e62510. https://doi.org/10.3791/62510-v
|
[40]
|
Lyu, S., Yuan, X., Zhang, H., Shi, W., Hang, X., Liu, L., et al. (2019) Isolation and Characterization of a Novel Strain (YH01) of Micropterus Salmoides Rhabdovirus and Expression of Its Glycoprotein by the Baculovirus Expression System. Journal of Zhejiang University-Science B, 20, 728-739. https://doi.org/10.1631/jzus.b1900027
|
[41]
|
Li, J., Ding, J., Chen, K., Xu, X., Shao, Y., Zhang, D., et al. (2024) Protective Effects of a Novel Chimeric Virus-Like Particle Vaccine against Virulent NDV and IBDV Challenge. Vaccine, 42, 332-338. https://doi.org/10.1016/j.vaccine.2023.11.062
|
[42]
|
Zhu, J. (2012) Mammalian Cell Protein Expression for Biopharmaceutical Production. Biotechnology Advances, 30, 1158-1170. https://doi.org/10.1016/j.biotechadv.2011.08.022
|
[43]
|
Durocher, Y. and Butler, M. (2009) Expression Systems for Therapeutic Glycoprotein Production. Current Opinion in Biotechnology, 20, 700-707. https://doi.org/10.1016/j.copbio.2009.10.008
|
[44]
|
Mohan, C., Kim, Y., Koo, J. and Lee, G.M. (2008) Assessment of Cell Engineering Strategies for Improved Therapeutic Protein Production in CHO Cells. Biotechnology Journal, 3, 624-630. https://doi.org/10.1002/biot.200700249
|
[45]
|
Tan, E., Chin, C.S.H., Lim, Z.F.S. and Ng, S.K. (2021) HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Frontiers in Bioengineering and Biotechnology, 9, Article 796991. https://doi.org/10.3389/fbioe.2021.796991
|
[46]
|
Jäger, V., Büssow, K. and Schirrmann, T. (2014) Transient Recombinant Protein Expression in Mammalian Cells. In: Al-Rubeai, M., Ed., Animal Cell Culture, Springer International Publishing, 27-64. https://doi.org/10.1007/978-3-319-10320-4_2
|
[47]
|
Ling, X., Dong, W., Zhang, Y., Hu, J., Liu, J. and Zhao, X. (2019) A Recombinant Adenovirus Targeting Typical Aeromonas salmonicida Induces an Antibody-Mediated Adaptive Immune Response after Immunization of Rainbow Trout. Microbial Pathogenesis, 133, Article ID: 103559. https://doi.org/10.1016/j.micpath.2019.103559
|
[48]
|
Demain, A.L. and Vaishnav, P. (2009) Production of Recombinant Proteins by Microbes and Higher Organisms. Biotechnology Advances, 27, 297-306. https://doi.org/10.1016/j.biotechadv.2009.01.008
|
[49]
|
Matasci, M., Hacker, D.L., Baldi, L. and Wurm, F.M. (2008) Recombinant Therapeutic Protein Production in Cultivated Mammalian Cells: Current Status and Future Prospects. Drug Discovery Today: Technologies, 5, e37-e42. https://doi.org/10.1016/j.ddtec.2008.12.003
|
[50]
|
Li, R. (2014) Transient Transfection of CHO Cells Using Linear Polyethylenimine Is a Simple and Effective Means of Producing Rainbow Trout Recombinant IFN-γ Protein. Cytotechnology, 67, 987-993. https://doi.org/10.1007/s10616-014-9737-9
|
[51]
|
Noh, S.M., Shin, S. and Lee, G.M. (2019) Cell Line Development for Therapeutic Protein Production. In: Lee, G.M., et al., Eds., Cell Culture Engineering: Recombinant Protein Production, Wiley, 23-47.
|
[52]
|
Sun, H., Wang, S., Lu, M., Tinberg, C.E. and Alba, B.M. (2023) Protein Production from HEK293 Cell Line-Derived Stable Pools with High Protein Quality and Quantity to Support Discovery Research. PLOS ONE, 18, e0285971. https://doi.org/10.1371/journal.pone.0285971
|
[53]
|
Zhang, L., Gao, J., Zhang, X., Wang, X., Wang, T. and Zhang, J. (2024) Current Strategies for the Development of High-Yield HEK293 Cell Lines. Biochemical Engineering Journal, 205, Article ID: 109279. https://doi.org/10.1016/j.bej.2024.109279
|