[1]
|
Zhang, Z., Haggren, T., Li, J., Wang, J., Fang, Q., Tan, H.H., et al. (2023) High-Performance Flexible GaAs Nanofilm UV Photodetectors. ACS Applied Nano Materials, 6, 9917-9927. https://doi.org/10.1021/acsanm.3c01875
|
[2]
|
Chae, H.U., Shrewsbury, B., Ahsan, R., Povinelli, M.L. and Kapadia, R. (2024) GaAs Mid-IR Electrically Tunable Metasurfaces. Nano Letters, 24, 2581-2588. https://doi.org/10.1021/acs.nanolett.3c04687
|
[3]
|
Chadi, D.J. (1987) Atomic Structure of GaAs(100)-(2 × 1) and (2 × 4) Reconstructed Surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 5, 834-837. https://doi.org/10.1116/1.574366
|
[4]
|
Hjort, M., Lehmann, S., Knutsson, J., Timm, R., Jacobsson, D., Lundgren, E., et al. (2013) Direct Imaging of Atomic Scale Structure and Electronic Properties of GaAs Wurtzite and Zinc Blende Nanowire Surfaces. Nano Letters, 13, 4492-4498. https://doi.org/10.1021/nl402424x
|
[5]
|
Dugar, P., Kumar, M., T. C., S.K., Aggarwal, N. and Gupta, G. (2015) Carrier Relaxation Dynamics in Defect States of Epitaxial GaN/AlN/Si Using Ultrafast Transient Absorption Spectroscopy. RSC Advances, 5, 83969-83975. https://doi.org/10.1039/c5ra10877b
|
[6]
|
Fukumoto, K., Yamada, Y., Koshihara, S. and Onda, K. (2015) Lifetimes of Photogenerated Electrons on a GaAs Surface Affected by Nanostructural Defects. Applied Physics Express, 8, Article ID: 101201. https://doi.org/10.7567/apex.8.101201
|
[7]
|
Kapon, E., Tamargo, M.C. and Hwang, D.M. (1987) Molecular Beam Epitaxy of GaAs/AlGaAs Superlattice Heterostructures on Nonplanar Substrates. Applied Physics Letters, 50, 347-349. https://doi.org/10.1063/1.98196
|
[8]
|
Ketterer, B., Heiss, M., Livrozet, M.J., Rudolph, A., Reiger, E. and Fontcuberta i Morral, A. (2011) Determination of the Band Gap and the Split-Off Band in Wurtzite GaAs Using Raman and Photoluminescence Excitation Spectroscopy. Physical Review B, 83, Article ID: 125307. https://doi.org/10.1103/physrevb.83.125307
|
[9]
|
Kusch, P., Breuer, S., Ramsteiner, M., Geelhaar, L., Riechert, H. and Reich, S. (2012) Band Gap of Wurtzite GaAs: A Resonant Raman Study. Physical Review B, 86, Article ID: 075317. https://doi.org/10.1103/physrevb.86.075317
|
[10]
|
Huang, J., Shang, L., Ma, S., Han, B., Wei, G., Liu, Q., et al. (2020) Low Temperature Photoluminescence Study of GaAs Defect States. Chinese Physics B, 29, Article ID: 010703. https://doi.org/10.1088/1674-1056/ab5fb8
|
[11]
|
Suezawa, M. and Sumino, K. (1994) Optical Excitation and Thermal Recovery of the 78 meV/203 meV Acceptors in GaAs. Journal of Applied Physics, 76, 932-941. https://doi.org/10.1063/1.357771
|
[12]
|
Du, Y.A., Sakong, S. and Kratzer, P. (2013) As Vacancies, Ga Antisites, and Au Impurities in Zinc Blende and Wurtzite GaAs Nanowire Segments from First Principles. Physical Review B, 87, Article ID: 075308. https://doi.org/10.1103/physrevb.87.075308
|
[13]
|
Escaño, M.C., Balgos, M.H., Nguyen, T.Q., Prieto, E.A., Estacio, E., Salvador, A., et al. (2020) True Bulk As-Antisite Defect in GaAs(110) Identified by DFT Calculations and Probed by STM/STS Measurements. Applied Surface Science, 511, Article ID: 145590. https://doi.org/10.1016/j.apsusc.2020.145590
|
[14]
|
Singh, C.N., Uberuaga, B.P., Tobin, S.J. and Liu, X. (2023) Impact of Radiation-Induced Point Defects on Thermal Carrier Decay Processes in GaAs. Acta Materialia, 242, Article ID: 118480. https://doi.org/10.1016/j.actamat.2022.118480
|
[15]
|
Schultz, P.A. (2016) Discriminating a Deep Gallium Antisite Defect from Shallow Acceptors in GaAs Using Supercell Calculations. Physical Review B, 93, Article ID: 125201. https://doi.org/10.1103/physrevb.93.125201
|
[16]
|
Di Cicco, A., Polzoni, G., Gunnella, R., Trapananti, A., Minicucci, M., Rezvani, S.J., et al. (2020) Broadband Optical Ultrafast Reflectivity of Si, Ge and GaAs. Scientific Reports, 10, Article No. 17363. https://doi.org/10.1038/s41598-020-74068-y
|
[17]
|
Panahandeh-Fard, M., Yin, J., Kurniawan, M., Wang, Z., Leung, G., Sum, T.C., et al. (2014) Ambipolar Charge Photogeneration and Transfer at GaAs/P3HT Heterointerfaces. The Journal of Physical Chemistry Letters, 5, 1144-1150. https://doi.org/10.1021/jz500332z
|
[18]
|
Deng, G., Qian, Y. and Rao, Y. (2019) Development of Ultrafast Broadband Electronic Sum Frequency Generation for Charge Dynamics at Surfaces and Interfaces. The Journal of Chemical Physics, 150, Article ID: 024708. https://doi.org/10.1063/1.5063458
|
[19]
|
Prabhakar, R.R., Moehl, T., Friedrich, D., Kunst, M., Shukla, S., Adeleye, D., et al. (2022) Sulfur Treatment Passivates Bulk Defects in Sb2Se3 Photocathodes for Water Splitting. Advanced Functional Materials, 32, Article ID: 2112184. https://doi.org/10.1002/adfm.202112184
|
[20]
|
Zaumseil, J. (2021) Luminescent Defects in Single‐Walled Carbon Nanotubes for Applications. Advanced Optical Materials, 10, Article ID: 2101576. https://doi.org/10.1002/adom.202101576
|