[1]
|
Fathizadeh, H. and Asemi, Z. (2019) Epigenetic Roles of PIWI Proteins and piRNAs in Lung Cancer. Cell & Bioscience, 9, Article No. 102. https://doi.org/10.1186/s13578-019-0368-x
|
[2]
|
Skoulidis, F. and Heymach, J.V. (2019) Co-Occurring Genomic Alterations in Non-Small-Cell Lung Cancer Biology and Therapy. Nature Reviews Cancer, 19, 495-509. https://doi.org/10.1038/s41568-019-0179-8
|
[3]
|
Liu, Y., Dou, M., Song, X., Dong, Y., Liu, S., Liu, H., et al. (2019) The Emerging Role of the piRNA/PIWI Complex in Cancer. Molecular Cancer, 18, Article No. 123. https://doi.org/10.1186/s12943-019-1052-9
|
[4]
|
Tamtaji, O.R., Behnam, M., Pourattar, M.A., Hamblin, M.R., Mahjoubin-Tehran, M., Mirzaei, H., et al. (2020) PIWI-Interacting RNAs and PIWI Proteins in Glioma: Molecular Pathogenesis and Role as Biomarkers. Cell Communication and Signaling, 18, Article No. 168. https://doi.org/10.1186/s12964-020-00657-z
|
[5]
|
Lin, H. (2007) piRNAs in the Germ Line. Science, 316, 397. https://doi.org/10.1126/science.1137543
|
[6]
|
Cheng, J., Deng, H., Xiao, B., Zhou, H., Zhou, F., Shen, Z., et al. (2012) piR-823, a Novel Non-Coding Small RNA, Demonstrates in Vitro and in Vivo Tumor Suppressive Activity in Human Gastric Cancer Cells. Cancer Letters, 315, 12-17. https://doi.org/10.1016/j.canlet.2011.10.004
|
[7]
|
Lee, J.H., Jung, C., Javadian-Elyaderani, P., Schweyer, S., Schütte, D., Shoukier, M., et al. (2010) Pathways of Proliferation and Antiapoptosis Driven in Breast Cancer Stem Cells by Stem Cell Protein Piwil2. Cancer Research, 70, 4569-4579. https://doi.org/10.1158/0008-5472.can-09-2670
|
[8]
|
Reeves, M.E., Firek, M., Jliedi, A. and Amaar, Y.G. (2017) Identification and Characterization of RASSF1C piRNA Target Genes in Lung Cancer Cells. Oncotarget, 8, 34268-34282. https://doi.org/10.18632/oncotarget.15965
|
[9]
|
Liu, D., Wang, C., Ge, H. and Yu, H. (2025) piR-38,736 Promotes Gastric Cancer Cell Proliferation by Downregulating SMAD4 Expression. Journal of Molecular Histology, 56, Article No. 128. https://doi.org/10.1007/s10735-025-10412-8
|
[10]
|
Yin, J., Jiang, X., Qi, W., Ji, C., Xie, X., Zhang, D., et al. (2017) piR‐823 Contributes to Colorectal Tumorigenesis by Enhancing the Transcriptional Activity of HSF1. Cancer Science, 108, 1746-1756. https://doi.org/10.1111/cas.13300
|
[11]
|
Li, D., Luo, Y., Gao, Y., Yang, Y., Wang, Y., Xu, Y., et al. (2016) piR-651 Promotes Tumor Formation in Non-Small Cell Lung Carcinoma through the Upregulation of Cyclin D1 and CDK4. International Journal of Molecular Medicine, 38, 927-936. https://doi.org/10.3892/ijmm.2016.2671
|
[12]
|
Jacobs, D.I., Qin, Q., Fu, A., Chen, Z., Zhou, J. and Zhu, Y. (2018) piRNA-8041 Is Downregulated in Human Glioblastoma and Suppresses Tumor Growth in Vitro and in Vivo. Oncotarget, 9, 37616-37626. https://doi.org/10.18632/oncotarget.26331
|
[13]
|
Weng, W., Liu, N., Toiyama, Y., Kusunoki, M., Nagasaka, T., Fujiwara, T., et al. (2018) Novel Evidence for a PIWI-Interacting RNA (piRNA) as an Oncogenic Mediator of Disease Progression, and a Potential Prognostic Biomarker in Colorectal Cancer. Molecular Cancer, 17, Article No. 16. https://doi.org/10.1186/s12943-018-0767-3
|
[14]
|
马传胜, 段超, 周传江. 肺癌中piR-932的表达及其生物学行为机制研究[J]. 中国微生态学杂志, 2013, 25(12): 1390-1392.
|
[15]
|
Liu, T., Wang, J., Sun, L., Li, M., He, X., Jiang, J., et al. (2021) PIWI-Interacting RNA-651 Promotes Cell Proliferation and Migration and Inhibits Apoptosis in Breast Cancer by Facilitating DNMT1-Mediated PTEN Promoter Methylation. Cell Cycle, 20, 1603-1616. https://doi.org/10.1080/15384101.2021.1956090
|
[16]
|
Su, J., Zhao, F., Gao, Z., Hou, Y., Li, Y., Duan, L., et al. (2020) piR-823 Demonstrates Tumor Oncogenic Activity in Esophageal Squamous Cell Carcinoma through DNA Methylation Induction via DNA Methyltransferase 3B. Pathology—Research and Practice, 216, Article ID: 152848. https://doi.org/10.1016/j.prp.2020.152848
|
[17]
|
Fu, A., Jacobs, D.I., Hoffman, A.E., Zheng, T. and Zhu, Y. (2015) PIWI-Interacting RNA 021285 Is Involved in Breast Tumorigenesis Possibly by Remodeling the Cancer Epigenome. Carcinogenesis, 36, 1094-1102. https://doi.org/10.1093/carcin/bgv105
|
[18]
|
Liu, J., Chen, M., Ma, L., Dang, X. and Du, G. (2021) piRNA-36741 Regulates BMP2-Mediated Osteoblast Differentiation via METTL3 Controlled m6A Modification. Aging, 13, 23361-23375. https://doi.org/10.18632/aging.203630
|
[19]
|
Mamounas, E.P., Bryant, J., Lembersky, B., Fehrenbacher, L., Sedlacek, S.M., Fisher, B., et al. (2005) Paclitaxel after Doxorubicin Plus Cyclophosphamide as Adjuvant Chemotherapy for Node-Positive Breast Cancer: Results from NSABP B-28. Journal of Clinical Oncology, 23, 3686-3696. https://doi.org/10.1200/jco.2005.10.517
|
[20]
|
Fan, W. (1999) Possible Mechanisms of Paclitaxel-Induced Apoptosis. Biochemical Pharmacology, 57, 1215-1221.
|
[21]
|
Tan, L., Mai, D., Zhang, B., Jiang, X., Zhang, J., Bai, R., et al. (2019) PIWI-Interacting RNA-36712 Restrains Breast Cancer Progression and Chemoresistance by Interaction with SEPW1 Pseudogene SEPW1P RNA. Molecular Cancer, 18, Article No. 9. https://doi.org/10.1186/s12943-019-0940-3
|
[22]
|
刘永梅. piR-hsa-211106对肺腺癌的调控作用及其机制的研究[D]: [硕士学位论文]. 青岛: 青岛大学, 2021.
|
[23]
|
Zhan, Y., Tian, F., Fan, W., Li, X., Wang, X., Zhang, H., et al. (2024) Targeting piRNA‐137463 Inhibits Tumor Progression and Boosts Sensitivity to Immune Checkpoint Blockade via de Novo Cholesterol Biosynthesis in Lung Adenocarcinoma. Advanced Science, 12, e2414100. https://doi.org/10.1002/advs.202414100
|
[24]
|
Bossennec, M., Di Roio, A., Caux, C. and Ménétrier-Caux, C. (2018) MDR1 in Immunity: Friend or Foe? OncoImmunology, 7, e1499388. https://doi.org/10.1080/2162402x.2018.1499388
|
[25]
|
Ou, B., Liu, Y., Gao, Z., Xu, J., Yan, Y., Li, Y., et al. (2022) Senescent Neutrophils-Derived Exosomal piRNA-17560 Promotes Chemoresistance and EMT of Breast Cancer via FTO-Mediated m6A Demethylation. Cell Death & Disease, 13, Article No. 905. https://doi.org/10.1038/s41419-022-05317-3
|
[26]
|
Das, B., Roy, J., Jain, N. and Mallick, B. (2018) Tumor Suppressive Activity of PIWI‐interacting RNA in Human Fibrosarcoma Mediated through Repression of RRM2. Molecular Carcinogenesis, 58, 344-357. https://doi.org/10.1002/mc.22932
|
[27]
|
Das, B., Jain, N. and Mallick, B. (2021) piR-39980 Mediates Doxorubicin Resistance in Fibrosarcoma by Regulating Drug Accumulation and DNA Repair. Communications Biology, 4, Article No. 1312. https://doi.org/10.1038/s42003-021-02844-1
|
[28]
|
Zhan, Y., Jiang, L., Jin, X., Ying, S., Wu, Z., Wang, L., et al. (2021) Inhibiting RRM2 to Enhance the Anticancer Activity of Chemotherapy. Biomedicine & Pharmacotherapy, 133, Article ID: 110996. https://doi.org/10.1016/j.biopha.2020.110996
|
[29]
|
Zhang, H., Liu, X., Warden, C.D., Huang, Y., Loera, S., Xue, L., et al. (2014) Prognostic and Therapeutic Significance of Ribonucleotide Reductase Small Subunit M2 in Estrogen-Negative Breast Cancers. BMC Cancer, 14, Article No. 664. https://doi.org/10.1186/1471-2407-14-664
|
[30]
|
Volkova, M., Palmeri, M., Russell, K.S. and Russell, R.R. (2011) Activation of the Aryl Hydrocarbon Receptor by Doxorubicin Mediates Cytoprotective Effects in the Heart. Cardiovascular Research, 90, 305-314. https://doi.org/10.1093/cvr/cvr007
|
[31]
|
AbuHammad, S. and Zihlif, M. (2013) Gene Expression Alterations in Doxorubicin Resistant MCF7 Breast Cancer Cell Line. Genomics, 101, 213-220. https://doi.org/10.1016/j.ygeno.2012.11.009
|
[32]
|
Lee, E., Lokman, N.A., Oehler, M.K., Ricciardelli, C. and Grutzner, F. (2020) A Comprehensive Molecular and Clinical Analysis of the piRNA Pathway Genes in Ovarian Cancer. Cancers, 13, Article No. 4. https://doi.org/10.3390/cancers13010004
|