[1]
|
Sarsaiya, S., Jain, A., Kumar Awasthi, S., Duan, Y., Kumar Awasthi, M. and Shi, J. (2019) RETRACTED: Microbial Dynamics for Lignocellulosic Waste Bioconversion and Its Importance with Modern Circular Economy, Challenges and Future Perspectives. Bioresource Technology, 291, Article 121905. https://doi.org/10.1016/j.biortech.2019.121905
|
[2]
|
Patel, A. and Shah, A.R. (2021) Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products. Journal of Bioresources and Bioproducts, 6, 108-128. https://doi.org/10.1016/j.jobab.2021.02.001
|
[3]
|
Shinde, R., Shahi, D.K., Mahapatra, P., Naik, S.K., Thombare, N. and Singh, A.K. (2022) Potential of Lignocellulose Degrading Microorganisms for Agricultural Residue Decomposition in Soil: A Review. Journal of Environmental Management, 320, Article 115843. https://doi.org/10.1016/j.jenvman.2022.115843
|
[4]
|
Okolie, J.A., Nanda, S., Dalai, A.K. and Kozinski, J.A. (2020) Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12, 2145-2169. https://doi.org/10.1007/s12649-020-01123-0
|
[5]
|
Harindintwali, J.D., Zhou, J. and Yu, X. (2020) Lignocellulosic Crop Residue Composting by Cellulolytic Nitrogen-Fixing Bacteria: A Novel Tool for Environmental Sustainability. Science of the Total Environment, 715, Article 136912. https://doi.org/10.1016/j.scitotenv.2020.136912
|
[6]
|
张斯童, 兰雪, 李哲, 等. 微生物降解玉米秸秆的研究进展[J]. 吉林农业大学学报, 2016, 38(5): 517-522.
|
[7]
|
Chen, Z., Chen, L., Khoo, K.S., Gupta, V.K., Sharma, M., Show, P.L., et al. (2023) Exploitation of Lignocellulosic-Based Biomass Biorefinery: A Critical Review of Renewable Bioresource, Sustainability and Economic Views. Biotechnology Advances, 69, Article 108265. https://doi.org/10.1016/j.biotechadv.2023.108265
|
[8]
|
Syed, K., Doddapaneni, H., Subramanian, V., Lam, Y.W. and Yadav, J.S. (2010) Genome-to-Function Characterization of Novel Fungal P450 Monooxygenases Oxidizing Polycyclic Aromatic Hydrocarbons (PAHs). Biochemical and Biophysical Research Communications, 399, 492-497. https://doi.org/10.1016/j.bbrc.2010.07.094
|
[9]
|
Kubicek, C.P. and Kubicek, E.M. (2016) Enzymatic Deconstruction of Plant Biomass by Fungal Enzymes. Current Opinion in Chemical Biology, 35, 51-57. https://doi.org/10.1016/j.cbpa.2016.08.028
|
[10]
|
Gupta, V.K., Kubicek, C.P., Berrin, J., Wilson, D.W., Couturier, M., Berlin, A., et al. (2016) Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends in Biochemical Sciences, 41, 633-645. https://doi.org/10.1016/j.tibs.2016.04.006
|
[11]
|
Almeida, D.A., Horta, M.A.C., Ferreira Filho, J.A., Murad, N.F. and de Souza, A.P. (2021) The Synergistic Actions of Hydrolytic Genes Reveal the Mechanism of Trichoderma Harzianum for Cellulose Degradation. Journal of Biotechnology, 334, 1-10. https://doi.org/10.1016/j.jbiotec.2021.05.001
|
[12]
|
Zhang, L., Fu, J., Gao, W., Li, Y. and Fan, X. (2024) Revealing the Structural Variation and Degradation Mechanism of Cellulose during Ozone Oxidation Treatment. Industrial Crops and Products, 219, Article 119101. https://doi.org/10.1016/j.indcrop.2024.119101
|
[13]
|
Contreras, F., Pramanik, S., Rozhkova, M., et al. (2020) Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails. International Journal of Molecular Sciences, 21, Article 1589. https://doi.org/10.3390/ijms21051589
|
[14]
|
Swathy, R., Rambabu, K., Banat, F., Ho, S., Chu, D. and Show, P.L. (2020) Production and Optimization of High Grade Cellulase from Waste Date Seeds by Cellulomonas Uda NCIM 2353 for Biohydrogen Production. International Journal of Hydrogen Energy, 45, 22260-22270. https://doi.org/10.1016/j.ijhydene.2019.06.171
|
[15]
|
Monclaro, A.V., Gorgulho Silva, C.D.O., Gomes, H.A.R., Moreira, L.R.D.S. and Filho, E.X.F. (2022) The Enzyme Interactome Concept in Filamentous Fungi Linked to Biomass Valorization. Bioresource Technology, 344, Article 126200. https://doi.org/10.1016/j.biortech.2021.126200
|
[16]
|
Floudas, D., Gentile, L., Andersson, E., Kanellopoulos, S.G., Tunlid, A., Persson, P., et al. (2022) X-Ray Scattering Reveals Two Mechanisms of Cellulose Microfibril Degradation by Filamentous Fungi. Applied and Environmental Microbiology, 88, 17.
|
[17]
|
Zhu, H., Wang, H., Wang, L. and Zheng, Z. (2024) CRISPR/Cas9-Based Genome Engineering in the Filamentous Fungus Rhizopus Oryzae and Its Application to L-Lactic Acid Production. Biotechnology Journal, 19, Article 2400309. https://doi.org/10.1002/biot.202400309
|
[18]
|
Srivastava, S., Jhariya, U., Purohit, H.J. and Dafale, N.A. (2021) Synergistic Action of Lytic Polysaccharide Monooxygenase with Glycoside Hydrolase for Lignocellulosic Waste Valorization: A Review. Biomass Conversion and Biorefinery, 13, 8727-8745. https://doi.org/10.1007/s13399-021-01736-y
|
[19]
|
Bissaro, B., Kommedal, E., Røhr, Å.K. and Eijsink, V.G.H. (2020) Controlled Depolymerization of Cellulose by Light-Driven Lytic Polysaccharide Oxygenases. Nature Communications, 11, Article No. 890. https://doi.org/10.1038/s41467-020-14744-9
|
[20]
|
陈洪洋, 蔡俊, 林建国, 等. 木聚糖酶的研究进展[J]. 中国酿造, 2016, 35(11): 1-6.
|
[21]
|
Andberg, M., Penttilä, M. and Saloheimo, M. (2015) Swollenin from Trichoderma Reesei Exhibits Hydrolytic Activity against Cellulosic Substrates with Features of Both Endoglucanases and Cellobiohydrolases. Bioresource Technology, 181, 105-113. https://doi.org/10.1016/j.biortech.2015.01.024
|
[22]
|
Zerva, A., Pentari, C., Grisel, S., Berrin, J. and Topakas, E. (2020) A New Synergistic Relationship between Xylan-Active LPMO and Xylobiohydrolase to Tackle Recalcitrant Xylan. Biotechnology for Biofuels, 13, Article No. 142.
|
[23]
|
Palme, P.R., Goddard, R., Leutzsch, M., Richter, A., Imming, P. and Seidel, R.W. (2023) Structural Elucidation of the Triethylammonium Betaine of Squaric Acid. Molbank, 2023, M1737. https://doi.org/10.3390/m1737
|
[24]
|
Zhang, Y., Chen, S., Yang, L. and Zhang, Q. (2023) Application Progress of Crispr/cas9 Genome-Editing Technology in Edible Fungi. Frontiers in Microbiology, 14, Article 1169884. https://doi.org/10.3389/fmicb.2023.1169884
|
[25]
|
Bischof, R.H., Ramoni, J. and Seiboth, B. (2016) Cellulases and Beyond: The First 70 Years of the Enzyme Producer Trichoderma Reesei. Microbial Cell Factories, 15, Article No. 106. https://doi.org/10.1186/s12934-016-0507-6
|
[26]
|
Valášková, V., Šnajdr, J., Bittner, B., Cajthaml, T., Merhautová, V., Hofrichter, M., et al. (2007) Production of Lignocellulose-Degrading Enzymes and Degradation of Leaf Litter by Saprotrophic Basidiomycetes Isolated from a Quercus Petraea Forest. Soil Biology and Biochemistry, 39, 2651-2660. https://doi.org/10.1016/j.soilbio.2007.05.023
|
[27]
|
Hori, C., Gaskell, J., Igarashi, K., Samejima, M., Hibbett, D., Henrissat, B., et al. (2013) Genomewide Analysis of Polysaccharides Degrading Enzymes in 11 White-And Brown-Rot Polyporales Provides Insight into Mechanisms of Wood Decay. Mycologia, 105, 1412-1427. https://doi.org/10.3852/13-072
|
[28]
|
Peña, A., Babiker, R., Chaduli, D., Lipzen, A., Wang, M., Chovatia, M., et al. (2021) A Multiomic Approach to Understand How Pleurotus Eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi, 7, Article 426. https://doi.org/10.3390/jof7060426
|
[29]
|
Arantes, V., Milagres, A.M.F., Filley, T.R. and Goodell, B. (2010) Lignocellulosic Polysaccharides and Lignin Degradation by Wood Decay Fungi: The Relevance of Nonenzymatic Fenton-Based Reactions. Journal of Industrial Microbiology & Biotechnology, 38, 541-555. https://doi.org/10.1007/s10295-010-0798-2
|
[30]
|
许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解[J]. 生物工程学报, 2019, 35(11): 2081-2091.
|
[31]
|
Cui, T., Yuan, B., Guo, H., Tian, H., Wang, W., Ma, Y., et al. (2021) Enhanced Lignin Biodegradation by Consortium of White Rot Fungi: Microbial Synergistic Effects and Product Mapping. Biotechnology for Biofuels, 14, Article No. 162. https://doi.org/10.1186/s13068-021-02011-y
|
[32]
|
Wang, W. and Lee, D. (2021) Lignocellulosic Biomass Pretreatment by Deep Eutectic Solvents on Lignin Extraction and Saccharification Enhancement: A Review. Bioresource Technology, 339, Article 125587. https://doi.org/10.1016/j.biortech.2021.125587
|
[33]
|
Yoav, S., Salame, T.M., Feldman, D., Levinson, D., Ioelovich, M., Morag, E., et al. (2018) Effects of Cre1 Modification in the White-Rot Fungus Pleurotus Ostreatus PC9: Altering Substrate Preference during Biological Pretreatment. Biotechnology for Biofuels, 11, Article No. 212. https://doi.org/10.1186/s13068-018-1209-6
|
[34]
|
Zhao, L., Zhang, J., Zhao, D., Jia, L., Qin, B., Cao, X., et al. (2022) Biological Degradation of Lignin: A Critical Review on Progress and Perspectives. Industrial Crops and Products, 188, Article 115715. https://doi.org/10.1016/j.indcrop.2022.115715
|
[35]
|
Monica, P., Ranjan, R. and Kapoor, M. (2024) Lignocellulose-Degrading Chimeras: Emerging Perspectives for Catalytic Aspects, Stability, and Industrial Applications. Renewable and Sustainable Energy Reviews, 199, Article 114425. https://doi.org/10.1016/j.rser.2024.114425
|
[36]
|
Wang, D., Jin, S., Lu, Q. and Chen, Y. (2023) Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi, 9, Article 362. https://doi.org/10.3390/jof9030362
|
[37]
|
Zhang, Y.H. (2017) Biological Pre-Treatment of Soft-Wood Larix Kaempferi Using Three White-Rot Fungi-Corticium Caeruleum, Heterobasidion insulare and Pseudotrametes gibbosa. Fresenius Environmental Bulletin, 26, 4462-4469.
|
[38]
|
Liu, Q., Xie, Z., Tang, S., Xie, Q., He, X. and Li, D. (2025) Synthetic Microbial Community Enhances Lignocellulose Degradation during Composting by Assembling Fungal Communities. Bioresource Technology, 419, Article 132068. https://doi.org/10.1016/j.biortech.2025.132068
|
[39]
|
Zhang, W., Guo, Y., Chen, Q., Wang, Y., Wang, Q., Yang, Y., et al. (2025) Metagenomic Insights into the Lignocellulose Degradation Mechanism during Short-Term Composting of Peach Sawdust: Core Microbial Community and Carbohydrate-Active Enzyme Profile Analysis. Environmental Technology & Innovation, 37, Article 103959. https://doi.org/10.1016/j.eti.2024.103959
|
[40]
|
王子苑, 吉玉玉, 舒健虹, 等. 高效木质纤维素分解菌的筛选及复合菌系降解秸秆效果研究[J]. 中国饲料, 2024(15): 19-26.
|
[41]
|
赵听, 张凯煜, 谷洁, 等. 复合菌群FWD1的木质纤维素降解特性及其微生物多样性研究[J]. 农业环境科学学报, 2015, 34(8): 1582-1588.
|
[42]
|
Suryadi, H., Judono, J.J., Putri, M.R., Eclessia, A.D., Ulhaq, J.M., Agustina, D.N., et al. (2022) Biodelignification of Lignocellulose Using Ligninolytic Enzymes from White-Rot Fungi. Heliyon, 8, e08865. https://doi.org/10.1016/j.heliyon.2022.e08865
|
[43]
|
Cai, S., Li, J., Hu, F.Z., Zhang, K., Luo, Y., Janto, B., et al. (2010) Cellulosilyticum ruminicola, a Newly Described Rumen Bacterium That Possesses Redundant Fibrolytic-Protein-Encoding Genes and Degrades Lignocellulose with Multiple Carbohydrate-Borne Fibrolytic Enzymes. Applied and Environmental Microbiology, 76, 3818-3824. https://doi.org/10.1128/aem.03124-09
|
[44]
|
Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., Zhang, W., et al. (2021) Roles of Biochar-Derived Dissolved Organic Matter in Soil Amendment and Environmental Remediation: A Critical Review. Chemical Engineering Journal, 424, Article 130387. https://doi.org/10.1016/j.cej.2021.130387
|