北山造山带中段早古生代–晚古生代岩浆作用——对古亚洲洋俯冲–闭合过程的制约
Early Paleozoic-Late Paleozoic Magmatism in the Middle Part of the Beishan Orogenic Belt—Constraints on the Paleo-Asian Ocean Subduction-Closure Process
DOI: 10.12677/ag.2025.155068, PDF, HTML, XML,   
作者: 胡萧萧:桂林理工大学地球科学学院,广西 桂林
关键词: 中亚造山带北山地区花岗岩Central Asian Orogenic Belt Beishan Area Granite
摘要: 北山地区位于中亚造山带南缘,是研究古亚洲洋演化的关键研究区域。花岗岩作为造山带的重要物质组成,岩浆成分演化能够有效示踪构造环境转变。北山造山带中部广泛出露古生代花岗岩体,为研究俯冲至碰撞阶段的岩浆演化过程提供了良好条件。文章收集了牛圈子地区晚志留世–早泥盆世中酸性岩浆岩数据,通过系统对比区域同期地质体的构造属性与地球化学特征,为北山造山带中段该时期的地质演化提供新的证据约束。研究表明:1) 早古生代(中奥陶世–早泥盆世)北山中部发育以钙碱性I型花岗岩、埃达克质岩及弧火山岩为特征的岩浆组合,形成于俯冲背景下的活动陆缘环境,岩浆成分与同位素特征指示地壳增厚及洋壳俯冲作用;2) 早泥盆世开始,岩浆活动减弱并出现S型、A型花岗岩组合,地球化学特征显示构造环境由挤压向伸展转换,同时伴随双峰式岩浆岩、磨拉石建造及沉积环境由深海向陆相的转变,表明红柳河–牛圈子–洗肠井蛇绿混杂岩带代表的古亚洲洋盆发生闭合;3) 构造体制转换的时限受控于弧–弧碰撞事件,蛇绿岩抬升、不整合接触及碰撞后伸展岩浆作用共同佐证了北山洋盆闭合的动力学过程。本研究为揭示中亚造山带南缘多阶段增生–碰撞演化提供了关键约束。
Abstract: The Beishan region, situated at the southern margin of the Central Asian Orogenic Belt (CAOB), serves as a pivotal area for investigating the evolution of the Paleo-Asian Ocean. Granite, as a crucial component of orogenic belts, with its magmatic compositional evolution, can effectively trace the transitions of tectonic settings. The central part of the Beishan orogenic belt is extensively exposed to Paleozoic granitic plutons, providing favorable conditions for studying the magmatic evolution processes from subduction to collision stages. This study collected data on the Middle-Late Silurian to Early Devonian intermediate-acidic magmatic rocks in the Niujuanzi area. By systematically comparing the tectonic attributes and geochemical characteristics of contemporaneous geological bodies in the region, new evidence constraints are provided for the geological evolution of the central Beishan orogenic belt during this period. The research findings are as follows: 1) During the Early Paleozoic (Middle Ordovician-Early Devonian), a magmatic assemblage characterized by calc alkaline I type granites, adakites, and arc volcanic rocks developed in the central Beishan. This assemblage formed in an active continental margin environment under a subduction setting. The compositional and isotopic characteristics of the magmas indicate crustal thickening and oceanic crust subduction.2) Starting from the Early Devonian, magmatic activity weakened, and a combination of S type and A type granites emerged. Geochemical features suggest a transition of the tectonic environment from compression to extension. Simultaneously, the occurrence of bimodal magmatism, molasse deposits, and a sedimentary environment shift from deep-sea to continental facies indicate the closure of the Paleo-Asian Ocean basin represented by the Hongliuhe-Niujuanzi-Xichangjing ophiolitic mélange belt.3) The timing of the tectonic regime transition is controlled by arc-arc collision events. The uplift of ophiolites, unconformable contacts, and post-collisional extensional magmatism jointly corroborate the dynamic process of the closure of the Beishan Ocean Basin. This study provides crucial constraints for revealing the multistage accretionary-collisional evolution of the southern margin of the Central Asian Orogenic Belt.
文章引用:胡萧萧. 北山造山带中段早古生代–晚古生代岩浆作用——对古亚洲洋俯冲–闭合过程的制约[J]. 地球科学前沿, 2025, 15(5): 697-705. https://doi.org/10.12677/ag.2025.155068

1. 引言

中亚造山带位于华北板块和西伯利亚板块之间,是全球显生宙以来最大的增生型造山带之一,它是由多个微大陆、增生杂岩、岩浆弧、残余洋壳以及大陆边缘组成的复杂拼贴体,通常被认为是古亚洲洋长期俯冲消减形成的[1]-[3] (图1(A))。北山造山带连接塔里木、哈萨克斯坦和华北造山带,处于中亚造山带南部的重要区域[4] [5],北山造山带在古生代时期自南向北发育了四条蛇绿岩混杂岩带及相关岛弧,显示了其多岛弧–洋盆构造演化格局(图1(B))。其中,红柳河–牛圈子–洗肠井蛇绿混杂岩带是北山地区目前保存较为完整,出露面积较多的蛇绿混杂岩带,并且其在大洋俯冲到碰撞后伸展的构造模式转换中发挥了重要作用,是解释弧–弧碰撞在中亚造山带南缘造山作用的理想场所。红柳河–牛圈子–洗肠井蛇绿混杂岩带被认为是在早古生代大洋板块俯冲形成的[6]-[8],在早泥盆世发育的双峰式岩浆岩、A型花岗岩以及三个井组磨拉石建造均指示在早泥盆世北山地区发生了构造环境的转变[9] [10];然而,近年来,也有学者报道早泥盆世洋盆持续俯冲,在晚二叠世或三叠纪发生碰撞[8] [11] [12]。因此,早泥盆世是研究红柳河–牛圈子–洗肠井蛇绿混杂岩带为代表的古亚洲洋洋盆闭合的关键时期。

研究表明,岩浆演化以及成分的改变可以指示构造环境的转变,花岗岩是造山带形成的重要组成部分,是大陆地壳分异的最终岩浆产物,北山造山带发育大量古生代花岗岩,是通过岩浆演化研究从俯冲到碰撞过程的理想场所,因此,本文以牛圈子地区晚志留世–早泥盆世中酸性岩浆岩为研究对象,通过对比区域上同时期地质体的地球化学数据及构造属性,为北山造山带中段晚志留世–早泥盆世演化提供约束。

2. 地质背景

北山造山带位于中亚造山带南缘(图1(A)),由岛弧、蛇绿混杂岩带以及微陆块组成,红柳河–牛圈子–洗肠井蛇绿混杂岩带以北为马鬃山岛弧带(公婆泉–东七一山弧),以南为双鹰山–花牛山岛弧带[13] [14] (图1(B)),其中,古生代岩浆活动最为强烈,发育大规模火山岩和侵入岩体,基性–酸性岩体均有产出。

马鬃山岛弧以北为石坂井–小黄山大断裂,南缘为红柳河–牛圈子–洗肠井蛇绿混杂岩带,主要由一些变质杂岩[11] [15]、寒武纪–早石炭世中酸性侵入岩[11] [16]以及公婆泉群早志留世火山岩[11]组成。

Figure 1. (A) Simplified geological map of the Central Asian Orogenic Belt [17]; (B) Distribution map of the ophiolite melange belts in the Beishan area [18]. Note: I: Hongshishan-Baiheshan-Pengbo Mountain ophiolite belt; II: Jijitaizi-Xiaohuangshan ophiolite belt; III: Hongliuhe-Niuquanzi-Baiyunshan-Xichangjing ophiolite belt; IV: Huichunshan-Liuyuan-Zhangfangshan ophiolite belt

1. (A)中亚造山带地质简图[17];(B) 北山地区蛇绿混杂岩带分布图[18];注:I:红石山–百合山–蓬勃山蛇绿岩带;II:芨芨台子–小黄山蛇绿岩带;III:红柳河–牛圈子–白云山–洗肠井蛇绿岩带;IV:辉铜山–柳园–帐房山蛇绿岩带

红柳河–牛圈子–洗肠井蛇绿混杂岩带向西至新甘交界处,向东至内蒙古西部(图1(B)),该蛇绿混杂岩带出露宽度较大,延伸较长,保存较完整。牛圈子地区在红柳河–牛圈子–洗肠井蛇绿岩带中段,其中西段红柳河–牛圈子–野马街南段呈近东西向展布,东段横栾山–月牙山–洗肠井呈北西向展布[19]。牛圈子蛇绿混杂岩带主要以堆晶超镁铁质岩、辉长岩、辉石岩、玄武岩、斜长花岗岩、硅质岩等组成,基质主要以灰岩、大理岩、凝灰质砂岩组成,混杂岩带中不同地质体、地层关系遭到后期破坏,古生代花岗岩多呈岩基、岩株产出,大多侵入早古生代地层中。

双鹰山–花牛山岛弧位于红柳河–牛圈子–洗肠井蛇绿混杂岩带以南,主要由不同时代的变沉积岩[20] [21]、奥陶纪–志留纪花牛山群火山–沉积岩[22] [23]、泥盆纪墩墩山组火山–沉积岩以及侵入岩[24] [25]组成。

3. 北山造山带中部岩浆演化

3.1. 早古生代岩浆作用(中奥陶世–早泥盆世)

在中奥陶世–早泥盆世,北山中部的岩浆活动主要分布在马鬃山岛弧和花牛山岛弧。发育大量奥陶世–志留世中酸性侵入岩,主要以闪长岩、花岗闪长岩为主,普遍含有角闪石,属于变火成岩部分熔融形成的I型花岗岩[11] [12] [26]-[30],这些花岗岩均显示出中钾–高钾过铝质钙碱性的特征,轻重稀土元素强烈分馏,具有Eu负异常,具有典型岛弧岩浆岩的特征。谢建强等人(2018) [30]指出,花牛山变英安岩(454 Ma)中Rb含量较高,具有Zr、Hf正异常,Th含量变化较大,都表明其受到强烈的流体交代和不均一的地壳混染,Yb含量 < 5 × 106 [31],表明可能受到俯冲流体的影响。明舒井中酸性岩体具活动陆缘洋壳俯冲消减带岛弧岩浆作用的地球化学特征,具有较高的(87Sr/86Sr)iεNd(t)略微富集,其中I型花岗岩是由闪长岩经历了分离结晶形成的。

同时,该时期还发育有由俯冲洋壳部分熔融产生的埃达克质花岗岩[12] [26],其Na2O/K2O比值高,Sr含量较高,亏损重稀土Nb、Ti,富集Rb、Sr、Ba、K,同位素组成为相对较低的εNd(t)值和高(87Sr/86Sr)i比值。部分埃达克岩的锆石具有相对较低的εHf(t),可能与古亚洲洋年轻/热俯冲壳的熔融有关。

此外,北山中部出露少量基性岩浆岩[11] [30] [32],主要以玄武岩、辉长岩为主[4] [12] [18],具有低钾拉斑玄武岩的特征,亏损Nb、Ta等元素,轻重稀土分异较弱,均属于典型的弧火山岩。在花牛山岛弧还报道有由于洋壳俯冲导致地幔楔部分熔融形成的富Nb玄武岩(450.5 ± 3.9 Ma),其具有较低的εNd(t)值(+0.9~+2.3)和较高的(87Sr/86Sr)i值(0.70556~0.70691),这些同位素特征表明,它们的源区曾被低εNd(t)值和高(87Sr/86Sr)i值的埃达克岩交代过,或被埃达克岩以外的组分进一步改变过[12]

3.2. 晚古生代岩浆作用(早泥盆世–)

早泥盆世开始,北山造山带岩浆活动总体减弱,花岗岩类广泛分布于北山中部,主要由闪长岩、正长花岗岩和黑云母花岗岩组成[11] [33],均为高钾钙碱性过铝质花岗岩,均表现出富集轻稀土元素,亏损重稀土元素,并显示出显著负Eu异常,可能指示它们来自于斜长石稳定的相对浅的地壳源区。马鬃山哈尔根S型花岗岩(401 Ma),显示出高的(87Sr/86Sr)i值,低的εNd(t)值和可变的εHf(t)值,表明它们是一个古老的地壳来源[34]

研究表明,早泥盆世在北山中部出现A型、S型花岗岩,指示了该区域构造环境转变为伸展环境[24] [29] [35] [36]。此外,它们的Sr-Nd同位素组成变化较大,都呈现出向古地壳端元演化的趋势。锆石Hf同位素组成也显示出较大的变化范围,这些特征表明,该时期的岩浆活动在早泥盆世时,在年轻组份或幔源岩浆与古壳源岩浆之间存在广泛的相互作用[2] [37]-[39]。此外,马鬃山弧出露中钾镁铁质火成岩,与俯冲阶段的中基性火成岩相比,Sr-Nd-Hf同位素变化更大,指示丰富的壳幔相互作用,表明该阶段存在复杂的碰撞后岩浆作用。

4. 北山造山带中部构造演化

中亚造山带作为世界上最大的增生型造山带,它记录了多期次的弧–弧碰撞拼贴过程。关于北山地区古大洋闭合时限及构造演化机制,学术界存在不同认识。部分学者基于区域构造解析提出,北山造山带所代表的古亚洲洋闭合事件发生于早泥盆世,伴随俯冲带消亡与微陆块最终拼合[24] [25] [40] [41]。另一部分学者通过岩浆序列研究指出,该区洋壳俯冲过程具有长期性特征,构造活动至少持续至晚二叠世–三叠纪末期[12] [14],基于上述认识,前二叠纪岩浆事件多被普遍解释为俯冲构造体制产物。

一般认为,典型的特征岩石(例如I-S-A型花岗岩、埃达克岩等)和岩石组合的变化都能很好地指示构造演化过程以及构造环境的转换变[42] [43]。限定构造转换时限对于研究中亚造山带的地壳生长、造山带演化等地球动力学过程都具有重要意义。根据北山中部的以下证据,对比区域上同时期地质体的地球化学数据观察到的变化可能表明,早泥盆世发生了与以红柳河–牛圈子蛇绿岩带为代表的古亚洲洋闭合有关的碰撞事件。

首先,北山中部红柳河–牛圈子–洗肠井蛇绿混杂岩带记录了早古生代北山造山带复杂的俯冲–增生造山作用,蛇绿岩形成时代为536~516 Ma [6] [44]-[46],其中玄武岩、辉长岩均显示富集大离子亲石元素,亏损高场强元素,辉长岩中亏损Nd同位素,表明它们源于受俯冲流体交代的亏损地幔,形成于超俯冲带的构造环境,指示在早寒武世北山地区已经发生了洋内初始俯冲。牛圈子蛇绿岩带以北草呼勒哈德地区出露片麻状花岗(526 ± 6 Ma)岩也表明俯冲作用可能始于早寒武世[11]。马鬃山岛弧中勒巴泉复合岩体中识别出形成于424~423 Ma的强烈挤压变形,例如变质层理、褶状劈理、不对称褶皱等,这导致了地壳的缩短与增厚,反映该区域处于挤压的构造环境[47]。北山造山带奥陶纪–志留纪岩浆作用呈现区域性广泛发育的特征,包括雀儿山岛弧咸水湖组火山岩(462 Ma)、马鬃山岛弧公婆泉群火山岩(475~440 Ma)及双鹰山–花牛山岛弧花牛山群火山岩(455 Ma)等,同时伴生大量同期中酸性侵入体。上述岩浆岩均具有钙碱性弧岩浆属性,指示其形成于活动陆缘俯冲背景[11] [30]

北山造山带南缘古堡泉榴辉岩的主微量元素地球化学与Sm-Nd同位素体系研究表明,其原岩为典型洋壳玄武岩。古堡泉榴辉岩年代学数据及温压演化轨迹显示,古亚洲洋洋壳在奥陶纪俯冲至榴辉岩相深度后,志留纪发生构造折返[48]

总之,北山中段早古生代中奥陶世–早泥盆世发生了大规模的俯冲作用,处于挤压的构造背景。

北山造山带早泥盆世开始岩浆活动逐渐减弱,同时在中部发育S型与A型花岗岩组合[24] [35],标志着构造体制由挤压向伸展体制的转换。未变形的花岗岩在早泥盆世(414~405 Ma)侵入了红柳河–牛圈子–洗肠井造山带,这限定了北山洋盆的闭合时间[6] [44]。马鬃山岛弧中勒巴泉复合岩体在423 Ma之后的变形特征为高应变韧性剪切、半韧性–脆性构造,改变了早期的构造,该复合岩体的整体变形模式反映了一个由挤压到伸展的构造体制转变,可能代表了碰撞事件的初期[47]

沉积环境的变化以及不整合现象也指示早泥盆世弧–弧碰撞的结果。红柳河–牛圈子–洗肠井造山带南北两侧寒武–志留系沉积地层主要以硅质岩、碳酸盐岩及碎屑岩组合为特征,指示深海–半深海的沉积环境。在早泥盆世花牛山岛弧三个井组和晚泥盆世墩墩山群中出露有陆相砂砾岩[40],指示该地区可能已经隆升为陆相环境。同时,墩墩山三个井组与下伏寒武–志留纪,以及上覆泥盆纪墩墩山群之间存在不整合接触[49] [50],沿着造山带两侧的岩浆岩和红柳河–牛圈子–洗肠井蛇绿岩带衍生的泥盆纪碎屑物质[51] [52],表明早泥盆世以前,红柳河–牛圈子–洗肠井蛇绿混杂岩带所代表的北山洋盆的闭合。

其次,与俯冲阶段相比,岩石组合发生变化(图2),北山中部早泥盆世花岗岩类具过铝质亲缘关系,为I-S-A型组合,不同于俯冲形成的早古生代I型花岗岩类、高镁闪长岩和富Nb玄武岩[12] [32] [33] [35]。其次,在马鬃山弧、花牛山弧中均发现了A型花岗岩,这些岩石大多具有富集的全岩Sr-Nd同位素组成特征,表明其来源主要是古地壳物质。与俯冲阶段相比,它们的锆石Hf同位素变化更大,表明幼年地壳物质的贡献更大。在Rb与Y + Nb的关系图中,第二阶段花岗岩类位于同碰撞和板内花岗岩区域内,与第一阶段的火山弧花岗岩特征明显不同(图3)。

Li等人[53]报道在540~450 Ma,北山造山带中段地壳厚度呈现增加的趋势,支持了早古生代北山洋盆俯冲和地壳增厚的岩浆变形过程,可能反映了更多的地壳熔融和同化作用,而在450~390 Ma地壳厚度呈减薄的趋势,同时过铝质S型花岗岩也主要形成与地壳增厚时期,这是两个大陆岩石圈会聚的结果[42],而A2型花岗岩主要在伸展环境中形成[54] [55],这些都支持了北山洋盆早泥盆世从俯冲到碰撞的构造转变。

综上所述,北山造山带中段早泥盆世开始,构造环境发生转换,发育S型、A型花岗岩代表着构造环境变为伸展环境,地球化学特征转变可能反映了从俯冲环境向碰撞环境的构造转变。

Figure 2. SiO2-age diagram

2. SiO2-年龄图解

Figure 3. Y + Nb-Rb discriminant diagram [43]; Data for Figure 2 and Figure 3 are cited from [32] [33] [56]-[59]

3. Y + Nb-Rb判别图[43]图2图3数据引用[32] [33] [56]-[59]

5. 结论

北山造山带在早古生带经历了复杂的俯冲增生过程,至少在早寒武世,已经发生了洋内初始俯冲,中奥陶世–早泥盆世发育了大规模的由俯冲作用形成的钙碱性火山岩、侵入体等,广泛分布的褶皱和透入性面理表明当时处于挤压构造背景。从早泥盆世开始,北山造山带由挤压构造背景转换为伸展构造背景,地球化学数据的突变、I-S-A型花岗岩的发育、沉积环境的改变及不整合现象都标志着红柳河–牛圈子–洗肠井蛇绿混杂岩带所代表的古亚洲洋洋盆的闭合。

参考文献

[1] Şengör, A.M.C., Natal’in, B.A. and Burtman, V.S. (1993) Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364, 299-307.
https://doi.org/10.1038/364299a0
[2] Jahn, B., Wu, F. and Chen, B. (2000) Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 91, 181-193.
https://doi.org/10.1017/s0263593300007367
[3] Xiao, W., Windley, B.F., Sun, S., Li, J., Huang, B., Han, C., et al. (2015) A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43, 477-507.
https://doi.org/10.1146/annurev-earth-060614-105254
[4] Ao, S.J., Xiao, W.J., Han, C.M., Li, X.H., Qu, J.F., Zhang, J.E., et al. (2011) Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China: Implications for the Architecture of the Southern Altaids. Geological Magazine, 149, 606-625.
https://doi.org/10.1017/s0016756811000884
[5] Niu, Y., Shi, G.R., Wang, J., Liu, C., Zhou, J., Lu, J., et al. (2021) The Closing of the Southern Branch of the Paleo-Asian Ocean: Constraints from Sedimentary Records in the Southern Beishan Region of the Central Asian Orogenic Belt, NW China. Marine and Petroleum Geology, 124, Article 104791.
https://doi.org/10.1016/j.marpetgeo.2020.104791
[6] 张元元, 郭召杰. 甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义[J]. 岩石学报, 2008, 24(4): 803-809.
[7] 孙立新, 张家辉, 任邦方, 等. 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J]. 岩石矿物学杂志, 2017, 36(2): 131-147.
[8] Tian, Z., Xiao, W., Shan, Y., Windley, B., Han, C., Zhang, J., et al. (2013) Mega-Fold Interference Patterns in the Beishan Orogen (NW China) Created by Change in Plate Configuration during Permo-Triassic Termination of the Altaids. Journal of Structural Geology, 52, 119-135.
https://doi.org/10.1016/j.jsg.2013.03.016
[9] 梁积伟, 冯振伟, 丁金刚, 等. 甘肃北山泥盆系三个井组的沉积特征及大地构造环境——构造体制转换时期的沉积响应[J]. 地质科学, 2020, 55(4): 1012-1024.
[10] 李舢, 王涛, 童英. 中亚造山系中南段早中生代花岗岩类时空分布特征及构造环境[J]. 岩石矿物学杂志, 2010, 29(6): 642-662.
[11] Song, D., Xiao, W., Windley, B.F., Han, C. and Tian, Z. (2015) A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224, 195-213.
https://doi.org/10.1016/j.lithos.2015.03.005
[12] Mao, Q., Xiao, W., Windley, B.F., Han, C., Qu, J., Ao, S., et al. (2011) The Liuyuan Complex in the Beishan, NW China: A Carboniferous-Permian Ophiolitic Fore-Arc Sliver in the Southern Altaids. Geological Magazine, 149, 483-506.
https://doi.org/10.1017/s0016756811000811
[13] He, Z., Klemd, R., Yan, L. and Zhang, Z. (2018) The Origin and Crustal Evolution of Microcontinents in the Beishan Orogen of the Southern Central Asian Orogenic Belt. Earth-Science Reviews, 185, 1-14.
https://doi.org/10.1016/j.earscirev.2018.05.012
[14] Xiao, W.J., Mao, Q.G., Windley, B.F., Han, C.M., Qu, J.F., Zhang, J.E., et al. (2010) Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310, 1553-1594.
https://doi.org/10.2475/10.2010.12
[15] 宋东方, 肖文交, 韩春明, 等. 北山中部增生造山过程: 构造变形和40Ar-39Ar年代学制约[J]. 岩石学报, 2018, 34(7): 2087-2098.
[16] 辛后田, 牛文超, 田健, 等. 内蒙古北山造山带时空结构与古亚洲洋演化[J]. 地质通报, 2020, 39(9): 1297-1316.
[17] Li, H., Zhou, J. and Wilde, S.A. (2022) Nature and Development of the South Tianshan-Solonker Suture Zone. Earth-Science Reviews, 233, Article 104189.
https://doi.org/10.1016/j.earscirev.2022.104189
[18] 王国强, 李向民, 徐学义, 等. 甘蒙北山地区奥陶纪火山岩地球化学特征及形成环境探讨[J]. 吉林大学学报(地球科学版), 2014, 44(3): 848-860.
[19] 周会武, 何世平, 任秉琛, 姚文光, 付力浦. 甘肃内蒙古北山地区古生代地壳演化[J]. 西北地质, 2005, 38(3): 6-15.
[20] Song, D., Xiao, W., Han, C., Tian, Z. and Wang, Z. (2013) Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24, 1127-1151.
https://doi.org/10.1016/j.gr.2013.02.002
[21] 余吉远, 计波, 过磊, 等. 甘肃北山地区古硐井群地质特征与时代厘定[J]. 地质通报, 2018, 37(4): 704-715.
[22] Guo, Q., Xiao, W., Hou, Q., Windley, B.F., Han, C., Tian, Z., et al. (2014) Construction of Late Devonian Dundunshan Arc in the Beishan Orogen and Its Implication for Tectonics of Southern Central Asian Orogenic Belt. Lithos, 184, 361-378.
https://doi.org/10.1016/j.lithos.2013.11.007
[23] Guo, Q., Chung, S., Xiao, W., Hou, Q. and Li, S. (2017) Petrogenesis and Tectonic Implications of Late Devonian Arc Volcanic Rocks in Southern Beishan Orogen, NW China: Geochemical and Nd-Sr-Hf Isotopic Constraints. Lithos, 278, 84-96.
https://doi.org/10.1016/j.lithos.2017.01.017
[24] 李舢, 王涛, 童英, 等. 北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义[J]. 岩石矿物学杂志, 2009, 28(5): 407-422.
[25] 李舢, 王涛, 童英, 等. 北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄、成因及构造意义[J]. 岩石学报, 2011, 27(10): 3055-3070.
[26] Yu, J., Guo, L., Li, J., Li, Y., Smithies, R.H., Wingate, M.T.D., et al. (2016) The Petrogenesis of Sodic Granites in the Niujuanzi Area and Constraints on the Paleozoic Tectonic Evolution of the Beishan Region, NW China. Lithos, 256, 250-268.
https://doi.org/10.1016/j.lithos.2016.04.003
[27] 李小菲. 北山马鬃山地区古生代花岗岩形成年龄、地球化学特征及其地质意义[D]: [硕士学位论文]. 西安: 西北大学, 2013.
[28] 李小菲, 张成立, 李雷, 等. 甘肃北山明舒井岩体形成年龄、地球化学特征及其地质意义[J]. 岩石学报, 2015, 31(9): 2521-2538.
[29] 赵泽辉, 郭召杰, 王毅. 甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义[J]. 岩石学报, 2007, 23(8): 1847-1860.
[30] 谢建强, 第鹏飞, 杨婧, 等. 甘肃北山地区花牛山群变英安岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 西北地质, 2018, 51(1): 54-64.
[31] Condie, K.C. (1989) Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23, 1-18.
https://doi.org/10.1016/0024-4937(89)90020-0
[32] Zheng, R., Li, J. and Xiao, W. (2019) Mid-Paleozoic Ridge Subduction in the Central Beishan of the Southern Altaids: Evidence from Geochemical, Sr-Nd and Zircon U-Pb-Hf-O Isotopic Data of Gongpoquan Volcanic Rocks. Journal of the Geological Society, 176, 755-770.
https://doi.org/10.1144/jgs2018-231
[33] Yuan, Y., Zong, K., Cawood, P.A., Cheng, H., Yu, Y., Guo, J., et al. (2019) Implication of Mesoproterozoic (∼1.4 Ga) Magmatism within Microcontinents along the Southern Central Asian Orogenic Belt. Precambrian Research, 327, 314-326.
https://doi.org/10.1016/j.precamres.2019.03.014
[34] Li, R., Tong, Y. and Su, S. (2023) Petrogenesis and Tectonic Implications of Devonian Granitoids in the Central Beishan Orogen, NW China: Geochemical and Sr-Nd-Hf Isotopic Constraints. International Geology Review, 65, 2918-2942.
https://doi.org/10.1080/00206814.2023.2167129
[35] Wang, X., Yuan, C., Zhang, Y., Long, X., Sun, M., Wang, L., et al. (2018) S-Type Granite from the Gongpoquan Arc in the Beishan Orogenic Collage, Southern Altaids: Implications for the Tectonic Transition. Journal of Asian Earth Sciences, 153, 206-222.
https://doi.org/10.1016/j.jseaes.2017.07.037
[36] Li, S., Wang, T., Wilde, S.A. and Tong, Y. (2013) Evolution, Source and Tectonic Significance of Early Mesozoic Granitoid Magmatism in the Central Asian Orogenic Belt (Central Segment). Earth-Science Reviews, 126, 206-234.
https://doi.org/10.1016/j.earscirev.2013.06.001
[37] Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O’Reilly, S.Y., Xu, X., et al. (2002) Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61, 237-269.
https://doi.org/10.1016/s0024-4937(02)00082-8
[38] Belousova, E.A., Griffin, W.L. and O’reilly, S.Y. (2005) Zircon Crystal Morphology, Trace Element Signatures and Hf Isotope Composition as a Tool for Petrogenetic Modelling: Examples from Eastern Australian Granitoids. Journal of Petrology, 47, 329-353.
https://doi.org/10.1093/petrology/egi077
[39] Chen, L., Zheng, Y. and Zhao, Z. (2020) Origin of Arc-Like Magmatism at Fossil Convergent Plate Boundaries: Geochemical Insights from Mesozoic Igneous Rocks in the Middle to Lower Yangtze Valley, South China. Earth-Science Reviews, 211, Article 103416.
https://doi.org/10.1016/j.earscirev.2020.103416
[40] 张淑玲, 左国朝, 何国琦, 张杨. 北山地区早古生代板块构造特征[J]. 地质科学, 1990(4): 305-314+411.
[41] 杨岳清, 吕博, 孟贵祥, 等. 内蒙古东七一山花岗岩地球化学、锆石SHRIMPU-Pb年龄及岩体形成环境探讨[J]. 地球学报, 2013, 34(2): 163-175.
[42] Barbarin, B. (1999) A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 46, 605-626.
https://doi.org/10.1016/s0024-4937(98)00085-1
[43] Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
https://doi.org/10.1093/petrology/25.4.956
[44] Cleven, N., Lin, S., Guilmette, C., Xiao, W. and Davis, B. (2015) Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction-Zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China. Journal of Asian Earth Sciences, 113, 369-390.
https://doi.org/10.1016/j.jseaes.2014.10.038
[45] Shi, Y., Zhang, W., Kröner, A., Li, L. and Jian, P. (2018) Cambrian Ophiolite Complexes in the Beishan Area, China, Southern Margin of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 153, 193-205.
https://doi.org/10.1016/j.jseaes.2017.05.021
[46] 侯青叶, 王忠, 刘金宝, 等. 北山月牙山蛇绿岩地球化学特征及SHRIMP定年[J]. 现代地质, 2012, 26(5): 1008-1018.
[47] Song, D., Xiao, W., Han, C. and Tian, Z. (2014) Polyphase Deformation of a Paleozoic Forearc-Arc Complex in the Beishan Orogen, NW China. Tectonophysics, 632, 224-243.
https://doi.org/10.1016/j.tecto.2014.06.030
[48] Qu, J.F., Xiao, W.J., Windley, B.F., Han, C.M., Mao, Q.G., Ao, S.J., et al. (2011) Ordovician Eclogites from the Chinese Beishan: Implications for the Tectonic Evolution of the Southern Altaids. Journal of Metamorphic Geology, 29, 803-820.
https://doi.org/10.1111/j.1525-1314.2011.00942.x
[49] Zuo, G.C., Liu, C.Y., Bai, W.C., et al. (1995) Volcano-Molasse Geological Structure and Geochemical Signature in Devonian Period Collision Orogenic in Beishan, Gansu-Inmongolia. Acta Geologica Gansu, 4, 35-43.
[50] 梁积伟, 陈玉良, 张文卿, 等. 甘肃北山地区泥盆系三个井组碎屑锆石年龄及其地质意义[J]. 地质科技情报, 2014, 33(3): 1-9.
[51] 周会武, 何世平, 姚文光, 任秉琛, 付力浦. 甘肃北山中泥盆统砾岩中放射虫的发现及其地质意义[J]. 西北地质, 2004, 37(3): 24-28.
[52] Niu, Y.Z., Song, B., Zhou, J.L., et al. (2020) Lithofacies and Chronology of Volcano-Sedimentary Sequence in the Southern Beishan Region, Central Asian Orogenic Belt and Its Paleogeographical Implication. Acta Geologica Sinica, 94, 615-33.
[53] Li, J., Wu, C., Chen, X., Zuza, A.V., Haproff, P.J., Yin, A., et al. (2023) Tectonic Evolution of the Beishan Orogen in Central Asia: Subduction, Accretion, and Continent-Continent Collision during the Closure of the Paleo-Asian Ocean. GSA Bulletin, 135, 819-851.
https://doi.org/10.1130/b36451.1
[54] Loiselle, M.C. (1979) Characteristics and Origin of Anorogenic Granites. Geological Society of America, 11, Article 468.
[55] Zhao, Z., Gao, P. and Zheng, Y. (2015) The Source of Mesozoic Granitoids in South China: Integrated Geochemical Constraints from the Taoshan Batholith in the Nanling Range. Chemical Geology, 395, 11-26.
https://doi.org/10.1016/j.chemgeo.2014.11.028
[56] Wang, H. (2019) Tectono-Magmatism and Its Geological Significance in the Beishan Area of the Southern Part of the Central Asian Orogenic Belt. Master’s Thesis, Lanzhou University, 4-8.
[57] Wang, L.S., Yang, J.G., Xie, C.L., et al. (2009) Geochronology and Geochemistry of Haergentoukoubu Granites in the Beishan Area, Gansu, China and Their Geological Significance. Acta Geologica Sinica, 83, 377-387.
[58] Zheng, R., Xiao, W., Li, J., Wu, T. and Zhang, W. (2018) A Silurian-Early Devonian Slab Window in the Southern Central Asian Orogenic Belt: Evidence from High-Mg Diorites, Adakites and Granitoids in the Western Central Beishan Region, NW China. Journal of Asian Earth Sciences, 153, 75-99.
https://doi.org/10.1016/j.jseaes.2016.12.008
[59] Bai, R., Liu, X. and Zhou, H. (2020) Genesis and Tectonic Setting of Granite in the Central Region of the Beishan Orogenic Belt (Gansu Section, China). Acta Petrologica Sinica, 36, 1731-1754.