| [1] | Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M. and Bjørklund, G. (2023) The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12, Article 440. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Pérez-Rodríguez, M., Pellerano, R.G., Pezza, L. and Pezza, H.R. (2018) An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta, 182, 1-21. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Chang, D., Mao, Y., Qiu, W., Wu, Y. and Cai, B. (2023) The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics, 11, Article 214. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Gab-Allah, M.A., Lijalem, Y.G., Yu, H., Lim, D.K., Ahn, S., Choi, K., et al. (2023) Accurate Determination of Four Tetracycline Residues in Chicken Meat by Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry. Journal of Chromatography A, 1691, Article 463818. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Zhang, T., Zhang, X., Yu, J., Hu, H., He, P., Li, Z., et al. (2024) Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 29, Article 2921. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Li, P., Rao, D., Wang, Y. and Hu, X. (2022) Adsorption Characteristics of Polythiophene for Tetracyclines and Determination of Tetracyclines in Fish and Chicken Manure by Solid Phase Extraction-HPLC Method. Microchemical Journal, 173, Article 106935. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Butovskaya, E., Carrillo Heredero, A.M., Segato, G., Faggionato, E., Borgia, M., Marchis, D., et al. (2024) Quantitative Determination of Tetracyclines in Medicated Feed for Food-Producing Animals by HPLC-DAD. Food Additives & Contaminants: Part A, 41, 601-609. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Liu, Y., Luo, Y., Li, W., Xu, X., Wang, B., Xu, X., et al. (2024) Current Analytical Strategies for the Determination of Quinolone Residues in Milk. Food Chemistry, 430, Article 137072. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Astudillo, D., Pokrant, E., Bravo, C., Ríos, A., Navarrete, M.J., Maddaleno, A., et al. (2023) Detection of Antimicrobial Residues in Animal Manure by a Microbiological Screening Methodology: A Non-Invasive Tool in Animal Production. Food Control, 148, Article 109649. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Dai, P., Zhang, Y., Hong, Y., Xiong, J., Du, H., Duan, L., et al. (2023) Production of High Affinity Monoclonal Antibody and Development of Indirect Competitive Chemiluminescence Enzyme Immunoassay for Gentamicin Residue in Animal Tissues. Food Chemistry, 400, Article 134067. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Adabi, M., Reza Faryabi, M., Nili-Ahmadabadi, A., Gharekhani, J. and Mehri, F. (2022) Evaluation of Tetracycline Antibiotics Residues in Chicken Tissues Using the Four-Plate Test, ELISA, and HPLC Methods in Iran. International Journal of Environmental Analytical Chemistry, 104, 2014-2023. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Besharati, M., Hamedi, J., Hosseinkhani, S. and Saber, R. (2019) A Novel Electrochemical Biosensor Based on TetX2 Monooxygenase Immobilized on a Nano-Porous Glassy Carbon Electrode for Tetracycline Residue Detection. Bioelectrochemistry, 128, 66-73. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Kareem, A., Thenmozhi, K., Hari, S., Ponnusamy, V.K. and Senthilkumar, S. (2024) Metal-Free Carbon-Based Anode for Electrochemical Degradation of Tetracycline and Metronidazole in Wastewater. Chemosphere, 351, Article 141219. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | 杨杰, 杨学山, 马晓彤. 微波法制备荧光碳量子点及其对牛奶中四环素的快速检测[J]. 食品与发酵科技, 2022, 58(5): 111-117, 141. | 
                     
                                
                                    
                                        | [15] | Wang, B. and Lu, S. (2022) The Light of Carbon Dots: From Mechanism to Applications. Matter, 5, 110-149. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Liu, J., Li, R. and Yang, B. (2020) Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6, 2179-2195. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Alafeef, M., Srivastava, I., Aditya, T. and Pan, D. (2023) Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small, 20, Article ID: 2303937. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Sun, Z., Zhou, W., Luo, J., Fan, J., Wu, Z., Zhu, H., et al. (2022) High-Efficient and pH-Sensitive Orange Luminescence from Silicon-Doped Carbon Dots for Information Encryption and Bio-Imaging. Journal of Colloid and Interface Science, 607, 16-23. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Arul, V., Chandrasekaran, P., Sivaraman, G. and Sethuraman, M.G. (2023) Biogenic Preparation of Undoped and Heteroatoms Doped Carbon Dots: Effect of Heteroatoms Doping in Fluorescence, Catalytic Ability and Multicolour in-vitro Bio-Imaging Applications—A Comparative Study. Materials Research Bulletin, 162, Article 112204. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Wang, X., Xu, L., Ge, S., Foong, S.Y., Liew, R.K., Fong Chong, W.W., et al. (2023) Biomass-Based Carbon Quantum Dots for Polycrystalline Silicon Solar Cells with Enhanced Photovoltaic Performance. Energy, 274, Article 127354. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Cheruku, R., Kim, J.H., Krishna, V.B.M. and Periyat, P. (2023) Photo-Electrodes Decorated with Carbon Quantum Dots: Efficient Dye-Sensitized Solar Cells. Results in Engineering, 20, Article 101611. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Lu, J., Shi, Y., Chen, Z., Sun, X., Yuan, H., Guo, F., et al. (2023) Photothermal Effect of Carbon Dots for Boosted Photothermal-Assisted Photocatalytic Water/Seawater Splitting into Hydrogen. Chemical Engineering Journal, 453, Article 139834. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | Singh, P., Rani, N., Kumar, S., Kumar, P., Mohan, B., Pallavi, et al. (2023) Assessing the Biomass-Based Carbon Dots and Their Composites for Photocatalytic Treatment of Wastewater. Journal of Cleaner Production, 413, Article 137474. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | Ji, C., Xu, W., Han, Q., Zhao, T., Deng, J. and Peng, Z. (2023) Light of Carbon: Recent Advancements of Carbon Dots for LEDs. Nano Energy, 114, Article 108623. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Limbu, S. and Singh, L.R. (2024) Exploring Luminescent Color Tunability and Efficient Energy Transfer Mechanism of a Single-Phased Hexagonal Nanophosphor for White Light Emitting Diodes (WLEDs) Application. Journal of Alloys and Compounds, 970, Article 172580. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Manayil Parambil, A., Nabeel Mattath, M., Rajamani, P., Pham, P.V., Kumar, G. and Ponnusamy, V.K. (2023) Biogenic Fluorescent Carbon Dots Modulated Fabrication of Concatenate Logic Library and Pattern-Mediated Molecular Keypad Lock for Chemical Sensing Application. Chemical Engineering Journal, 463, Article 142354. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | Xu, L., Bai, X., Guo, L., Yang, S., Jin, P. and Yang, L. (2019) Facial Fabrication of Carbon Quantum Dots (CDs)-Modified N-TiO2-X Nanocomposite for the Efficient Photoreduction of Cr(VI) under Visible Light. Chemical Engineering Journal, 357, 473-486. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Rajendran, S., Zichri, S.B., Usha Vipinachandran, V., Jelinek, R. and Bhunia, S.K. (2021) Triphenylphosphonium‐Derived Bright Green Fluorescent Carbon Dots for Mitochondrial Targeting and Rapid Selective Detection of Tetracycline. ChemNanoMat, 7, 545-552. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Gao, W., Song, H., Wang, X., Liu, X., Pang, X., Zhou, Y., et al. (2017) Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in vitro and in vivo. ACS Applied Materials & Interfaces, 10, 1147-1154. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Shan, X., Chai, L., Ma, J., Qian, Z., Chen, J. and Feng, H. (2014) B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection. The Analyst, 139, 2322-2325. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | He, Y., Li, X., Yao, G., Fang, S., Yu, H., Zou, T., et al. (2024) Microwave-Assisted Preparation of Yellow Fluorescent Graphitic Carbon Nitride Quantum Dots for Trace Tetracycline-Specific Detection. Chemosphere, 362, Article 142863. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Xu, Y., Tang, C., Huang, H., Sun, C., Zhang, Y., Ye, Q., et al. (2014) Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 42, 1252-1258. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | 邓祥, 黄小梅, 邓子禾, 等. 新型碳量子点荧光探针的制备及其对Mn2+的选择性检测[J]. 激光与光电子学进展, 2024, 61(15): 1-8. | 
                     
                                
                                    
                                        | [34] | Sadhu, V.A., Park, T.J. and Kailasa, S.K. (2024) Synthesis of Green Fluorescent Carbon Dots Using Cysteine and Maltose as Ecofriendly Ligands for the Detection of Venlafaxine Anti-Depression Drug in Pharmaceutical and Plasma Samples. Inorganic Chemistry Communications, 168, Article 112980. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | 梁美琪, 王子涵, 刘洋, 等. 基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ) [J]. 分析测试学报, 2024, 43(1): 182-190 | 
                     
                                
                                    
                                        | [36] | Liu, Y., Cheng, D., Wang, B., Yang, J., Hao, Y., Tan, J., et al. (2024) Carbon Dots‐Inked Paper with Single/Two‐Photon Excited Dual‐Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. Advanced Materials, 36, Article ID: 2403775. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Ren, H., Labidi, A., Gao, T., Padervand, M., Liang, X. and Wang, C. (2024) Efficient Conversion of Bio-Waste Lignin into High-Value Fluorescent Nitrogen-Modified Carbon Quantum Dots for Live-Cell Imaging. Industrial Crops and Products, 216, Article 118832. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Lodha, S.R., Gore, A.H., Merchant, J.G., Pillai, A.J., Patel, H.P., Maulvi, F.A., et al. (2024) Selective Detection of Azelnidipine in Pharmaceuticals via Carbon Dot Mediated Spectrofluorimetric Method: A Green Approach. Luminescence, 39, e4738. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Ullal, N., Sahoo, B., Sunil, D., Kulkarni, S.D., Bhat K., U. and P. J., A. (2024) Yellow Emissive and High Fluorescence Quantum Yield Carbon Dots from Perylene-3,4,9,10-Tetracarboxylic Dianhydride for Anticounterfeiting Applications. Dalton Transactions, 53, 16287-16302. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Krushna, B.R.R., Sandeep, D.H., Manjunatha, K., Sharma, S.C., Panda, M., Krithika, C., et al. (2024) Sustainable Latent Fingerprint Enhancement with Ink-Free Printing and Shape Memory Behavior Using Parthenium Hysterophorus-Derived Carbon Dots. Sustainable Materials and Technologies, 40, e00951. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [41] | Ma, Y., Mao, L., Cui, C., Hu, Y., Chen, Z., Zhan, Y., et al. (2024) Nitrogen-Doped Carbon Dots as Fluorescent Probes for Sensitive and Selective Determination of Fe3+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, Article 124347. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Rahmatian, N., Abbasi, S., Abbasi, N. and Tavakkoli Yaraki, M. (2024) Alginate-Carbon Dot Nanocomposite: A Green Approach Towards Designing Turn-On Aptasenor for Candida Albicans Fungus. International Journal of Biological Macromolecules, 282, Article 137315. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Qiu, H.X., Zhang, Z. and Wang, Y.C. (2021) Research Progress on Carbon Dots Phosphor Applied in Light-Emitting Diode Devices. Journal of University of Shanghai for Science and Technology, 43, 140-147. | 
                     
                                
                                    
                                        | [44] | Jozefowicza, M., Heldt, J.R., Karolczak, J. and Heldt, J. (2003) Fluorescence Quenching and Solvation Processes of Fluorenone and 4-Hydroxyfluorenone in Binary Solvents. Zeitschrift für Naturforschung A, 58, 144-156. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [45] | Wang, B., Gu, C., Jiao, Y., Gao, Y., Liu, X., Guo, J., et al. (2023) Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta, 253, Article 123975. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Miao, J., Ji, W., Yu, J., Cheng, J., Huang, Y., Arabi, M., et al. (2023) A Triple-Emission Ratiometric Fluorescence Sensor Based on Carbon Dots-Au Nanoclusters Nanocomposite for Detection of Tetracycline. Sensors and Actuators B: Chemical, 384, Article 133636. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [47] | Li, T., Guo, G., Xing, H., Wang, Y., Luo, X., Wang, L., et al. (2023) Energy Transfer Mediated Rapid and Visual Discrimination of Tetracyclines and Quercetin in Food by Using N, Cu Co-Doped Carbon Dots. Analytica Chimica Acta, 1239, Article 340706. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P. (2019) Optically-Active Nanocrystals for Inner Filter Effect-Based Fluorescence Sensing: Achieving Better Spectral Overlap. TrAC Trends in Analytical Chemistry, 110, 183-190. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | 谢勇, 韩明杰, 徐钰豪, 等. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460. |