[1]
|
Readnower, R.D., Hubbard, W.B., Kalimon, O.J., Geddes, J.W. and Sullivan, P.G. (2021) Genetic Approach to Elucidate the Role of Cyclophilin D in Traumatic Brain Injury Pathology. Cells, 10, Article 199. https://doi.org/10.3390/cells10020199
|
[2]
|
Sautchuk, R., Kalicharan, B.H., Escalera-Rivera, K., Jonason, J.H., Porter, G.A., Awad, H.A., et al. (2022) Transcriptional Regulation of Cyclophilin D by BMP/Smad Signaling and Its Role in Osteogenic Differentiation. eLife, 11, e75023. https://doi.org/10.7554/elife.75023
|
[3]
|
Georgios, A. and Elizabeth, M. (2020) Cyclophilin D: An Integrator of Mitochondrial Function. Frontiers in Physiology, 11, Article 595. https://doi.org/10.3389/fphys.2020.00595
|
[4]
|
Wong, C.X., Tu, S.J. and Marcus, G.M. (2023) Alcohol and Arrhythmias. JACC: Clinical Electrophysiology, 9, 266-279. https://doi.org/10.1016/j.jacep.2022.10.023
|
[5]
|
WHO (2021) Development of an Action Plan to Implement the Global Strategy to Reduce Harmful Use of Alcohol in the Eastern Mediterranean Region. Eastern Mediterranean Health Journal, 27, 1239-1240. https://doi.org/10.26719/emhj.21.076
|
[6]
|
Day, E. and Rudd, J.H.F. (2019) Alcohol Use Disorders and the Heart. Addiction, 114, 1670-1678. https://doi.org/10.1111/add.14703
|
[7]
|
Mogos, M.F., Salemi, J.L., Phillips, S.A. and Piano, M.R. (2019) Contemporary Appraisal of Sex Differences in Prevalence, Correlates, and Outcomes of Alcoholic Cardiomyopathy. Alcohol and Alcoholism, 54, 386-395. https://doi.org/10.1093/alcalc/agz050
|
[8]
|
Yusupova, A.O. (2014) Alcoholic Cardiomyopathy: Basic Aspects of Epidemiology, Pathogenesis and Pharmacotherapy. Rational Pharmacotherapy in Cardiology, 10, 651-658. https://doi.org/10.20996/1819-6446-2014-10-6-651-658
|
[9]
|
Hu, Q., Chen, H., Shen, C., Zhang, B., Weng, X., Sun, X., et al. (2022) Impact and Potential Mechanism of Effects of Chronic Moderate Alcohol Consumption on Cardiac Function in Aldehyde Dehydrogenase 2 Gene Heterozygous Mice. Alcoholism: Clinical and Experimental Research, 46, 707-723. https://doi.org/10.1111/acer.14811
|
[10]
|
Belosludtsev, K.N., Dubinin, M.V., Belosludtseva, N.V. and Mironova, G.D. (2019) Mitochondrial Ca2+ Transport: Mechanisms, Molecular Structures, and Role in Cells. Biochemistry (Moscow), 84, 593-607. https://doi.org/10.1134/s0006297919060026
|
[11]
|
Fernández-Solà, J. (2020) The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients, 12, Article 572. https://doi.org/10.3390/nu12020572
|
[12]
|
Kent, A.C., El Baradie, K.B.Y. and Hamrick, M.W. (2021) Targeting the Mitochondrial Permeability Transition Pore to Prevent Age‐Associated Cell Damage and Neurodegeneration. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6626484. https://doi.org/10.1155/2021/6626484
|
[13]
|
Auger, K.R., Serunian, L.A., Soltoff, S.P., Libby, P. and Cantley, L.C. (1989) PDGF-Dependent Tyrosine Phosphorylation Stimulates Production of Novel Polyphosphoinositides in Intact Cells. Cell, 57, 167-175. https://doi.org/10.1016/0092-8674(89)90182-7
|
[14]
|
Ruderman, N.B., Kapeller, R., White, M.F. and Cantley, L.C. (1990) Activation of Phosphatidylinositol 3-Kinase by Insulin. Proceedings of the National Academy of Sciences, 87, 1411-1415. https://doi.org/10.1073/pnas.87.4.1411
|
[15]
|
Andjelković, M., Maira, S., Cron, P., Parker, P.J. and Hemmings, B.A. (1999) Domain Swapping Used to Investigate the Mechanism of Protein Kinase B Regulation by 3-Phosphoinositide-Dependent Protein Kinase 1 and Ser473 Kinase. Molecular and Cellular Biology, 19, 5061-5072. https://doi.org/10.1128/mcb.19.7.5061
|
[16]
|
Panwar, V., Singh, A., Bhatt, M., Tonk, R.K., Azizov, S., Raza, A.S., et al. (2023) Multifaceted Role of mTOR (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease. Signal Transduction and Targeted Therapy, 8, Article No. 375. https://doi.org/10.1038/s41392-023-01608-z
|
[17]
|
Ilha, J., do Espírito-Santo, C.C. and de Freitas, G.R. (2018) mTOR Signaling Pathway and Protein Synthesis: From Training to Aging and Muscle Autophagy. In: Xiao, J., Ed., Muscle Atrophy, Springer, 139-151. https://doi.org/10.1007/978-981-13-1435-3_7
|
[18]
|
Zhang, R., Li, G., Zhang, Q., Tang, Q., Huang, J., Hu, C., et al. (2018) Hirsutine Induces mPTP-Dependent Apoptosis through ROCK1/PTEN/PI3K/GSK3β Pathway in Human Lung Cancer Cells. Cell Death & Disease, 9, Article No. 598. https://doi.org/10.1038/s41419-018-0641-7
|
[19]
|
Sun, Q., Jia, N., Li, X., Yang, J. and Chen, G. (2019) Grape Seed Proanthocyanidins Ameliorate Neuronal Oxidative Damage by Inhibiting GSK-3β-Dependent Mitochondrial Permeability Transition Pore Opening in an Experimental Model of Sporadic Alzheimer’s Disease. Aging, 11, 4107-4124. https://doi.org/10.18632/aging.102041
|
[20]
|
Morita, M., Gravel, S., Chénard, V., Sikström, K., Zheng, L., Alain, T., et al. (2013) mTORC1 Controls Mitochondrial Activity and Biogenesis through 4E-BP-Dependent Translational Regulation. Cell Metabolism, 18, 698-711. https://doi.org/10.1016/j.cmet.2013.10.001
|
[21]
|
Guo, Y., Wu, Y., Huang, T., Huang, D., Zeng, Q., Wang, Z., et al. (2024) Licorice Flavonoid Ameliorates Ethanol-Induced Gastric Ulcer in Rats by Suppressing Apoptosis via PI3K/AKT Signaling Pathway. Journal of Ethnopharmacology, 325, Article 117739. https://doi.org/10.1016/j.jep.2024.117739
|
[22]
|
Fayaz, S., Raj, Y. and Krishnamurthy, R. (2015) CYPD: The Key to the Death Door. CNS & Neurological Disorders-Drug Targets, 14, 654-663. https://doi.org/10.2174/1871527314666150429113239
|
[23]
|
Park, S.H. and Gye, M.C. (2024) Inhibition of Mitochondrial Cyclophilin D, a Downstream Target of Glycogen Synthase Kinase 3α, Improves Sperm Motility. Reproductive Biology and Endocrinology, 22, Article No. 15. https://doi.org/10.1186/s12958-024-01186-x
|
[24]
|
Wang, R.N., Green, J., Wang, Z., Deng, Y., Qiao, M., Peabody, M., et al. (2014) Bone Morphogenetic Protein (BMP) Signaling in Development and Human Diseases. Genes & Diseases, 1, 87-105. https://doi.org/10.1016/j.gendis.2014.07.005
|
[25]
|
Gauba, E., Chen, H., Guo, L. and Du, H. (2019) Cyclophilin D Deficiency Attenuates Mitochondrial F1fo ATP Synthase Dysfunction via OSCP in Alzheimer’s Disease. Neurobiology of Disease, 121, 138-147. https://doi.org/10.1016/j.nbd.2018.09.020
|
[26]
|
Ashe, H., Krakowiak, P., Hasterok, S., Sleppy, R., Roller, D.G. and Gioeli, D. (2021) Role of the Runt‐Related Transcription Factor (RUNX) Family in Prostate Cancer. The FEBS Journal, 288, 6112-6126. https://doi.org/10.1111/febs.15804
|
[27]
|
Farina, N.H., Zingiryan, A., Akech, J.A., Callahan, C.J., Lu, H., Stein, J.L., et al. (2016) A MicroRNA/Runx1/Runx2 Network Regulates Prostate Tumor Progression from Onset to Adenocarcinoma in TRAMP Mice. Oncotarget, 7, 70462-70474. https://doi.org/10.18632/oncotarget.11992
|
[28]
|
Zhang, H., Pan, Y., Zheng, L., Choe, C., Lindgren, B., Jensen, E.D., et al. (2011) FOXO1 Inhibits Runx2 Transcriptional Activity and Prostate Cancer Cell Migration and Invasion. Cancer Research, 71, 3257-3267. https://doi.org/10.1158/0008-5472.can-10-2603
|
[29]
|
Bai, Y., Yang, Y., Yan, Y., Zhong, J., Blee, A.M., Pan, Y., et al. (2019) RUNX2 Overexpression and PTEN Haploinsufficiency Cooperate to Promote CXCR7 Expression and Cellular Trafficking, AKT Hyperactivation and Prostate Tumorigenesis. Theranostics, 9, 3459-3475. https://doi.org/10.7150/thno.33292
|
[30]
|
Haiyan, F., Hao, T., Fa, J., et al. (2023) CypD Induced ROS Output Promotes Intracranial Aneurysm Formation and Rupture by 8-OHdG/NLRP3/MMP9 Pathway. Redox Biology, 67, Article 102887. https://doi.org/10.1016/j.redox.2023.102887
|
[31]
|
Wang, L., Ma, J., Chen, C., Lin, B., Xie, S., Yang, W., et al. (2024) Isoquercitrin Alleviates Pirarubicin-Induced Cardiotoxicity in vivo and in vitro by Inhibiting Apoptosis through Phlpp1/AKT/Bcl-2 Signaling Pathway. Frontiers in Pharmacology, 15, Article 1315001. https://doi.org/10.3389/fphar.2024.1315001
|
[32]
|
Yang, M., Lu, Y., Piao, W. and Jin, H. (2022) The Translational Regulation in mTOR Pathway. Biomolecules, 12, Article 802. https://doi.org/10.3390/biom12060802
|
[33]
|
Paquot, N. (2019) The Metabolism of Alcohol. Revue Medicale de Liege, 74, 265-267.
|
[34]
|
Li, X., Luo, W., Tang, Y., Wu, J., Zhang, J., Chen, S., et al. (2024) Semaglutide Attenuates Doxorubicin-Induced Cardiotoxicity by Ameliorating BNIP3-Mediated Mitochondrial Dysfunction. Redox Biology, 72, Article 103129. https://doi.org/10.1016/j.redox.2024.103129
|
[35]
|
Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y. and Wei, X. (2019) Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Molecular Cancer, 18, Article No. 26. https://doi.org/10.1186/s12943-019-0954-x
|
[36]
|
Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781. https://doi.org/10.1007/s11033-022-07468-0
|
[37]
|
Chen, B., Hung, M., Wang, H., Yeh, L., Pandey, S., Chen, R., et al. (2018) GABA Tea Attenuates Cardiac Apoptosis in Spontaneously Hypertensive Rats (SHR) by Enhancing PI3K/Akt‐Mediated Survival Pathway and Suppressing Bax/Bak Dependent Apoptotic Pathway. Environmental Toxicology, 33, 789-797. https://doi.org/10.1002/tox.22565
|
[38]
|
Chen, Y., Sivalingam, K., Shibu, M.A., Peramaiyan, R., Day, C.H., Shen, C., et al. (2019) Protective Effect of Fisetin against Angiotensin II-Induced Apoptosis by Activation of IGF-IR-PI3K-Akt Signaling in H9c2 Cells and Spontaneous Hypertension Rats. Phytomedicine, 57, 1-8. https://doi.org/10.1016/j.phymed.2018.09.179
|
[39]
|
Liu, M., Li, Z., Liang, B., Li, L., Liu, S., Tan, W., et al. (2018) Hydrogen Sulfide Ameliorates Rat Myocardial Fibrosis Induced by Thyroxine through PI3K/AKT Signaling Pathway. Endocrine Journal, 65, 769-781. https://doi.org/10.1507/endocrj.ej17-0445
|
[40]
|
Sánchez-Alegría, K., Flores-León, M., Avila-Muñoz, E., Rodríguez-Corona, N. and Arias, C. (2018) PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. International Journal of Molecular Sciences, 19, Article 3725. https://doi.org/10.3390/ijms19123725
|
[41]
|
Altomare, D.A., Lyons, G.E., Mitsuuchi, Y., Cheng, J.Q. and Testa, J.R. (1998) Akt2 mRNA Is Highly Expressed in Embryonic Brown Fat and the AKT2 Kinase Is Activated by Insulin. Oncogene, 16, 2407-2411. https://doi.org/10.1038/sj.onc.1201750
|
[42]
|
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The Emerging Mechanisms of Isoform-Specific PI3K Signalling. Nature Reviews Molecular Cell Biology, 11, 329-341. https://doi.org/10.1038/nrm2882
|
[43]
|
Wang, W., Liu, M., Fu, X., Qi, M., Zhu, F., Fan, F., et al. (2024) Hydroxysafflor Yellow a Ameliorates Alcohol-Induced Liver Injury through PI3K/Akt and Stat3/NF-κB Signaling Pathways. Phytomedicine, 132, Article 155814. https://doi.org/10.1016/j.phymed.2024.155814
|