piRNA在癌症治疗中的临床研究进展
Clinical Research Progress of piRNA in Cancer Treatment
DOI: 10.12677/acm.2025.1551548, PDF, HTML, XML,   
作者: 宋佳栩, 马 馨, 张孟宇:青岛大学青岛医学院,山东 青岛;王晓敏*:青岛大学再生医学与检验创新研究院,山东 青岛
关键词: piRNA癌症化疗免疫治疗表观遗传调控piRNA Cancer Chemotherapy Immunotherapy Epigenetic Regulation
摘要: piRNA是一类小的非编码RNA分子,在癌症的发生发展中发挥着重要作用。近年来,piRNA在癌症治疗中的潜力逐渐被挖掘,受到越来越多的关注。本文从piRNA直接发挥治疗作用、协同其他药物增强疗效以及克服耐药三个方面进行分类阐述,探讨piRNA在癌症临床治疗中的潜在应用价值。通过深入研究piRNA的作用机制,可以为开发新的癌症治疗药物提供理论依据,有望改善癌症患者的治疗效果和生活质量。
Abstract: piRNAs are small non-coding RNAs that play an important role in the initiation and development of cancer. In recent years, the potential of piRNA in cancer therapy has received increasing attention. In this review, the potential application of piRNA in cancer therapy is discussed from three aspects: direct therapeutic effect of piRNA, synergistic effect with other drugs and overcoming drug resistance. The in-depth study on the mechanism of action of piRNA can provide theoretical basis for the development of new cancer treatment drugs and strategies, and is expected to improve the treatment effect and quality of life of cancer patients.
文章引用:宋佳栩, 马馨, 张孟宇, 王晓敏. piRNA在癌症治疗中的临床研究进展[J]. 临床医学进展, 2025, 15(5): 1717-1722. https://doi.org/10.12677/acm.2025.1551548

1. 引言

癌症是全球主要的公共卫生问题之一,其发生发展可能受到多种因素的影响,其中遗传因素和表观遗传调控等内部机制已成为癌症研究的关键领域[1] [2]。在人类基因组中,非编码RNA是一类不包含蛋白质编码序列的RNA,主要包括siRNA、miRNA和piRNA。piRNA是一类新兴的非编码短RNA家族[3],其作用机制与miRNA和siRNA有所不同:piRNA通过与PIWI蛋白亚家族结合发挥作用[4],而miRNA和siRNA则与AGO蛋白亚家族相互作用。值得注意的是,piRNA最初被认为是在生殖细胞中发挥作用,保护基因组免受转座子活动的破坏[5]。然而,越来越多的研究表明,piRNA在多种肿瘤中存在异常表达,且piRNA在癌症中的具体作用可能是双重的,即既可以发挥致癌作用,也可能具有抑癌功能[6]-[8]。因此,piRNA有望成为癌症治疗的新靶点。本文将从piRNA直接发挥治疗作用、用于协同其他药物增强疗效以及克服耐药三个方面进行详细探讨。

2. piRNA直接发挥治疗作用

piRNA在癌症治疗中作用机制多样且复杂,能够通过调控基因表达、影响细胞周期和凋亡以及表观遗传修饰等多种机制,直接对癌症细胞产生治疗效果。这种复杂性使其在癌症治疗中极具吸引力的靶点。以下将详细探讨piRNA通过这些机制直接发挥治疗作用的具体方式。

2.1. 通过调控基因表达

piRNA通过与靶基因碱基互补配对,在转录或转录后水平调控靶基因表达,从而抑制肿瘤细胞增殖和转移。例如,piR-38736在胃癌中表达上调,通过下调SMAD4这一抑癌基因表达,促进癌细胞增殖和肿瘤生长[9]。此外,piR-823在多种癌症中表达下调[6] [10],其通过与靶基因碱基互补配对,在转录或转录后水平调控靶基因表达,从而抑制肿瘤细胞增殖和转移,有望成为癌症治疗的潜在靶点。

2.2. 通过影响细胞周期和凋亡

piRNA可以影响细胞周期抑制肿瘤细胞的生长。例如,piR-651在胃癌中通过上调细胞周期相关蛋白cyclin D1和CDK4,保证肿瘤细胞的增殖,其抑制物可以抑制胃癌细胞生长并使其停留在G2/M期[11]。piRNA-8041在胶质母细胞瘤中低表达,通过增加肿瘤抑制因子RASSF1的表达,抑制cyclin D1的积累,阻滞细胞周期从G1期向S期的转换。同时,其下调ERK1/2信号通路也抑制了细胞周期进程,进一步增强了其抗肿瘤作用[12]。此外,piRNA还可以通过调控凋亡相关基因的表达来促进癌细胞的凋亡。在结肠癌细胞中,piRNA通过调控FAS基因的过表达来促进癌细胞的凋亡[13]

2.3. 通过表观遗传调控

piRNA在癌症治疗中通过表观遗传调控机制发挥着至关重要的作用。piRNA能够调控DNA甲基化,例如,piR-932在肺癌干细胞中高表达,可能通过促进基因甲基化影响其行为,显示出作为潜在化疗靶点的前景[14]。piR-651在乳腺癌中的过表达通过PIWIL2将DNMT1招募至PTEN启动子区,导致PTEN启动子甲基化,降低其表达,从而促进癌细胞的增殖和侵袭[15]。piR-823在食管鳞癌中的过表达则通过DNMT3B介导的DNA甲基化促进癌细胞的进展[16]。此外,Fu等人[17]发现piR-021285通过促进ARHGAP11A的甲基化来下调其表达。值得注意的是,piRNA还能够调控m6A修饰。例如,piR-36741通过调控BMP2的METTL3依赖性m6A甲基化,影响成骨细胞分化[18]。这些研究表明,piRNA通过调控表观遗传修饰相关的信号通路发挥重要作用,为开发新的靶向治疗药提供了理论依据。

3. piRNA用于协同其他药物增强疗效

piRNA在癌症治疗中不仅能够直接发挥治疗作用,还可以通过与其他药物的协同作用显著增强治疗效果。

3.1. 与化疗药物协同作用

piRNA可以增强肿瘤细胞对化疗药物的敏感性,从而提高化疗的疗效。近年来相关研究[19] [20]证明piRNA水平与大多数接受蒽环类和紫杉烷类辅助化疗的患者的无进展生存期相关,因此谭等人的团队发现了piRNA-36712会影响这些药物对乳腺癌细胞的治疗作用。他们的实验结果[21]表明,piRNA-36712在乳腺癌细胞中的过表达显著降低了对紫杉醇或阿霉素的半数抑制浓度,而piRNA-36712的敲低则显著增加了这两种药物的半数抑制浓度,显示出与紫杉醇和多柔比星(两种用于乳腺癌的化疗剂)的协同抗癌作用。还有研究[22]表明,piR-hsa-211106与顺铂在体外和体内均具有协同作用。在体外实验中,顺铂可以浓度依赖性方式抑制A549细胞的增殖,过表达piR-hsa-211106可以与顺铂协同作用,抑制A549细胞增殖并促进凋亡,而敲低piR-hsa-211106则逆转了顺铂的功能。在体内实验中,注射piR-hsa-211106类似物可以抑制裸鼠肿瘤的生长,与顺铂联合治疗后,肿瘤生长受抑最为明显,piR-hsa-211106可作为肺腺癌的治疗靶点,与顺铂化疗药物有协同作用。

3.2. 与免疫治疗药物协同作用

piRNA能够通过调控肿瘤微环境中的免疫细胞浸润,提高免疫治疗药物对肿瘤细胞的识别和杀伤能力。张等人的研究[23]发现,piRNA-137463在肺腺癌中通过调控胆固醇代谢促进肿瘤增殖、转移和免疫逃逸。抑制piRNA-137463可减少胆固醇合成,降低PD-L1表达,既可以增强T细胞杀伤能力,又能与PD-1抑制剂联合使用时表现出协同抗肿瘤效果。

4. piRNA克服耐药

肿瘤耐药是癌症治疗中的一个重大挑战,piRNA可以通过调控肿瘤细胞的多药耐药蛋白(MDR)表达,降低肿瘤细胞对化疗药物的外排作用,从而增强化疗药物在肿瘤细胞内的蓄积,提高化疗效果[24]。研究表明,piRNA-PIWI通路在肿瘤干细胞中高表达,通过沉默转座子与调节基因表达影响干细胞功能,从而在肿瘤发生发展中抑制凋亡通路、提高耐药性、扰乱miRNA系统、维持肿瘤干细胞的干性与过度甲基化。此外,研究[25]发现piRNA-17560通过与乳腺癌细胞中FTO mRNA的3'UTR结合增强其稳定性,进而促进FTO的表达,上调的FTO则通过降低RNA m6A促进肿瘤细胞ZEB1的表达,从而增强乳腺癌细胞的耐药性这种调控机制减少了肿瘤细胞对化疗药物(如多柔比星和紫杉醇)的外排作用,从而增强了化疗药物在肿瘤细胞内的蓄积,提高了化疗效果。然而,piRNA在MDR中的具体作用机制仍需进一步研究以深入理解。之前的研究[26]发现,piR-39980在多柔比星耐药的HT1080纤维肉瘤细胞中表达下调。但纤维肉瘤中多柔比星耐药的确切分子机制尚未完全阐明。因此,印度的一个实验室进一步研究纤维肉瘤中多柔比星耐药的分子机制和克服这种耐药的治疗策略,发现piR-39980通过直接结合核糖核苷酸还原酶M2亚基(RRM2)和药物代谢酶CYP1A2的3'UTR负向调控其表达,逆转耐药性[27]。其中,RRM2通过促进DNA修复减轻多柔比星诱导的损伤[28] [29],CYP1A2则通过减少细胞内多柔比星积累来增强耐药性[30] [31]。卵巢癌中piRNA基因表达存在差异,研究揭示了某些基因(如PIWIL3)在化疗耐药性中的潜在作用,提示这些基因可能作为卵巢癌治疗的新靶点[32]

Table 1. Expression pattern and mechanism of piRNA in different cancers

1. piRNA在不同癌症中的表达模式和作用机制

piRNA名称

癌症类型

表达模式

作用机制

参考文献

piR-38736

胃癌

表达上调

下调SMAD4,促进癌细胞增殖和肿瘤生长

[9]

piR-651

胃癌

表达上调

上调Cyclin D1和CDK4,促进细胞周期进程

[11]

piRNA-8041

胶质母细胞瘤

表达下调

增加RASSF1表达,抑制细胞周期进程

[12]

piR-932

肺癌

表达上调

促进基因甲基化,影响肿瘤细胞行为

[14]

piR-823

食管鳞癌

表达上调

通过DNMT3B介导的DNA甲基化促进癌细胞进展

[16]

piRNA-36712

乳腺癌

表达下调

降低细胞对紫杉醇或阿霉素的半数抑制浓度

[21]

piR-hsa-211106

肺腺癌

表达上调

与顺铂协同作用,抑制肿瘤细胞增殖

[22]

piR-137463

肺腺癌

表达上调

通过调控胆固醇代谢促进肿瘤增殖和免疫逃逸

[23]

piRNA-17560

乳腺癌

表达下调

促进FTO的表达增强乳腺癌细胞的耐药性

[25]

piR-39980

纤维肉瘤

在DOX耐药细胞中表达下调

负向调控RRM2和CYP1A2,逆转耐药性

[26] [27]

PIWIL2

卵巢癌

在化疗敏感细胞中表达,而在化疗耐药细胞中不表达

具体机制需进一步研究

[32]

5. 结论

piRNA在癌症的临床治疗中发挥着重要作用,其通过多种机制调控基因表达并影响细胞的增殖、侵袭、凋亡和免疫逃逸(表1)。但piRNA在不同癌症中的作用机制仍需进一步探索,尤其是在癌症发生、进展及耐药性相关方面的研究,仍处于早期阶段。未来的研究应聚焦于piRNA在特定癌症中的具体机制,以及piRNA与其他非编码RNA的相互作用。随着研究的深入,piRNA在癌症中的生物学过程将被更详细地阐明,我们有望开发出针对piRNA的新型治疗策略,提高癌症的临床治疗效果。

NOTES

*通讯作者。

参考文献

[1] Fathizadeh, H. and Asemi, Z. (2019) Epigenetic Roles of PIWI Proteins and piRNAs in Lung Cancer. Cell & Bioscience, 9, Article No. 102.
https://doi.org/10.1186/s13578-019-0368-x
[2] Skoulidis, F. and Heymach, J.V. (2019) Co-Occurring Genomic Alterations in Non-Small-Cell Lung Cancer Biology and Therapy. Nature Reviews Cancer, 19, 495-509.
https://doi.org/10.1038/s41568-019-0179-8
[3] Liu, Y., Dou, M., Song, X., Dong, Y., Liu, S., Liu, H., et al. (2019) The Emerging Role of the piRNA/PIWI Complex in Cancer. Molecular Cancer, 18, Article No. 123.
https://doi.org/10.1186/s12943-019-1052-9
[4] Tamtaji, O.R., Behnam, M., Pourattar, M.A., Hamblin, M.R., Mahjoubin-Tehran, M., Mirzaei, H., et al. (2020) PIWI-Interacting RNAs and PIWI Proteins in Glioma: Molecular Pathogenesis and Role as Biomarkers. Cell Communication and Signaling, 18, Article No. 168.
https://doi.org/10.1186/s12964-020-00657-z
[5] Lin, H. (2007) piRNAs in the Germ Line. Science, 316, 397.
https://doi.org/10.1126/science.1137543
[6] Cheng, J., Deng, H., Xiao, B., Zhou, H., Zhou, F., Shen, Z., et al. (2012) piR-823, a Novel Non-Coding Small RNA, Demonstrates in Vitro and in Vivo Tumor Suppressive Activity in Human Gastric Cancer Cells. Cancer Letters, 315, 12-17.
https://doi.org/10.1016/j.canlet.2011.10.004
[7] Lee, J.H., Jung, C., Javadian-Elyaderani, P., Schweyer, S., Schütte, D., Shoukier, M., et al. (2010) Pathways of Proliferation and Antiapoptosis Driven in Breast Cancer Stem Cells by Stem Cell Protein Piwil2. Cancer Research, 70, 4569-4579.
https://doi.org/10.1158/0008-5472.can-09-2670
[8] Reeves, M.E., Firek, M., Jliedi, A. and Amaar, Y.G. (2017) Identification and Characterization of RASSF1C piRNA Target Genes in Lung Cancer Cells. Oncotarget, 8, 34268-34282.
https://doi.org/10.18632/oncotarget.15965
[9] Liu, D., Wang, C., Ge, H. and Yu, H. (2025) piR-38,736 Promotes Gastric Cancer Cell Proliferation by Downregulating SMAD4 Expression. Journal of Molecular Histology, 56, Article No. 128.
https://doi.org/10.1007/s10735-025-10412-8
[10] Yin, J., Jiang, X., Qi, W., Ji, C., Xie, X., Zhang, D., et al. (2017) piR‐823 Contributes to Colorectal Tumorigenesis by Enhancing the Transcriptional Activity of HSF1. Cancer Science, 108, 1746-1756.
https://doi.org/10.1111/cas.13300
[11] Li, D., Luo, Y., Gao, Y., Yang, Y., Wang, Y., Xu, Y., et al. (2016) piR-651 Promotes Tumor Formation in Non-Small Cell Lung Carcinoma through the Upregulation of Cyclin D1 and CDK4. International Journal of Molecular Medicine, 38, 927-936.
https://doi.org/10.3892/ijmm.2016.2671
[12] Jacobs, D.I., Qin, Q., Fu, A., Chen, Z., Zhou, J. and Zhu, Y. (2018) piRNA-8041 Is Downregulated in Human Glioblastoma and Suppresses Tumor Growth in Vitro and in Vivo. Oncotarget, 9, 37616-37626.
https://doi.org/10.18632/oncotarget.26331
[13] Weng, W., Liu, N., Toiyama, Y., Kusunoki, M., Nagasaka, T., Fujiwara, T., et al. (2018) Novel Evidence for a PIWI-Interacting RNA (piRNA) as an Oncogenic Mediator of Disease Progression, and a Potential Prognostic Biomarker in Colorectal Cancer. Molecular Cancer, 17, Article No. 16.
https://doi.org/10.1186/s12943-018-0767-3
[14] 马传胜, 段超, 周传江. 肺癌中piR-932的表达及其生物学行为机制研究[J]. 中国微生态学杂志, 2013, 25(12): 1390-1392.
[15] Liu, T., Wang, J., Sun, L., Li, M., He, X., Jiang, J., et al. (2021) PIWI-Interacting RNA-651 Promotes Cell Proliferation and Migration and Inhibits Apoptosis in Breast Cancer by Facilitating DNMT1-Mediated PTEN Promoter Methylation. Cell Cycle, 20, 1603-1616.
https://doi.org/10.1080/15384101.2021.1956090
[16] Su, J., Zhao, F., Gao, Z., Hou, Y., Li, Y., Duan, L., et al. (2020) piR-823 Demonstrates Tumor Oncogenic Activity in Esophageal Squamous Cell Carcinoma through DNA Methylation Induction via DNA Methyltransferase 3B. PathologyResearch and Practice, 216, Article ID: 152848.
https://doi.org/10.1016/j.prp.2020.152848
[17] Fu, A., Jacobs, D.I., Hoffman, A.E., Zheng, T. and Zhu, Y. (2015) PIWI-Interacting RNA 021285 Is Involved in Breast Tumorigenesis Possibly by Remodeling the Cancer Epigenome. Carcinogenesis, 36, 1094-1102.
https://doi.org/10.1093/carcin/bgv105
[18] Liu, J., Chen, M., Ma, L., Dang, X. and Du, G. (2021) piRNA-36741 Regulates BMP2-Mediated Osteoblast Differentiation via METTL3 Controlled m6A Modification. Aging, 13, 23361-23375.
https://doi.org/10.18632/aging.203630
[19] Mamounas, E.P., Bryant, J., Lembersky, B., Fehrenbacher, L., Sedlacek, S.M., Fisher, B., et al. (2005) Paclitaxel after Doxorubicin Plus Cyclophosphamide as Adjuvant Chemotherapy for Node-Positive Breast Cancer: Results from NSABP B-28. Journal of Clinical Oncology, 23, 3686-3696.
https://doi.org/10.1200/jco.2005.10.517
[20] Fan, W. (1999) Possible Mechanisms of Paclitaxel-Induced Apoptosis. Biochemical Pharmacology, 57, 1215-1221.
[21] Tan, L., Mai, D., Zhang, B., Jiang, X., Zhang, J., Bai, R., et al. (2019) PIWI-Interacting RNA-36712 Restrains Breast Cancer Progression and Chemoresistance by Interaction with SEPW1 Pseudogene SEPW1P RNA. Molecular Cancer, 18, Article No. 9.
https://doi.org/10.1186/s12943-019-0940-3
[22] 刘永梅. piR-hsa-211106对肺腺癌的调控作用及其机制的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021.
[23] Zhan, Y., Tian, F., Fan, W., Li, X., Wang, X., Zhang, H., et al. (2024) Targeting piRNA‐137463 Inhibits Tumor Progression and Boosts Sensitivity to Immune Checkpoint Blockade via de Novo Cholesterol Biosynthesis in Lung Adenocarcinoma. Advanced Science, 12, e2414100.
https://doi.org/10.1002/advs.202414100
[24] Bossennec, M., Di Roio, A., Caux, C. and Ménétrier-Caux, C. (2018) MDR1 in Immunity: Friend or Foe? OncoImmunology, 7, e1499388.
https://doi.org/10.1080/2162402x.2018.1499388
[25] Ou, B., Liu, Y., Gao, Z., Xu, J., Yan, Y., Li, Y., et al. (2022) Senescent Neutrophils-Derived Exosomal piRNA-17560 Promotes Chemoresistance and EMT of Breast Cancer via FTO-Mediated m6A Demethylation. Cell Death & Disease, 13, Article No. 905.
https://doi.org/10.1038/s41419-022-05317-3
[26] Das, B., Roy, J., Jain, N. and Mallick, B. (2018) Tumor Suppressive Activity of PIWI‐interacting RNA in Human Fibrosarcoma Mediated through Repression of RRM2. Molecular Carcinogenesis, 58, 344-357.
https://doi.org/10.1002/mc.22932
[27] Das, B., Jain, N. and Mallick, B. (2021) piR-39980 Mediates Doxorubicin Resistance in Fibrosarcoma by Regulating Drug Accumulation and DNA Repair. Communications Biology, 4, Article No. 1312.
https://doi.org/10.1038/s42003-021-02844-1
[28] Zhan, Y., Jiang, L., Jin, X., Ying, S., Wu, Z., Wang, L., et al. (2021) Inhibiting RRM2 to Enhance the Anticancer Activity of Chemotherapy. Biomedicine & Pharmacotherapy, 133, Article ID: 110996.
https://doi.org/10.1016/j.biopha.2020.110996
[29] Zhang, H., Liu, X., Warden, C.D., Huang, Y., Loera, S., Xue, L., et al. (2014) Prognostic and Therapeutic Significance of Ribonucleotide Reductase Small Subunit M2 in Estrogen-Negative Breast Cancers. BMC Cancer, 14, Article No. 664.
https://doi.org/10.1186/1471-2407-14-664
[30] Volkova, M., Palmeri, M., Russell, K.S. and Russell, R.R. (2011) Activation of the Aryl Hydrocarbon Receptor by Doxorubicin Mediates Cytoprotective Effects in the Heart. Cardiovascular Research, 90, 305-314.
https://doi.org/10.1093/cvr/cvr007
[31] AbuHammad, S. and Zihlif, M. (2013) Gene Expression Alterations in Doxorubicin Resistant MCF7 Breast Cancer Cell Line. Genomics, 101, 213-220.
https://doi.org/10.1016/j.ygeno.2012.11.009
[32] Lee, E., Lokman, N.A., Oehler, M.K., Ricciardelli, C. and Grutzner, F. (2020) A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers, 13, Article No. 4.
https://doi.org/10.3390/cancers13010004