[1]
|
许威. 甲烷蒸汽重整制氢技术及进展浅析[J]. 中国设备工程, 2023(7): 197-198.
|
[2]
|
林光平, 刘兆川, 聂立, 等. 煤与可再生能源深度耦合的典型零碳综合能源系统构建[J]. 洁净煤技术, 2022, 28(11): 90-104.
|
[3]
|
李俊峰, 李广. 中国能源、环境与气候变化问题回顾与展望[J]. 环境与可持续发展, 2020, 45(5): 8-17.
|
[4]
|
殷朝辉, 蒋利军, 刘蔚, 等. 氢能利用关键技术及发展现状[J]. 太阳能, 2024(7): 62-69.
|
[5]
|
郭佳伟. 纳米片阵列结构LDH/泡沫镍复合电极材料的制备及电解水性能研究[D]: [博士学位论文]. 北京: 北京化工大学, 2023.
|
[6]
|
王丽丽. 过渡金属化合物多功能纳米电催化剂的构筑与性能研究[D]: [博士学位论文]. 长春: 长春理工大学, 2023.
|
[7]
|
Shin, S., Wi, T., Kong, T., Park, C., Lee, H., Jeong, J., et al. (2022) Selectively Enhanced Electrocatalytic Oxygen Evolution within Nanoscopic Channels Fitting a Specific Reaction Intermediate for Seawater Splitting. Small, 19, Article 2206918. https://doi.org/10.1002/smll.202206918
|
[8]
|
Yao, N., Fan, Z., Meng, R., Jia, H. and Luo, W. (2021) A Cobalt Hydroxide Coated Metal-Organic Framework for Enhanced Water Oxidation Electrocatalysis. Chemical Engineering Journal, 408, Article 127319. https://doi.org/10.1016/j.cej.2020.127319
|
[9]
|
Zhang, X., Liu, Q., Shi, X., Asiri, A.M. and Sun, X. (2018) An Fe-MOF Nanosheet Array with Superior Activity Towards the Alkaline Oxygen Evolution Reaction. Inorganic Chemistry Frontiers, 5, 1405-1408. https://doi.org/10.1039/c8qi00163d
|
[10]
|
Choi, Y., Kim, D., Lin, L., Yan, B., Hong, H., Qin, X., et al. (2021) CuFeN/CNT Composite Derived from Kinetically Modulated Urchin-Shaped MOF for Highly Efficient OER Catalysis. Electrochimica Acta, 389, Article 138637. https://doi.org/10.1016/j.electacta.2021.138637
|
[11]
|
Qian, Q., Li, Y., Liu, Y., Yu, L. and Zhang, G. (2019) Ambient Fast Synthesis and Active Sites Deciphering of Hierarchical Foam‐Like Trimetal-Organic Framework Nanostructures as a Platform for Highly Efficient Oxygen Evolution Electrocatalysis. Advanced Materials, 31, Article 1901139. https://doi.org/10.1002/adma.201901139
|
[12]
|
Lyu, S., Guo, C., Wang, J., Li, Z., Yang, B., Lei, L., et al. (2022) Exceptional Catalytic Activity of Oxygen Evolution Reaction via Two-Dimensional Graphene Multilayer Confined Metal-Organic Frameworks. Nature Communications, 13, Article No. 6171. https://doi.org/10.1038/s41467-022-33847-z
|
[13]
|
Karuppasamy, K., Bose, R., Vikraman, D., Ramesh, S., Kim, H.S., Alhseinat, E., et al. (2023) Revealing the Effect of Various Organic Ligands on the OER Activity of MOF-Derived 3D Hierarchical Cobalt Oxide @ Carbon Nanostructures. Journal of Alloys and Compounds, 934, Article 167909. https://doi.org/10.1016/j.jallcom.2022.167909
|
[14]
|
Yang, C., Cai, W., Yu, B., Qiu, H., Li, M., Zhu, L., et al. (2020) Performance Enhancement of Oxygen Evolution Reaction through Incorporating Bimetallic Electrocatalysts in Two-Dimensional Metal-Organic Frameworks. Catalysis Science & Technology, 10, 3897-3903. https://doi.org/10.1039/d0cy00567c
|
[15]
|
Li, Y., Thomas, B., Tang, C. and Asefa, T. (2023) Enhancing the Electrocatalytic Activities of Metal Organic Frameworks for the Oxygen Evolution Reaction with Bimetallic Groups. Dalton Transactions, 52, 17834-17845. https://doi.org/10.1039/d3dt02979d
|
[16]
|
Li, W., Zhang, H., Zhang, K., Cheng, Z., Chen, H., Tan, G., et al. (2023) Altered Electronic Structure of Trimetallic FeNiCo-MOF Nanosheets for Efficient Oxygen Evolution. Chemical Communications, 59, 4750-4753. https://doi.org/10.1039/d2cc06727g
|
[17]
|
Senthil Raja, D., Huang, C., Chen, Y., Choi, Y. and Lu, S. (2020) Composition-Balanced Trimetallic MOFs as Ultra-Efficient Electrocatalysts for Oxygen Evolution Reaction at High Current Densities. Applied Catalysis B: Environmental, 279, Article 119375. https://doi.org/10.1016/j.apcatb.2020.119375
|
[18]
|
Li, Z., Deng, S., Yu, H., Yin, Z., Qi, S., Yang, L., et al. (2022) Fe-Co-Ni Trimetallic Organic Framework Chrysanthemum-Like Nanoflowers: Efficient and Durable Oxygen Evolution Electrocatalysts. Journal of Materials Chemistry A, 10, 4230-4241. https://doi.org/10.1039/d1ta09658c
|
[19]
|
He, P., Xie, Y., Dou, Y., Zhou, J., Zhou, A., Wei, X., et al. (2019) Partial Sulfurization of a 2D MOF Array for Highly Efficient Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 11, 41595-41601. https://doi.org/10.1021/acsami.9b16224
|
[20]
|
Li, J., Zhao, M., Yi, L., Feng, B., Fang, C., Peng, Z., et al. (2022) Sacrificial Templating Synthesis of Metal-Organic Framework Hybrid Nanosheets as Efficient Pre-Electrocatalyst for Oxygen Evolution Reaction in Alkaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, Article 127745. https://doi.org/10.1016/j.colsurfa.2021.127745
|
[21]
|
Wang, M., Dong, C., Huang, Y., Li, Y. and Shen, S. (2018) Electronic Structure Evolution in Tricomponent Metal Phosphides with Reduced Activation Energy for Efficient Electrocatalytic Oxygen Evolution. Small, 14, Article 1801756. https://doi.org/10.1002/smll.201801756
|
[22]
|
Guo, Y., Huang, Q., Ding, J., Zhong, L., Li, T., Pan, J., et al. (2021) CoMo Carbide/Nitride from Bimetallic MOF Precursors for Enhanced OER Performance. International Journal of Hydrogen Energy, 46, 22268-22276. https://doi.org/10.1016/j.ijhydene.2021.04.084
|
[23]
|
Ma, Y., Dai, X., Liu, M., Yong, J., Qiao, H., Jin, A., et al. (2016) Strongly Coupled Feni Alloys/NiFe2O4@carbonitride Layers-Assembled Microboxes for Enhanced Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 8, 34396-34404. https://doi.org/10.1021/acsami.6b11821
|
[24]
|
Ye, L., Wang, J., Zhang, Y., Zhang, M., Jing, X. and Gong, Y. (2021) A Self-Supporting Electrode with In-Situ Partial Transformation of Fe-MOF into Amorphous NiFe-LDH for Efficient Oxygen Evolution Reaction. Applied Surface Science, 556, Article 149781. https://doi.org/10.1016/j.apsusc.2021.149781
|
[25]
|
Roucan, M., Kielmann, M., Connon, S.J., Bernhard, S.S.R. and Senge, M.O. (2018) Conformational Control of Nonplanar Free Base Porphyrins: Towards Bifunctional Catalysts of Tunable Basicity. Chemical Communications, 54, 26-29. https://doi.org/10.1039/c7cc08099a
|
[26]
|
Wang, X., Chai, L., Ding, J., Zhong, L., Du, Y., Li, T., et al. (2019) Chemical and Morphological Transformation of MOF-Derived Bimetallic Phosphide for Efficient Oxygen Evolution. Nano Energy, 62, 745-753. https://doi.org/10.1016/j.nanoen.2019.06.002
|
[27]
|
Liu, M., Kong, L., Wang, X., He, J. and Bu, X. (2019) Engineering Bimetal Synergistic Electrocatalysts Based on Metal-Organic Frameworks for Efficient Oxygen Evolution. Small, 15, Article 1903410. https://doi.org/10.1002/smll.201903410
|
[28]
|
Chen, C., Tuo, Y., Lu, Q., Lu, H., Zhang, S., Zhou, Y., et al. (2021) Hierarchical Trimetallic Co-Ni-Fe Oxides Derived from Core-Shell Structured Metal-Organic Frameworks for Highly Efficient Oxygen Evolution Reaction. Applied Catalysis B: Environmental, 287, Article 119953. https://doi.org/10.1016/j.apcatb.2021.119953
|
[29]
|
Sikdar, A., Majumdar, A., Gogoi, A., Dutta, P., Borah, M., Maiti, S., et al. (2021) Diffusion Driven Nanostructuring of Metal-Organic Frameworks (MOFs) for Graphene Hydrogel Based Tunable Heterostructures: Highly Active Electrocatalysts for Efficient Water Oxidation. Journal of Materials Chemistry A, 9, 7640-7649. https://doi.org/10.1039/d0ta09077h
|
[30]
|
Yaqoob, L., Noor, T., Iqbal, N., Nasir, H., Zaman, N. and Talha, K. (2021) Electrochemical Synergies of Fe-Ni Bimetallic MOF CNTs Catalyst for OER in Water Splitting. Journal of Alloys and Compounds, 850, Article 156583. https://doi.org/10.1016/j.jallcom.2020.156583
|
[31]
|
Liu, Y., Wei, Z., Wu, S., Qiao, S. and Zhou, H. (2023) Oxalate-Based Ni-Fe MOF/CNT Composites for Highly Efficient Oxygen Evolution Reaction. International Journal of Hydrogen Energy, 48, 34330-34339. https://doi.org/10.1016/j.ijhydene.2023.04.217
|
[32]
|
Yaqoob, L., Noor, T., Iqbal, N., Nasir, H., Sohail, M., Zaman, N., et al. (2020) Nanocomposites of Cobalt Benzene Tricarboxylic Acid MOF with rGO: An Efficient and Robust Electrocatalyst for Oxygen Evolution Reaction (OER). Renewable Energy, 156, 1040-1054. https://doi.org/10.1016/j.renene.2020.04.131
|