[1]
|
邹骑鸿, 余昭胜, 韦琛, 等. 厨余沼渣与城市生活垃圾混合燃烧过程的灰熔融特性[J]. 环境工程, 2023, 41(5): 69-74, 178.
|
[2]
|
Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., et al. (2018) A Comprehensive Review on Food Waste Anaerobic Digestion: Research Updates and Tendencies. Bioresource Technology, 247, 1069-1076. https://doi.org/10.1016/j.biortech.2017.09.109
|
[3]
|
Cesaro, A. (2021) The Valorization of the Anaerobic Digestate from the Organic Fractions of Municipal Solid Waste: Challenges and Perspectives. Journal of Environmental Management, 280, Article ID: 111742. https://doi.org/10.1016/j.jenvman.2020.111742
|
[4]
|
Chen, T., Qiu, X., Feng, H., Yin, J. and Shen, D. (2021) Solid Digestate Disposal Strategies to Reduce the Environmental Impact and Energy Consumption of Food Waste-Based Biogas Systems. Bioresource Technology, 325, Article ID: 124706. https://doi.org/10.1016/j.biortech.2021.124706
|
[5]
|
Zhang, S., Hou, H., Wang, G., Yao, Y., Zhang, Y. and Xu, H. (2024) Exploring the Metabolic Characteristic of Express Packaging Waste to Promote the Synergy of Pollution and Carbon Reduction. Environmental Impact Assessment Review, 106, Article ID: 107523. https://doi.org/10.1016/j.eiar.2024.107523
|
[6]
|
Huang, S., Wang, M., Dai, Y., Deng, C., Xue, S., Qiu, F., et al. (2025) Waste to Treasure: Upcycling Waste Express Packing to Sustainable Packaging Materials. Journal of Environmental Chemical Engineering, 13, Article ID: 115016. https://doi.org/10.1016/j.jece.2024.115016
|
[7]
|
Duan, H., Song, G., Qu, S., Dong, X. and Xu, M. (2019) Post-Consumer Packaging Waste from Express Delivery in China. Resources, Conservation and Recycling, 144, 137-143. https://doi.org/10.1016/j.resconrec.2019.01.037
|
[8]
|
程辉. 塑料快递包装引发的环境问题与应对措施[J]. 塑料助剂, 2022(3): 71-74.
|
[9]
|
Chen, Y., Awasthi, A.K., Wei, F., Tan, Q. and Li, J. (2021) Single-use Plastics: Production, Usage, Disposal, and Adverse Impacts. Science of the Total Environment, 752, Article ID: 141772. https://doi.org/10.1016/j.scitotenv.2020.141772
|
[10]
|
Burgess, F., Lloyd, P.D.W., Fennell, P.S. and Hayhurst, A.N. (2011) Combustion of Polymer Pellets in a Bubbling Fluidised Bed. Combustion and Flame, 158, 1638-1645. https://doi.org/10.1016/j.combustflame.2010.12.027
|
[11]
|
Glushkov, D.O., Paushkina, K.K. and Shabardin, D.P. (2020) Co-Combustion of Coal Processing Waste, Oil Refining Waste and Municipal Solid Waste: Mechanism, Characteristics, Emissions. Chemosphere, 240, Article ID: 124892. https://doi.org/10.1016/j.chemosphere.2019.124892
|
[12]
|
Liu, M., Han, B., Bai, J., Ru, J., Wang, X., Xing, L., et al. (2025) Investigation on the Synergistic Effects and Thermokinetic Analyses during Co-Combustion of Corn Stalk and Polyethylene Plastic: Effect of Heating Rate and Placement Method. Fuel, 385, Article ID: 134032. https://doi.org/10.1016/j.fuel.2024.134032
|
[13]
|
胡世梯, 姚赛, 易志刚, 等. 餐厨垃圾厌氧沼渣处理及资源化利用研究进展[J]. 四川环境, 2023, 42(4): 366-372.
|
[14]
|
Guo, S., Deng, X., Liu, L., Ge, L. and Lisak, G. (2024) Comprehensive Analysis of Combustion Behavior, Kinetics, and Gas Emissions of Fungus Bran Biofuel through Torrefaction Pretreatment and Polypropylene Addition. Fuel, 364, Article ID: 131014. https://doi.org/10.1016/j.fuel.2024.131014
|
[15]
|
Guo, F., He, Y., Hassanpour, A., Gardy, J. and Zhong, Z. (2020) Thermogravimetric Analysis on the Co-Combustion of Biomass Pellets with Lignite and Bituminous Coal. Energy, 197, Article ID: 117147. https://doi.org/10.1016/j.energy.2020.117147
|
[16]
|
韦琛. 厨余沼渣与城市生活垃圾混合燃烧过程的特性[D]: [硕士学位论文]. 广州: 华南理工大学, 2022.
|
[17]
|
拜苏平. 可燃垃圾与餐厨沼渣的燃烧特性及排放特性研究[D]: [硕士学位论文]. 沈阳: 沈阳航空航天大学, 2022.
|
[18]
|
Wei, C., Yu, Z., Zhang, X. and Ma, X. (2021) Co-combustion Behavior of Municipal Solid Waste and Food Waste Anaerobic Digestates: Combustion Performance, Kinetics, Optimization, and Gaseous Products. Journal of Environmental Chemical Engineering, 9, Article ID: 106028. https://doi.org/10.1016/j.jece.2021.106028
|
[19]
|
Zhang, Y., Tang, Y., Tang, J., Wang, S. and Ma, X. (2022) A Study on the Co-Combustion of Excavated Waste and Municipal Solid Waste: Thermogravimetric Characteristics and Gaseous Pollutants Emission. Journal of Environmental Chemical Engineering, 10, Article ID: 108964. https://doi.org/10.1016/j.jece.2022.108964
|
[20]
|
Xinjie, L., Singh, S., Yang, H., Wu, C. and Zhang, S. (2021) A Thermogravimetric Assessment of the Tri-Combustion Process for Coal, Biomass and Polyethylene. Fuel, 287, Article ID: 119355. https://doi.org/10.1016/j.fuel.2020.119355
|
[21]
|
Zheng, C., Ma, X., Yao, Z. and Chen, X. (2019) The Properties and Combustion Behaviors of Hydrochars Derived from Co-Hydrothermal Carbonization of Sewage Sludge and Food Waste. Bioresource Technology, 285, Article ID: 121347. https://doi.org/10.1016/j.biortech.2019.121347
|
[22]
|
Zhou, C., Liu, G., Fang, T. and Lam, P.K.S. (2015) Investigation on Thermal and Trace Element Characteristics during Co-Combustion Biomass with Coal Gangue. Bioresource Technology, 175, 454-462. https://doi.org/10.1016/j.biortech.2014.10.129
|
[23]
|
Wang, Y., Jia, L., Guo, B., Shen, X., Zheng, X., Xiang, J., et al. (2022) Investigation of Interaction Mechanisms during Co-Combustion of Sewage Sludge and Coal Slime: Combustion Characteristics and NO/SO2 Emission Behavior. Science of the Total Environment, 851, Article ID: 158166. https://doi.org/10.1016/j.scitotenv.2022.158166
|
[24]
|
Wang, Y., Liao, Y., Chen, Y., Bin, Y. and Ma, X. (2022) Co-combustion of Coal and Composite Board Sawdust: Combustion Behaviors, Ash Slagging Characteristics, and Gaseous Pollutant Emissions and Control. Biomass Conversion and Biorefinery, 14, 27159-27173. https://doi.org/10.1007/s13399-022-03481-2
|
[25]
|
Liu, H., Zhang, S., Feng, S., Jia, C., Guo, S., Sun, B., et al. (2020) Combustion Characteristics and Typical Pollutant Emissions of Corn Stalk Blending with Municipal Sewage Sludge. Environmental Science and Pollution Research, 28, 9792-9805. https://doi.org/10.1007/s11356-020-11463-y
|
[26]
|
Zhang, J., Wang, Q., Zheng, P. and Wang, Y. (2014) Anaerobic Digestion of Food Waste Stabilized by Lime Mud from Papermaking Process. Bioresource Technology, 170, 270-277. https://doi.org/10.1016/j.biortech.2014.08.003
|
[27]
|
Feng, Y., Bu, T., Zhang, Q., Han, M., Tang, Z., Yuan, G., et al. (2022) Pyrolysis Characteristics of Anaerobic Digestate from Kitchen Waste and Availability of Phosphorus in Pyrochar. Journal of Analytical and Applied Pyrolysis, 168, Article ID: 105729. https://doi.org/10.1016/j.jaap.2022.105729
|
[28]
|
Hu, J., Yan, Y., Song, Y., Liu, J., Evrendilek, F. and Buyukada, M. (2020) Catalytic Combustions of Two Bamboo Residues with Sludge Ash, CaO, and Fe2O3: Bioenergy, Emission and Ash Deposition Improvements. Journal of Cleaner Production, 270, Article ID: 122418. https://doi.org/10.1016/j.jclepro.2020.122418
|
[29]
|
Santi, G., Proietti, S., Moscatello, S., Stefanoni, W. and Battistelli, A. (2015) Anaerobic Digestion of Corn Silage on a Commercial Scale: Differential Utilization of Its Chemical Constituents and Characterization of the Solid Digestate. Biomass and Bioenergy, 83, 17-22. https://doi.org/10.1016/j.biombioe.2015.08.018
|
[30]
|
Ding, Z., Chen, Z., Liu, J., Evrendilek, F., He, Y. and Xie, W. (2022) Co-Combustion, Life-Cycle Circularity, and Artificial Intelligence-Based Multi-Objective Optimization of Two Plastics and Textile Dyeing Sludge. Journal of Hazardous Materials, 426, Article ID: 128069. https://doi.org/10.1016/j.jhazmat.2021.128069
|
[31]
|
Mao, W., Li, J., Yang, Y., Huang, B., Xu, S. and Gu, L. (2024) Co-Combustion of Organic Industrial and Municipal Solid Wastes in Shanghai: Evaluation Based on Energy Recovery, Thermal Behavior and Gases Pollutants Emissions. Journal of Environmental Chemical Engineering, 12, Article ID: 114917. https://doi.org/10.1016/j.jece.2024.114917
|
[32]
|
廖艳芬, 马晓茜. 城市污水污泥燃烧特性和动力学特性分析[J]. 燃料化学学报, 2009, 37(3): 296-301.
|
[33]
|
Wang, Q., Wang, G., Zhang, J., Lee, J., Wang, H. and Wang, C. (2018) Combustion Behaviors and Kinetics Analysis of Coal, Biomass and Plastic. Thermochimica Acta, 669, 140-148. https://doi.org/10.1016/j.tca.2018.09.016
|
[34]
|
Liang, W., Jiang, C., Wang, G., Ning, X., Zhang, J., Guo, X., et al. (2022) Research on the Co-Combustion Characteristics and Kinetics of Agricultural Waste Hydrochar and Anthracite. Renewable Energy, 194, 1119-1130. https://doi.org/10.1016/j.renene.2022.05.157
|
[35]
|
Galina, N.R., Romero Luna, C.M., Arce, G.L.A.F. and Ávila, I. (2019) Comparative Study on Combustion and Oxy-Fuel Combustion Environments Using Mixtures of Coal with Sugarcane Bagasse and Biomass Sorghum Bagasse by the Thermogravimetric Analysis. Journal of the Energy Institute, 92, 741-754. https://doi.org/10.1016/j.joei.2018.02.008
|
[36]
|
Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F.E., Elkhouakhi, M., Sahibed-Dine, A., Bentiss, F., et al. (2019) Investigation of (Co)-Combustion Kinetics of Biomass, Coal and Municipal Solid Wastes. Waste Management, 97, 10-18. https://doi.org/10.1016/j.wasman.2019.07.033
|