[1]
|
Chambergo-Michilot, D., Brañez-Condorena, A., Alva-Diaz, C., Sequeiros, J., Abanto, C. and Pacheco-Barrios, K. (2021) Evidence-Based Appraisal of Blood Pressure Reduction in Spontaneous Intracerebral Hemorrhage: A Scoping Review and Overview. Clinical Neurology and Neurosurgery, 202, Article 106497. https://doi.org/10.1016/j.clineuro.2021.106497
|
[2]
|
Greenberg, S.M., Ziai, W.C., Cordonnier, C., Dowlatshahi, D., Francis, B., Goldstein, J.N., et al. (2022) 2022 Guideline for the Management of Patients with Spontaneous Intracerebral Hemorrhage: A Guideline from the American Heart Association/American Stroke Association. Stroke, 53, e282-e361. https://doi.org/10.1161/str.0000000000000407
|
[3]
|
Liu, L., Wang, D., Wong, K.S.L. and Wang, Y. (2011) Stroke and Stroke Care in China: Huge Burden, Significant Workload, and a National Priority. Stroke, 42, 3651-3654. https://doi.org/10.1161/strokeaha.111.635755
|
[4]
|
董方杰, 胡建平, 吴士勇. 我国卫生健康信息互联互通2.0技术特征研究[J]. 中国卫生信息管理杂志, 2023, 20(1): 1-6.
|
[5]
|
刘迷迷, 杜国霞, 周毅, 等. 专病数据库建设与应用研究[J]. 医学信息学杂志, 2021, 42(11): 81-86, 93.
|
[6]
|
郭强, 王丛, 衡反修. 医疗大数据平台建设机遇、挑战及其发展[J]. 医学信息学杂志, 2021, 42(1): 2-8.
|
[7]
|
薛万国, 乔屾, 车贺宾, 等. 临床科研数据库系统的现状与未来[J]. 中国数字医学, 2021, 16(1): 2-6.
|
[8]
|
Brainin, M. (1994) Overview of Stroke Data Banks. Neuroepidemiology, 13, 250-258. https://doi.org/10.1159/000110388
|
[9]
|
陈亦豪, 常健博, 魏俊吉, 等. 脑卒中大型医学数据库应用及研究进展[J]. 中国现代神经疾病杂志, 2021, 21(3): 141-146.
|
[10]
|
谢高强, 李英山, 姚晨. 电子数据采集对我国临床研究的机遇和挑战[J]. 中国新药杂志, 2013, 22(6): 620-623.
|
[11]
|
Schwamm, L., Reeves, M.J. and Frankel, M. (2006) Designing a Sustainable National Registry for Stroke Quality Improvement. American Journal of Preventive Medicine, 31, S251-S257. https://doi.org/10.1016/j.amepre.2006.08.013
|
[12]
|
Bronstein, K., Murray, P., Licata-Gehr, E., Banko, M., Kelly-Hayes, M., Fast, S., et al. (1986) The Stroke Data Bank Project: Implications for Nursing Research. Journal of Neuroscience Nursing, 18, 132-134. https://doi.org/10.1097/01376517-198606000-00005
|
[13]
|
Bogousslavsky, J., Van Melle, G. and Regli, F. (1988) The Lausanne Stroke Registry: Analysis of 1,000 Consecutive Patients with First Stroke. Stroke, 19, 1083-1092. https://doi.org/10.1161/01.str.19.9.1083
|
[14]
|
WHO MONICA Project Principal Invest (1988) The World Health Organization Monica Project (Monitoring Trends and Determinants in Cardiovascular Disease): A Major International Collaboration. Journal of Clinical Epidemiology, 41, 105-114. https://doi.org/10.1016/0895-4356(88)90084-4
|
[15]
|
Kapral, M.K., Laupacis, A., Phillips, S.J., Silver, F.L., Hill, M.D., Fang, J., et al. (2004) Stroke Care Delivery in Institutions Participating in the Registry of the Canadian Stroke Network. Stroke, 35, 1756-1762. https://doi.org/10.1161/01.str.0000130423.50191.9f
|
[16]
|
Shiotsuki, H., Ogushi, Y., Fushimi, K., et al. (2005) Evaluation of Applied Cases of Thrombolytic Therapy against Ultra-Acute Ischemic Stroke. Using the Japanese Standard Stroke Registry Database. The Tokai Journal of Experimental and Clinical Medicine, 30, 49-62.
|
[17]
|
California Acute Stroke Pilot Registry (CASPR) Investigators (2005) Prioritizing Interventions to Improve Rates of Thrombolysis for Ischemic Stroke. Neurology, 64, 654-659. https://doi.org/10.1212/01.wnl.0000151850.39648.51
|
[18]
|
高晓兰, 胡长梅, 王文志, 等. 出血性卒中与缺血性卒中危险因素对比分析——多中心脑卒中数据库临床研究[J]. 中国慢性病预防与控制, 1999, 7(4): 14-16.
|
[19]
|
刘小玲, 葛朝明. 脑卒中数据库的研究进展[J]. 中国医学创新, 2017, 14(1): 145-148.
|
[20]
|
Sun, W., Ou, Q., Zhang, Z., Qu, J. and Huang, Y. (2017) Chinese Acute Ischemic Stroke Treatment Outcome Registry (CASTOR): Protocol for a Prospective Registry Study on Patterns of Real-World Treatment of Acute Ischemic Stroke in China. BMC Complementary and Alternative Medicine, 17, Article No. 357. https://doi.org/10.1186/s12906-017-1863-4
|
[21]
|
Hamet, P. and Tremblay, J. (2017) Artificial Intelligence in Medicine: Clinical and Experimental. Metabolism, 69, S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
|
[22]
|
王耀国, 李鹏, 刘迷迷, 等. 临床专病数据库建设现状与思考[J]. 医学信息学杂志, 2024, 45(3): 65-69.
|
[23]
|
Juhn, Y. and Liu, H. (2020) Artificial Intelligence Approaches Using Natural Language Processing to Advance Ehr-Based Clinical Research. Journal of Allergy and Clinical Immunology, 145, 463-469. https://doi.org/10.1016/j.jaci.2019.12.897
|
[24]
|
Renard, F., Guedria, S., Palma, N.D. and Vuillerme, N. (2020) Variability and Reproducibility in Deep Learning for Medical Image Segmentation. Scientific Reports, 10, Article No. 13724. https://doi.org/10.1038/s41598-020-69920-0
|
[25]
|
Chang, J.B., Jiang, S.Z., Chen, X.J., Luo, J.X., Li, W.L., Zhang, Q.H., et al. (2020) Consistency Evaluation of an Automatic Segmentation for Quantification of Intracerebral Hemorrhage Using Convolution Neural Network. Chinese Journal of Contemporary Neurology and Neurosurgery, 20, 585-590. https://doi.org/10.3969/j.issn.1672-6731.2020.07.005
|
[26]
|
潘锋. 人工智能引领神经外科医疗进入新时代[J]. 中国医药导报, 2023, 20(12): 1-3.
|
[27]
|
Inaguma, D., Kitagawa, A., Yanagiya, R., Koseki, A., Iwamori, T., Kudo, M., et al. (2020) Increasing Tendency of Urine Protein Is a Risk Factor for Rapid EGFR Decline in Patients with CKD: A Machine Learning-Based Prediction Model by Using a Big Database. PLOS ONE, 15, e0239262. https://doi.org/10.1371/journal.pone.0239262
|
[28]
|
Geng, Z., Yang, C., Zhao, Z., Yan, Y., Guo, T., Liu, C., et al. (2024) Development and Validation of a Machine Learning-Based Predictive Model for Assessing the 90-Day Prognostic Outcome of Patients with Spontaneous Intracerebral Hemorrhage. Journal of Translational Medicine, 22, Article No. 236. https://doi.org/10.1186/s12967-024-04896-3
|
[29]
|
Matsumoto, K., Ishihara, K., Matsuda, K., Tokunaga, K., Yamashiro, S., Soejima, H., et al. (2024) Machine Learning-Based Prediction for In‐Hospital Mortality after Acute Intracerebral Hemorrhage Using Real‐World Clinical and Image Data. Journal of the American Heart Association, 13, e036447. https://doi.org/10.1161/jaha.124.036447
|