[1]
|
Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001) Use of Chemotherapy Plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 344, 783-792. https://doi.org/10.1056/nejm200103153441101
|
[2]
|
孙筱品, 俞丽平, 顾美儿. 乳腺癌治疗性抗体研究进展[J]. 科学咨询, 2024(15): 152-155.
|
[3]
|
汤沁, 丁倩, 林莉, 等. 针对HER2靶点的抗体药物研究与肿瘤靶向治疗[J]. 药学学报, 2012, 47(10): 1297-1305.
|
[4]
|
Baselga, J., Cortés, J., Kim, S., Im, S., Hegg, R., Im, Y., et al. (2012) Pertuzumab plus Trastuzumab plus Docetaxel for Metastatic Breast Cancer. New England Journal of Medicine, 366, 109-119. https://doi.org/10.1056/nejmoa1113216
|
[5]
|
刘战涛, 宋艳秋. 乳腺癌的靶向治疗[J]. 中华乳腺病杂志(电子版), 2021, 15(6): 329-336.
|
[6]
|
Verma, S., Miles, D., Gianni, L., Krop, I.E., Welslau, M., Baselga, J., et al. (2012) Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine, 367, 1783-1791. https://doi.org/10.1056/nejmoa1209124
|
[7]
|
岳健, 徐兵河. 新型抗Her-2药物T-DM1[J]. 中国肿瘤临床, 2013, 40(19): 1203-1206.
|
[8]
|
向泓雨, 刘荫华. HER2阳性乳腺癌抗HER2治疗研究进展[J]. 肿瘤药学, 2024, 14(6): 686-694.
|
[9]
|
贺萍, 伍雁琦, 罗婷. 抗体药物偶联物在乳腺癌中的治疗现状及进展[J]. 临床肿瘤学杂志, 2022, 27(3): 255-264.
|
[10]
|
王雪儿, 王永胜. “精准医疗”时代从乳腺癌分子分型探讨抗体-药物偶联物的临床价值及最新研究进展[J]. 中国癌症杂志, 2023, 33(12): 1073-1082.
|
[11]
|
Saura, C., Thistlethwaite, F., Banerji, U., Lord, S., Moreno, V., MacPherson, I., et al. (2018) A Phase I Expansion Cohorts Study of SYD985 in Heavily Pretreated Patients with HER2-Positive or HER2-Low Metastatic Breast Cancer. Journal of Clinical Oncology, 36, 1014. https://doi.org/10.1200/jco.2018.36.15_suppl.1014
|
[12]
|
裴家峤, 张莹, 李子欣, 等. 抗体药物偶联物治疗HER-2阳性乳腺癌的机制与研究进展[J]. 临床医学研究与实践, 2024, 9(15): 187-190.
|
[13]
|
何明星, 张露, 谭燕. 靶向治疗HER2阳性乳腺癌患者的新型抗体药物偶联物: T-DM1与T-DXd [J]. 中南药学, 2024, 22(7): 1877-1882.
|
[14]
|
郑维锋, 卢创新, 杨争艳. HER2阳性乳腺癌靶向药物的研究进展[J]. 中国肿瘤生物治疗杂志, 2022, 29(6): 587-595.
|
[15]
|
温鑫鑫, 李南林. 抗体药物偶联类药物在乳腺癌脑转移治疗中的研究进展[J]. 中华神经外科疾病研究杂志, 2024, 18(5): 72-75.
|
[16]
|
Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. New England Journal of Medicine, 387, 9-20. https://doi.org/10.1056/nejmoa2203690
|
[17]
|
中国抗癌协会肿瘤药物临床研究专业委员会, 国家抗肿瘤药物临床应用监测专家委员会, 国家肿瘤质控中心乳腺癌专家委员会, 等. 抗体药物偶联物治疗恶性肿瘤临床应用专家共识(2020版) [J]. 中国医学前沿杂志(电子版), 2021, 13(1): 1-15.
|
[18]
|
Bardia, A., Hurvitz, S.A., Tolaney, S.M., Loirat, D., Punie, K., Oliveira, M., et al. (2021) Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 384, 1529-1541. https://doi.org/10.1056/nejmoa2028485
|
[19]
|
卢蓉蓉, 瞿菲, 刘谦, 等. 靶向Trop-2抗体药物偶联物在乳腺癌治疗中的研究进展[J]. 药学进展, 2024, 48(2): 118-124.
|
[20]
|
范嘉躜, 黄硕涵, 孟艳春, 等. 转移性三阴性乳腺癌的新型药物治疗进展[J]. 世界临床药物, 2024, 45(7): 703-709.
|
[21]
|
闫奕龙, 朱斌, 赵志刚. 抗体药物偶联物的临床应用与安全性研究进展[J]. 临床药物治疗杂志, 2025, 23(2): 10-16.
|
[22]
|
向奕玫, 张宁宁, 黄雨昕, 等. HER2阳性乳腺癌疗效相关生物标志物研究进展[J]. 中国临床药理学与治疗学, 2023, 28(8): 887-897.
|
[23]
|
李梅影, 李文欢. HER-2基因突变在乳腺癌中的研究进展[J]. 肿瘤综合治疗电子杂志, 2023, 9(3): 82-87.
|
[24]
|
张俊美, 杜红娟, 盛倩文, 等. 德曲妥珠单抗在HER2阳性晚期乳腺癌脑转移患者中的疗效及安全性[J]. 肿瘤学杂志, 2024, 30(7): 570-576.
|
[25]
|
刘谦, 瞿菲, 李薇. 组蛋白去乙酰化酶抑制剂在乳腺癌的治疗进展[J]. 南京医科大学学报(自然科学版), 2024, 44(2): 281-286.
|
[26]
|
刘德桐, 李超, 许焱, 等. 激素受体阳性/人表皮生长因子受体2阳性晚期乳腺癌生物学特点及治疗进展[J]. 中国医学前沿杂志(电子版), 2024, 16(4): 73-80.
|
[27]
|
杨柳, 谢瑞, 刘锦平. 人表皮生长因子受体2低表达乳腺癌的研究进展[J]. 实用医院临床杂志, 2024, 21(3): 170-175.
|
[28]
|
丁玥, 陈金鹏, 郑士亚. 靶向PD-1/PD-L1相关免疫治疗在HER2阳性乳腺癌中应用的研究进展[J]. 东南大学学报(医学版), 2024, 43(3): 473-478.
|
[29]
|
王华, 胡晓磊, 李星宇, 等. 三阴性乳腺癌的免疫联合治疗研究进展[J]. 肿瘤防治研究, 2022, 49(10): 996-1002.
|
[30]
|
黑龙江省医学会乳腺肿瘤学组. 黑龙江省乳腺癌HER2低表达临床病理诊断专家共识(2024版) [J]. 实用肿瘤学杂志, 2024, 38(2): 71-78.
|
[31]
|
鲜童丞, 张雪琳, 别俊, 等. 抗血管内皮生长因子靶向药物联合免疫疗法治疗乳腺癌的研究进展[J]. 现代药物与临床, 2024, 39(10): 2711-2716.
|
[32]
|
郑薇, 刘强. 2023年乳腺癌临床研究进展年终盘点[J]. 中国普通外科杂志, 2024, 33(5): 669-682.
|
[33]
|
黄香, 殷咏梅. 聚点滴星火, 成燎原之势——乳腺癌药物治疗进展与展望[J]. 药学进展, 2024, 48(2): 81-84.
|
[34]
|
魏万, 唐杰, 封紫玉, 等. 雄激素受体有望成为乳腺癌中新的生物标志物[J]. 安徽医药, 2023, 27(12): 2343-2346.
|
[35]
|
田璨, 欧阳取长. 人表皮生长因子受体2低表达乳腺癌: 过去、现在和未来[J]. 肿瘤药学, 2024, 14(3): 304-313.
|
[36]
|
瞿菲, 孙春晓, 李薇. HER2低表达晚期乳腺癌抗体药物偶联物研究进展[J]. 药学进展, 2024, 48(2): 96-104.
|
[37]
|
许妹芳, 周黎, 续广娟. 某三甲医院2021~2023年乳腺癌治疗药物使用情况分析[J]. 中国现代药物应用, 2025, 19(1): 151-155.
|
[38]
|
金奕滋, 林明曦, 曾铖, 等. 雌激素受体低表达早期乳腺癌的研究进展[J]. 中国癌症杂志, 2024, 34(10): 972-978.
|
[39]
|
Subhan, M.A. and Torchilin, V.P. (2023) Advances in Targeted Therapy of Breast Cancer with Antibody-Drug Conjugate. Pharmaceutics, 15, Article 1242. https://doi.org/10.3390/pharmaceutics15041242
|
[40]
|
Grinda, T., Rassy, E. and Pistilli, B. (2023) Antibody-Drug Conjugate Revolution in Breast Cancer: The Road Ahead. Current Treatment Options in Oncology, 24, 442-465. https://doi.org/10.1007/s11864-023-01072-5
|
[41]
|
Schettini, F. and Prat, A. (2021) Dissecting the Biological Heterogeneity of HER2-Positive Breast Cancer. The Breast, 59, 339-350. https://doi.org/10.1016/j.breast.2021.07.019
|
[42]
|
Yu, Y., Wang, J., Liao, D., Zhang, D., Li, X., Jia, Y., et al. (2022) Advances in Antibody-Drug Conjugates in the Treatment of HER2-Positive Breast Cancer. Breast Cancer: Targets and Therapy, 14, 417-432. https://doi.org/10.2147/bctt.s384830
|
[43]
|
Slamon, D.J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., et al. (2001) Use of Chemotherapy Plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. New England Journal of Medicine, 344, 783-792. https://doi.org/10.1056/nejm200103153441101
|
[44]
|
Ferraro, E., Drago, J.Z. and Modi, S. (2021) Implementing Antibody-Drug Conjugates (ADCs) in HER2-Positive Breast Cancer: State of the Art and Future Directions. Breast Cancer Research, 23, Article No. 84. https://doi.org/10.1186/s13058-021-01459-y
|
[45]
|
Tarantino, P., Modi, S., Tolaney, S.M., Cortés, J., Hamilton, E.P., Kim, S., et al. (2021) Interstitial Lung Disease Induced by Anti-ERBB2 Antibody-Drug Conjugates: A Review. JAMA Oncology, 7, 1873-1881. https://doi.org/10.1001/jamaoncol.2021.3595
|
[46]
|
Najjar, M.K., Manore, S.G., Regua, A.T. and Lo, H. (2022) Antibody-Drug Conjugates for the Treatment of HER2-Positive Breast Cancer. Genes, 13, Article 2065. https://doi.org/10.3390/genes13112065
|
[47]
|
Modi, S., Saura, C., Yamashita, T., Park, Y.H., Kim, S., Tamura, K., et al. (2020) Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. New England Journal of Medicine, 382, 610-621. https://doi.org/10.1056/nejmoa1914510
|
[48]
|
Cortés, J., Kim, S., Chung, W., Im, S., Park, Y.H., Hegg, R., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. New England Journal of Medicine, 386, 1143-1154. https://doi.org/10.1056/nejmoa2115022
|
[49]
|
Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., et al. (2022) Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. New England Journal of Medicine, 387, 9-20. https://doi.org/10.1056/nejmoa2203690
|
[50]
|
FDA (2022) FDA Approves Fam-Trastuzumab Deruxtecan-Nxki for HER2-Low Breast Cancer. https://www.fda.gov
|
[51]
|
Corti, C., Giugliano, F., Nicolò, E., Tarantino, P., Criscitiello, C. and Curigliano, G. (2023) HER2-Low Breast Cancer: A New Subtype? Current Treatment Options in Oncology, 24, 468-478. https://doi.org/10.1007/s11864-023-01068-1
|
[52]
|
Chen, Y., Xu, Y., Shao, Z. and Yu, K. (2022) Resistance to Antibody‐Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Communications, 43, 297-337. https://doi.org/10.1002/cac2.12387
|
[53]
|
Keskinkilic, M. and Sacks, R. (2024) Antibody-Drug Conjugates in Triple Negative Breast Cancer. Clinical Breast Cancer, 24, 163-174. https://doi.org/10.1016/j.clbc.2024.01.008
|
[54]
|
Bardia, A., Hurvitz, S.A., Tolaney, S.M., Loirat, D., Punie, K., Oliveira, M., et al. (2021) Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. New England Journal of Medicine, 384, 1529-1541. https://doi.org/10.1056/nejmoa2028485
|
[55]
|
Shastry, M., Jacob, S., Rugo, H.S. and Hamilton, E. (2022) Antibody-Drug Conjugates Targeting TROP-2: Clinical Development in Metastatic Breast Cancer. The Breast, 66, 169-177. https://doi.org/10.1016/j.breast.2022.10.007
|
[56]
|
Bardia, A., Krop, I.E., Kogawa, T., Juric, D., Tolcher, A.W., Hamilton, E.P., et al. (2023) Datopotamab Deruxtecan in Advanced or Metastatic HR+/HER2-and Triple-Negative Breast Cancer: Results from the Phase I TROPION-PanTumor01 Study. Journal of Clinical Oncology, 41, 2281-2294. https://doi.org/10.1200/JCO.23.01909
|
[57]
|
Dent, R.A., Cescon, D.W., Bachelot, T., Jung, K.H., Shao, Z., Saji, S., et al. (2023) Tropion-Breast02: Datopotamab Deruxtecan for Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer. Future Oncology, 19, 2349-2359. https://doi.org/10.2217/fon-2023-0228
|
[58]
|
Dri, A., Arpino, G., Bianchini, G., Curigliano, G., Danesi, R., De Laurentiis, M., et al. (2024) Breaking Barriers in Triple Negative Breast Cancer (TNBC)—Unleashing the Power of Antibody-Drug Conjugates (ADCs). Cancer Treatment Reviews, 123, Article 102672. https://doi.org/10.1016/j.ctrv.2023.102672
|
[59]
|
Ríos-Luci, C., García-Alonso, S., Díaz-Rodríguez, E., Nadal-Serrano, M., Arribas, J., Ocaña, A., et al. (2017) Resistance to the Antibody-Drug Conjugate T-DM1 Is Based in a Reduction in Lysosomal Proteolytic Activity. Cancer Research, 77, 4639-4651. https://doi.org/10.1158/0008-5472.can-16-3127
|
[60]
|
Hamilton, E., Shapiro, C.L., Petrylak, D., Boni, V., Martin, M., Conte, G.D., et al. (2021) Abstract PD3-07: Trastuzumab Deruxtecan (T-DXd; DS-8201) with Nivolumab in Patients with HER2-Expressing, Advanced Breast Cancer: A 2-Part, Phase 1b, Multicenter, Open-Label Study. Cancer Research, 81, PD3-07. https://doi.org/10.1158/1538-7445.sabcs20-pd3-07
|
[61]
|
Wekking, D., Porcu, M., Pellegrino, B., Lai, E., Mura, G., Denaro, N., et al. (2023) Multidisciplinary Clinical Guidelines in Proactive Monitoring, Early Diagnosis, and Effective Management of Trastuzumab Deruxtecan (T-DXd)-Induced Interstitial Lung Disease (ILD) in Breast Cancer Patients. ESMO Open, 8, Article 102043. https://doi.org/10.1016/j.esmoop.2023.102043
|
[62]
|
Barok, M., Le Joncour, V., Martins, A., Isola, J., Salmikangas, M., Laakkonen, P., et al. (2020) ARX788, a Novel Anti-HER2 Antibody-Drug Conjugate, Shows Anti-Tumor Effects in Preclinical Models of Trastuzumab Emtansine-Resistant HER2-Positive Breast Cancer and Gastric Cancer. Cancer Letters, 473, 156-163. https://doi.org/10.1016/j.canlet.2019.12.037
|
[63]
|
Modi, S., Pusztai, L., Forero, A., Mita, M., Miller, K., Weise, A., et al. (2018) Abstract PD3-14: Phase 1 Study of the Antibody-Drug Conjugate SGN-LIV1A in Patients with Heavily Pretreated Triple-Negative Metastatic Breast Cancer. Cancer Research, 78, PD3-14. https://doi.org/10.1158/1538-7445.sabcs17-pd3-14
|
[64]
|
Robson, M., Im, S., Senkus, E., Xu, B., Domchek, S.M., Masuda, N., et al. (2017) Olaparib for Metastatic Breast Cancer in Patients with a Germline brca Mutation. New England Journal of Medicine, 377, 523-533. https://doi.org/10.1056/nejmoa1706450
|
[65]
|
Prat, A., et al. (2022) HER2DX: A Genomic Test for Predicting Pathologic Complete Response and Survival Outcomes in Early-Stage HER2-Positive Breast Cancer. Annals of Oncology, 33, S808.
|
[66]
|
Vagia, E., Davis, A., Gerratana, L., Zhang, Q., Zhang, Y., Tenler, M., et al. (2020) Abstract 1501: Exceptional Response to Anti HER-2 Targeted Therapy in Patient with HER2/Neu Negative Breast Cancer with HER2/Neu Positive CTCs. Cancer Research, 80, 1501. https://doi.org/10.1158/1538-7445.am2020-1501
|