| [1] | Lee, D. (2020) (Invited) Electrocatalysis by Atomically Precise Metal Nanoclusters. ECS Meeting Abstracts, 1, Article ID: 1701. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Jin, R.C. (2015) Atomically Precise Metal Nanoclusters: Stable Sizes and Optical Properties. Nanoscale, 7, 1549-1565. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Du, Y., Sheng, H., Astruc, D., et al. (2019) Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 120, 526-622. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Du, X.S. and Jin, R.C. (2019) Atomically Precise Metal Nanoclusters for Catalysis. ACS Nano, 13, 7383-7387. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Kang, X., Li, Y., Zhu, M.Z., et al. (2020) Atomically Precise Alloy Nanoclusters: Syntheses, Structures, and Properties. Chemical Society Reviews, 49, 6443-6514. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Yang, D., Wang, J., Wang, Q., et al. (2022) Electrocatalytic CO2 Reduction over Atomically Precise Metal Nanoclusters Protected by Organic Ligands. ACS Nano, 16, 15681-15704. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Ma, G., Qin, L., Liu, Y., et al. (2023) A Review of CO2 Reduction Reaction Catalyzed by Atomical-Level Ag Nanomaterials: Atom-Precise Nanoclusters and Atomically Dispersed Catalysts. Surfaces and Interfaces, 36, Article ID: 102555. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Kempler, P.A. and Nielander, A.C. (2023) Reliable Reporting of Faradaic Efficiencies for Electrocatalysis Research. Nature Communications, 14, Article No. 1158. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Kou, Z.K., Li, X., Wang, T.T., et al. (2021) Fundamentals, On-Going Advances and Challenges of Electrochemical Carbon Dioxide Reduction. Electrochemical Energy Reviews, 5, 82-111. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Chen, L.Y., Wang, L., Shen, Q.L., et al. (2023) All-Alkynyl-Protected Coinage Metal Nanoclusters: From Synthesis to Electrocatalytic CO2 Reduction Applications. Materials Chemistry Frontiers, 7, 1482-1495. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Ayyub, M.M. and Rao, C.N.R. (2021) Designing Electrode Materials for the Electrochemical Reduction of Carbon Dioxide. Materials Horizons, 8, 2420-2443. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Qin, L.B., Sun, F., Ma, X.S., et al. (2021) Homoleptic Alkynyl‐Protected Ag15 Nanocluster with Atomic Precision: Structural Analysis and Electrocatalytic Performance toward CO2 Reduction. Angewandte Chemie International Edition, 60, 26136-26141. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Ma, X.S., Sun, F., Qin, L.B., et al. (2022) Electrochemical CO2 Reduction Catalyzed by Atomically Precise Alkynyl-Protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 Nanoclusters: Probing the Effect of Multi-Metal Core on Selectivity. Chemical Science, 13, 10149-10158. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Chen, L.Y., Sun, F., Shen, Q.L., et al. (2022) Homoleptic Alkynyl-Protected Ag32 Nanocluster with Atomic Precision: Probing the Ligand Effect toward CO2 Electroreduction and 4-Nitrophenol Reduction. Nano Research, 15, 8908-8913. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Yoo, S., Yoo, S., Deng, G., et al. (2023) Nanocluster Surface Microenvironment Modulates Electrocatalytic CO2 Reduction. Advanced Materials, 36, Article ID: 2313032. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Chen, Y., Zhou, X., Liu, X., et al. (2025) Understanding the Role of Potential and Cation Effect on Electrocatalytic CO2 Reduction in All-Alkynyl-Protected Ag15 Nanoclusters. Journal of the American Chemical Society, 147, 2699-2713. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Tian, Y., Mu, W., Wu, L., et al. (2023) Stepwise Assembly of Thiacalix[4]Arene-Protected Ag/Ti Bimetallic Nanoclusters: Accurate Identification of Catalytic Ag Sites in CO2 Electroreduction. Chemical Science, 14, 10212-10218. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Li, S., Liu, Q., Li, L., et al. (2024) Thiacalix[4]Arene-Stabilized Sb/Ag Bimetallic Nanoclusters: Elucidating the Effects of Sb Doping on Electrocatalytic CO2 Reduction in Ag Clusters. Inorganic Chemistry, 63, 18972-18980. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Li, S.-Q., Li, L.-J., Tian, Y.Q., et al. (2024) Synthesis and Characterization of Ag(I) Alkynyl Nanoclusters Utilizing Movi-Anchored Thiacalix[4]arene Metalloligands: Application in Electrocatalytic CO2 Reduction. Polyoxometalates, 3, Article ID: 9140038. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Seong, H., Chang, K., Sun, F., et al. (2023) ClAg14(C≡CtBu)12 Nanoclusters as Efficient and Selective Electrocatalysts toward Industrially Relevant CO2 Conversion. Advanced Science, 11, Article ID: 2306089. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Liu, T., Li, Y., Zuo, Y., et al. (2025) Impact of Free Valence Electron Contraction on the Optical and Electrocatalytic Properties of Nanoclusters: Based on M1Ag14 (M = Pt/Pd) Series Nanoclusters. Nanoscale, 17, 10886-10891. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Ma, A., Li, Y., Zuo, Y., et al. (2025) Atomic-Level Insights into the Synergistic Effect between Ligands on Electrochemical CO2 Reduction: Based on Au7Ag8 Series Nanoclusters. Rare Metals. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Deng, G., Yun, H., Chen, Y., et al. (2024) Ferrocene‐Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO2 Electroreduction. Angewandte Chemie International Edition, 64, e202418264. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Shen, Q., Cong, X., Chen, L., et al. (2023) Synthesis, Structure Anatomy, and Catalytic Properties of Ag14Cu2 Nanoclusters Co-Protected by Alkynyl and Phosphine Ligands. Dalton Transactions, 52, 16812-16818. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Zhu, X., Zhu, P., Cong, X., et al. (2024) Atomically Precise Alkynyl-Protected Ag19Cu2 Nanoclusters: Synthesis, Structure Analysis, and Electrocatalytic CO2 Reduction Application. Nanoscale, 16, 16952-16957. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Deng, G., Kim, J., Bootharaju, M.S., et al. (2022) Body-Centered-Cubic-Kernelled Ag15Cu6 Nanocluster with Alkynyl Protection: Synthesis, Total Structure, and CO2 Electroreduction. Journal of the American Chemical Society, 145, 3401-3407. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Seong, H., Choi, M., Park, S., et al. (2022) Promoting CO2-To-Co Electroreduction via the Active-Site Engineering of Atomically Precise Silver Nanoclusters. ACS Energy Letters, 7, 4177-4184. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Lin, X., Ma, W., Sun, K., et al. (2020) [AuAg26(Sr)18S]− Nanocluster: Open Shell Structure and High Faradaic Efficiency in Electrochemical Reduction of CO2 to Co. The Journal of Physical Chemistry Letters, 12, 552-557. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Wang, Y., Xiong, L., Cheng, Q., et al. (2025) Structural Disproportionation of Ag20Cu10 Highlights the Impact of Cluster Structure on Electrocatalytic Properties for CO2 Reduction. Inorganic Chemistry Frontiers, 12, 2495-2505. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Zha, J., Meng, X., Fan, W., et al. (2023) Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS Applied Materials & Interfaces, 15, 3985-3992. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Li, S., Dai, L., Tian, Y., et al. (2023) Polymolybdate-guided Assembly of a Thiacalix[4]Arene-Protected Ag Nanocluster for Electrocatalytic CO2 Reduction. Chemical Communications, 59, 575-578. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Hu, J., Zhou, M., Li, K., et al. (2023) Evolution of Electrocatalytic CO2 Reduction Activity Induced by Charge Segregation in Atomically Precise AuAg Nanoclusters Based on Icosahedral M13 Unit 3D Assembly. Small, 19, Article ID: 2301357. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Hollevoet, L., De Ras, M., Roeffaers, M., et al. (2020) Energy-Efficient Ammonia Production from Air and Water Using Electrocatalysts with Limited Faradaic Efficiency. ACS Energy Letters, 5, 1124-1127. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Chu, K., Weng, B., Lu, Z., et al. (2025) Exploration of Multidimensional Structural Optimization and Regulation Mechanisms: Catalysts and Reaction Environments in Electrochemical Ammonia Synthesis. Advanced Science, 12, Article ID: 2416053. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Yang, B., Ding, W., Zhang, H., et al. (2021) Recent Progress in Electrochemical Synthesis of Ammonia from Nitrogen: Strategies to Improve the Catalytic Activity and Selectivity. Energy & Environmental Science, 14, 672-687. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [36] | Su, S.D., Li, X.M., Tan, M.Y., et al. (2023) Enhancement of the Properties of ZnAl-LDHs for Photocatalytic Nitrogen Reduction Reaction by Controlling Anion Intercalation. Inorganic Chemistry Frontiers, 10, 869-879. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [37] | Fu, X. (2023) Lithium-Mediated Nitrogen Reduction for Electrochemical Ammonia Synthesis: From Batch to Flow Reactor. Materials Today Catalysis, 3, Article ID: 100031. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Jiang, M., Chen, X., Chen, F., et al. (2025) Effective N2 Activation Strategies for Electrochemical Ammonia Synthesis. Chem, 11, Article ID: 102441. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Han, M., Guo, M.H., Yun, Y.P., et al. (2022) Effect of Heteroatom and Charge Reconstruction in Atomically Precise Metal Nanoclusters on Electrochemical Synthesis of Ammonia. Advanced Functional Materials, 32, Article ID: 2202820. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | Zhang, H.R., Wang, H.J., Cao, X.Q., et al. (2024) Unveiling Cutting‐Edge Developments in Electrocatalytic Nitrate‐to‐Ammonia Conversion. Advanced Materials, 36, Article ID: 2312746. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Ma, G.Y., Sun, F., Qiao, L., et al. (2023) Atomically Precise Alkynyl-Protected Ag20Cu12 Nanocluster: Structure Analysis and Electrocatalytic Performance toward Nitrate Reduction for NH3 Synthesis. Nano Research, 16, 10867-10872. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Qin, L.B., Sun, F., Gong, Z.H., et al. (2023) Electrochemical NO3– Reduction Catalyzed by Atomically Precise Ag30Pd4 Bimetallic Nanocluster: Synergistic Catalysis or Tandem Catalysis? ACS Nano, 17, 12747-12758. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Liu, L., Zheng, S., Chen, H., et al. (2024) Tandem Nitrate‐to‐Ammonia Conversion on Atomically Precise Silver Nanocluster/Mxene Electrocatalyst. Angewandte Chemie International Edition, 63, e202316910. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Zaman, S., Huang, L., Douka, A.I., et al. (2021) Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Angewandte Chemie International Edition, 60, 17832-17852. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Yuan, X.H. and Zhu, M.Z. (2023) Recent Advances in Atomically Precise Metal Nanoclusters for Electrocatalytic Applications. Inorganic Chemistry Frontiers, 10, 3995-4007. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | Xiao, F., Wang, Y.C., Wu, Z.P., et al. (2021) Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. Advanced Materials, 33, Article ID: 2006292. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Zou, X., He, S., Kang, X., et al. (2021) New Atomically Precise M1Ag21 (M = Au/Ag) Nanoclusters as Excellent Oxygen Reduction Reaction Catalysts. Chemical Science, 12, 3660-3667. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Mu, C., Wang, B., Yao, Q.F., et al. (2024) Composition-Dependent Catalytic Performance of AuxAg25-X Alloy Nanoclusters for Oxygen Reduction Reaction. Nano Research, 17, 9490-9497. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | Ding, J.Y., Yang, H., Zhang, S.S., et al. (2022) Advances in the Electrocatalytic Hydrogen Evolution Reaction by Metal Nanoclusters‐Based Materials. Small, 18, Article ID: 2204524. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [50] | Zhu, X., Chen, L., Liu, Y., et al. (2023) Atomically Precise Au Nanoclusters for Electrochemical Hydrogen Evolution Catalysis: Progress and Perspectives. Polyoxometalates, 2, Article ID: 9140031. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [51] | Shen, H., Zhu, Q., Xu, J., et al. (2023) Stepwise Construction of Ag29 Nanocluster-Based Hydrogen Evolution Electrocatalysts. Nanoscale, 15, 14941-14948. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [52] | Chen, H., Liu, L., Ma, X., et al. (2024) Atomically Precise Silver-Based Bimetallic Clusters for Electrocatalytic Urea Synthesis. National Science Review, 12, nwae440. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [53] | Zhang, Z., Yin, R., Song, Z., et al. (2025) Efficient Electrocatalytic Semi‐Hydrogenation of Alkynes by Interfacial Engineering of Atomically Precise Silver Nanoclusters. Angewandte Chemie International Edition, 64, e202500389. [Google Scholar] [CrossRef] [PubMed] |