[1]
|
Freedman, Y.E., Magaritz, M., Long, G.L. and Ronen, D. (1994) Interaction of Metals with Mineral Surfaces in a Natural Groundwater Environment. Chemical Geology, 116, 111-121. https://doi.org/10.1016/0009-2541(94)90160-0
|
[2]
|
Kasting, J. (1984) Comments on the BLAG Model; The Carbonate-Silicate Geochemical Cycle and Its Effect on Atmospheric Carbon Dioxide over the Past 100 Million Years. American Journal of Science, 284, 1175-1182. https://doi.org/10.2475/ajs.284.10.1175
|
[3]
|
Oelkers, E.H. and Schott, J. (1995) Experimental Study of Anorthite Dissolution and the Relative Mechanism of Feldspar Hydrolysis. Geochimica et Cosmochimica Acta, 59, 5039-5053. https://doi.org/10.1016/0016-7037(95)00326-6
|
[4]
|
Tang, C. and Dong, H. (2022) The Effects of Cu2+ Adsorption on Surface Dissolution of Albite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 644, Article 128832. https://doi.org/10.1016/j.colsurfa.2022.128832
|
[5]
|
Stillings, L.L., Drever, J.I., Brantley, S.L., Sun, Y. and Oxburgh, R. (1996) Rates of Feldspar Dissolution at pH 3-7 with 0-8 m M Oxalic Acid. Chemical Geology, 132, 79-89. https://doi.org/10.1016/s0009-2541(96)00043-5
|
[6]
|
陈传平, 梅博文, 毛治超. 二元羧酸对硅酸盐矿物溶解的实验初步研究[J]. 矿物岩石, 1993, 13(1): 103-107.
|
[7]
|
Liu, S.K., Han, C., Liu, J.M. and Li, H. (2015) Hydrothermal Decomposition of Potassium Feldspar under Alkaline Conditions. RSC Advances, 5, 93301-93309. https://doi.org/10.1039/c5ra17212h
|
[8]
|
Sun, X.-T., Li, M.-R., Xing, J.-T., Li, C.-C., Yuan, G.-H. and Cao, Y.-C. (2021) The Complex Effect of Organic Acids on the Dissolution of Feldspar at High Temperature. Environmental Earth Sciences, 80, Article No. 244. https://doi.org/10.1007/s12665-021-09537-2
|
[9]
|
陈月娇, 施泽明, 吕锡银. 酸碱度、低分子有机酸和反应时间对富磷水体中钠长石吸附铀的影响规律[J]. 山西冶金, 2021, 44(5): 34-38.
|
[10]
|
Welch, S.A. and Ullman, W.J. (1993) The Effect of Organic Acids on Plagioclase Dissolution Rates and Stoichiometry. Geochimica et Cosmochimica Acta, 57, 2725-2736. https://doi.org/10.1016/0016-7037(93)90386-b
|
[11]
|
Huang, W. and Longo, J.M. (1992) The Effect of Organics on Feldspar Dissolution and the Development of Secondary Porosity. Chemical Geology, 98, 271-292. https://doi.org/10.1016/0009-2541(92)90189-c
|
[12]
|
Gruber, C., Kutuzov, I. and Ganor, J. (2016) The Combined Effect of Temperature and pH on Albite Dissolution Rate under Far-From-Equilibrium Conditions. Geochimica et Cosmochimica Acta, 186, 154-167. https://doi.org/10.1016/j.gca.2016.04.046
|
[13]
|
罗孝俊, 杨卫东. 有机酸对长石溶解度影响的热力学研究[J]. 矿物学报, 2001, 21(2): 183-188.
|
[14]
|
Khawmee, K., Suddhiprakarn, A., Kheoruenromne, I., Bibi, I. and Singh, B. (2013) Dissolution Behaviour of Soil Kaolinites in Acidic Solutions. Clay Minerals, 48, 447-461. https://doi.org/10.1180/claymin.2013.048.3.02
|
[15]
|
赵晨, 马智, 齐小周, 等. 酸和碱处理对内蒙古煤系高岭土结构和裂化性能的影响[J]. 工业催化, 2007, 15(1): 14.
|
[16]
|
Wang, X., Li, Q., Hu, H., Zhang, T. and Zhou, Y. (2005) Dissolution of Kaolinite Induced by Citric, Oxalic, and Malic Acids. Journal of Colloid and Interface Science, 290, 481-488. https://doi.org/10.1016/j.jcis.2005.04.066
|
[17]
|
Lin, S., Yu, Y., Zhang, Z., Zhang, C., Zhong, M., Wang, L., et al. (2020) The Synergistic Mechanisms of Citric Acid and Oxalic Acid on the Rapid Dissolution of Kaolinite. Applied Clay Science, 196, Article 105756. https://doi.org/10.1016/j.clay.2020.105756
|
[18]
|
胡华锋, 程璞, 王兴祥, 等. 柠檬酸, 草酸和苹果酸对高岭石的溶解作用[J]. 土壤通报, 2013, 44(3): 635-640.
|
[19]
|
Sutheimer, S.H., Maurice, P.A. and Zhou, Q. (1999) Dissolution of Well and Poorly Crystallized Kaolinites; Al Speciation and Effects of Surface Characteristics. American Mineralogist, 84, 620-628. https://doi.org/10.2138/am-1999-0415
|
[20]
|
Cama, J. and Ganor, J. (2006) The Effects of Organic Acids on the Dissolution of Silicate Minerals: A Case Study of Oxalate Catalysis of Kaolinite Dissolution. Geochimica et Cosmochimica Acta, 70, 2191-2209. https://doi.org/10.1016/j.gca.2006.01.028
|
[21]
|
Valášková, M., Barabaszová, K., Hundáková, M., Ritz, M. and Plevová, E. (2011) Effects of Brief Milling and Acid Treatment on Two Ordered and Disordered Kaolinite Structures. Applied Clay Science, 54, 70-76. https://doi.org/10.1016/j.clay.2011.07.014
|
[22]
|
Zhou, Y., Cheng, H., Wei, C. and Zhang, Y. (2021) Effect of Acid Activation on Structural Evolution and Surface Charge of Different Derived Kaolinites. Applied Clay Science, 203, Article 105997. https://doi.org/10.1016/j.clay.2021.105997
|
[23]
|
钟山, 孙世群, 陈天虎, 等. 盐酸酸溶对蒙脱石结构的影响[J]. 硅酸盐学报, 2006, 34(9): 1162-1166.
|
[24]
|
高铜熙, 孙红娟, 彭同江, 等. 蒙脱石在硫酸溶液中的特征变化与反应过程[J]. 矿物学报, 2023, 43(1): 75-82.
|
[25]
|
Tyagi, B., Chudasama, C.D. and Jasra, R.V. (2006) Determination of Structural Modification in Acid Activated Montmorillonite Clay by FT-IR Spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64, 273-278. https://doi.org/10.1016/j.saa.2005.07.018
|
[26]
|
Steudel, A., Batenburg, L.F., Fischer, H.R., Weidler, P.G. and Emmerich, K. (2009) Alteration of Swelling Clay Minerals by Acid Activation. Applied Clay Science, 44, 105-115. https://doi.org/10.1016/j.clay.2009.02.002
|
[27]
|
Krupskaya, V., Zakusin, S., Tyupina, E., Dorzhieva, O., Zhukhlistov, A., Belousov, P., et al. (2017) Experimental Study of Montmorillonite Structure and Transformation of Its Properties under Treatment with Inorganic Acid Solutions. Minerals, 7, Article 49. https://doi.org/10.3390/min7040049
|
[28]
|
张冬青. 草酸对蒙脱石的作用及机理研究[J]. 环境科技, 2015, 28(3): 12-16.
|
[29]
|
Yan, F., Shi, Y., Tian, Y., Zheng, H., Hu, Q. and Yu, J. (2023) Mechanism Analysis of Hydrochloric and Acetic Acids Dissolving Clay Minerals. Geoenergy Science and Engineering, 222, Article 211469. https://doi.org/10.1016/j.geoen.2023.211469
|
[30]
|
Ramos, M.E., Cappelli, C., Rozalen, M., Fiore, S. and Huertas, F.J. (2011) Effect of Lactate, Glycine, and Citrate on the Kinetics of Montmorillonite Dissolution. American Mineralogist, 96, 768-780. https://doi.org/10.2138/am.2011.3694
|
[31]
|
Huang, L., Hu, H., Li, X. and Li, L.Y. (2010) Influences of Low Molar Mass Organic Acids on the Adsorption of Cd2+ and Pb2+ by Goethite and Montmorillonite. Applied Clay Science, 49, 281-287. https://doi.org/10.1016/j.clay.2010.06.005
|
[32]
|
Bhattacharyya, K.G. and Gupta, S.S. (2007) Adsorptive Accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from Water on Montmorillonite: Influence of Acid Activation. Journal of Colloid and Interface Science, 310, 411-424. https://doi.org/10.1016/j.jcis.2007.01.080
|
[33]
|
Wu, P., Zhang, Q., Dai, Y., Zhu, N., Dang, Z., Li, P., et al. (2011) Adsorption of Cu(II), Cd(II) and Cr(III) Ions from Aqueous Solutions on Humic Acid Modified Ca-Montmorillonite. Geoderma, 164, 215-219. https://doi.org/10.1016/j.geoderma.2011.06.012
|
[34]
|
陈修, 曲希玉, 邱隆伟, 等. 石英溶解特征及机理的水热实验研究[J]. 矿物岩石地球化学通报, 2015 (5): 1027-1033.
|
[35]
|
Choi, J., Chae, B. and Kim, H. (2015) Effects of Temperature and Pressure on Quartz Dissolution. The Journal of Engineering Geology, 25, 1-8. https://doi.org/10.9720/kseg.2015.1.1
|
[36]
|
Zhang, R., Zhang, X. and Hu, S. (2015) Dissolution Kinetics of Quartz in Water at High Temperatures across the Critical State of Water. The Journal of Supercritical Fluids, 100, 58-69. https://doi.org/10.1016/j.supflu.2015.02.010
|
[37]
|
Bennett, P.C. (1991) Quartz Dissolution in Organic-Rich Aqueous Systems. Geochimica et Cosmochimica Acta, 55, 1781-1797. https://doi.org/10.1016/0016-7037(91)90023-x
|
[38]
|
Blake, R.E. and Walter, L.M. (1999) Kinetics of Feldspar and Quartz Dissolution at 70-80°C and Near-Neutral pH: Effects of Organic Acids and NaCl. Geochimica et Cosmochimica Acta, 63, 2043-2059. https://doi.org/10.1016/s0016-7037(99)00072-1
|
[39]
|
Zhu, J., Tang, C., Wei, J., Li, Z., Laipan, M., He, H., et al. (2018) Structural Effects on Dissolution of Silica Polymorphs in Various Solutions. Inorganica Chimica Acta, 471, 57-65. https://doi.org/10.1016/j.ica.2017.10.003
|
[40]
|
Brantley, S.L. (1992) Kinetics of Dissolution and Precipitation; Experimental and Field Results. Water-Rock Interaction, 7, 3-6.
|
[41]
|
Li, J., Zhang, W., Zhu, J. and Lu, J. (2016) The Influence of Citrate on Surface Dissolution and Alteration of the Micro-and Nano-Structure of Biotite. RSC Advances, 6, 112544-112551. https://doi.org/10.1039/c6ra24068b
|
[42]
|
Baba, A.A., Olaoluwa, D.T., Alabi, A.G.F., Balogun, A.F., Ibrahim, A.S., Sanni, R.O., et al. (2017) Dissolution Behaviour of a Beryl Ore for Optimal Industrial Beryllium Compound Production. Canadian Metallurgical Quarterly, 57, 210-218. https://doi.org/10.1080/00084433.2017.1403107
|
[43]
|
Cappelli, C., Van Driessche, A.E.S., Cama, J. and Huertas, F.J. (2023) Alteration of Trioctahedral Micas in the Presence of Inorganic and Organic Acids. Applied Clay Science, 238, Article 106923. https://doi.org/10.1016/j.clay.2023.106923
|
[44]
|
Karaseva, O.N., Lakshtanov, L.Z., Khanin, D.A. and Proskuryakova, A.S. (2024) Effect of pH, CO2, and Organic Ligand on the Kinetics of Talc and Lizardite Dissolution. Geochemistry International, 62, 393-402. https://doi.org/10.1134/s0016702923700167
|
[45]
|
Sun, C., Yao, Z., Wang, Q., Guo, L. and Shen, X. (2023) Theoretical Study on the Organic Acid Promoted Dissolution Mechanism of Forsterite Mineral. Applied Surface Science, 614, Article 156063. https://doi.org/10.1016/j.apsusc.2022.156063
|
[46]
|
Lin, S., Wang, W., Wu, L., Zhong, M., Zhang, C., Yu, Y., et al. (2023) The Effect of Oxalic Acid and Citric Acid on the Modification of Wollastonite Surface. Materials, 16, Article 7704. https://doi.org/10.3390/ma16247704
|
[47]
|
Hartman, R.L. and Fogler, H.S. (2007) Understanding the Dissolution of Zeolites. Langmuir, 23, 5477-5484. https://doi.org/10.1021/la063699g
|