[1]
|
Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M. and Bjørklund, G. (2023) The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12, Article 440. https://doi.org/10.3390/antibiotics12030440
|
[2]
|
Pérez-Rodríguez, M., Pellerano, R.G., Pezza, L. and Pezza, H.R. (2018) An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta, 182, 1-21. https://doi.org/10.1016/j.talanta.2018.01.058
|
[3]
|
Chang, D., Mao, Y., Qiu, W., Wu, Y. and Cai, B. (2023) The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics, 11, Article 214. https://doi.org/10.3390/toxics11030214
|
[4]
|
Gab-Allah, M.A., Lijalem, Y.G., Yu, H., Lim, D.K., Ahn, S., Choi, K., et al. (2023) Accurate Determination of Four Tetracycline Residues in Chicken Meat by Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry. Journal of Chromatography A, 1691, Article 463818. https://doi.org/10.1016/j.chroma.2023.463818
|
[5]
|
Zhang, T., Zhang, X., Yu, J., Hu, H., He, P., Li, Z., et al. (2024) Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 29, Article 2921. https://doi.org/10.3390/molecules29122921
|
[6]
|
Li, P., Rao, D., Wang, Y. and Hu, X. (2022) Adsorption Characteristics of Polythiophene for Tetracyclines and Determination of Tetracyclines in Fish and Chicken Manure by Solid Phase Extraction-HPLC Method. Microchemical Journal, 173, Article 106935. https://doi.org/10.1016/j.microc.2021.106935
|
[7]
|
Butovskaya, E., Carrillo Heredero, A.M., Segato, G., Faggionato, E., Borgia, M., Marchis, D., et al. (2024) Quantitative Determination of Tetracyclines in Medicated Feed for Food-Producing Animals by HPLC-DAD. Food Additives & Contaminants: Part A, 41, 601-609. https://doi.org/10.1080/19440049.2024.2341115
|
[8]
|
Liu, Y., Luo, Y., Li, W., Xu, X., Wang, B., Xu, X., et al. (2024) Current Analytical Strategies for the Determination of Quinolone Residues in Milk. Food Chemistry, 430, Article 137072. https://doi.org/10.1016/j.foodchem.2023.137072
|
[9]
|
Astudillo, D., Pokrant, E., Bravo, C., Ríos, A., Navarrete, M.J., Maddaleno, A., et al. (2023) Detection of Antimicrobial Residues in Animal Manure by a Microbiological Screening Methodology: A Non-Invasive Tool in Animal Production. Food Control, 148, Article 109649. https://doi.org/10.1016/j.foodcont.2023.109649
|
[10]
|
Dai, P., Zhang, Y., Hong, Y., Xiong, J., Du, H., Duan, L., et al. (2023) Production of High Affinity Monoclonal Antibody and Development of Indirect Competitive Chemiluminescence Enzyme Immunoassay for Gentamicin Residue in Animal Tissues. Food Chemistry, 400, Article 134067. https://doi.org/10.1016/j.foodchem.2022.134067
|
[11]
|
Adabi, M., Reza Faryabi, M., Nili-Ahmadabadi, A., Gharekhani, J. and Mehri, F. (2022) Evaluation of Tetracycline Antibiotics Residues in Chicken Tissues Using the Four-Plate Test, ELISA, and HPLC Methods in Iran. International Journal of Environmental Analytical Chemistry, 104, 2014-2023. https://doi.org/10.1080/03067319.2022.2054710
|
[12]
|
Besharati, M., Hamedi, J., Hosseinkhani, S. and Saber, R. (2019) A Novel Electrochemical Biosensor Based on TetX2 Monooxygenase Immobilized on a Nano-Porous Glassy Carbon Electrode for Tetracycline Residue Detection. Bioelectrochemistry, 128, 66-73. https://doi.org/10.1016/j.bioelechem.2019.02.010
|
[13]
|
Kareem, A., Thenmozhi, K., Hari, S., Ponnusamy, V.K. and Senthilkumar, S. (2024) Metal-Free Carbon-Based Anode for Electrochemical Degradation of Tetracycline and Metronidazole in Wastewater. Chemosphere, 351, Article 141219. https://doi.org/10.1016/j.chemosphere.2024.141219
|
[14]
|
杨杰, 杨学山, 马晓彤. 微波法制备荧光碳量子点及其对牛奶中四环素的快速检测[J]. 食品与发酵科技, 2022, 58(5): 111-117, 141.
|
[15]
|
Wang, B. and Lu, S. (2022) The Light of Carbon Dots: From Mechanism to Applications. Matter, 5, 110-149. https://doi.org/10.1016/j.matt.2021.10.016
|
[16]
|
Liu, J., Li, R. and Yang, B. (2020) Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6, 2179-2195. https://doi.org/10.1021/acscentsci.0c01306
|
[17]
|
Alafeef, M., Srivastava, I., Aditya, T. and Pan, D. (2023) Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small, 20, Article ID: 2303937. https://doi.org/10.1002/smll.202303937
|
[18]
|
Sun, Z., Zhou, W., Luo, J., Fan, J., Wu, Z., Zhu, H., et al. (2022) High-Efficient and pH-Sensitive Orange Luminescence from Silicon-Doped Carbon Dots for Information Encryption and Bio-Imaging. Journal of Colloid and Interface Science, 607, 16-23. https://doi.org/10.1016/j.jcis.2021.08.188
|
[19]
|
Arul, V., Chandrasekaran, P., Sivaraman, G. and Sethuraman, M.G. (2023) Biogenic Preparation of Undoped and Heteroatoms Doped Carbon Dots: Effect of Heteroatoms Doping in Fluorescence, Catalytic Ability and Multicolour in-vitro Bio-Imaging Applications—A Comparative Study. Materials Research Bulletin, 162, Article 112204. https://doi.org/10.1016/j.materresbull.2023.112204
|
[20]
|
Wang, X., Xu, L., Ge, S., Foong, S.Y., Liew, R.K., Fong Chong, W.W., et al. (2023) Biomass-Based Carbon Quantum Dots for Polycrystalline Silicon Solar Cells with Enhanced Photovoltaic Performance. Energy, 274, Article 127354. https://doi.org/10.1016/j.energy.2023.127354
|
[21]
|
Cheruku, R., Kim, J.H., Krishna, V.B.M. and Periyat, P. (2023) Photo-Electrodes Decorated with Carbon Quantum Dots: Efficient Dye-Sensitized Solar Cells. Results in Engineering, 20, Article 101611. https://doi.org/10.1016/j.rineng.2023.101611
|
[22]
|
Lu, J., Shi, Y., Chen, Z., Sun, X., Yuan, H., Guo, F., et al. (2023) Photothermal Effect of Carbon Dots for Boosted Photothermal-Assisted Photocatalytic Water/Seawater Splitting into Hydrogen. Chemical Engineering Journal, 453, Article 139834. https://doi.org/10.1016/j.cej.2022.139834
|
[23]
|
Singh, P., Rani, N., Kumar, S., Kumar, P., Mohan, B., Pallavi, et al. (2023) Assessing the Biomass-Based Carbon Dots and Their Composites for Photocatalytic Treatment of Wastewater. Journal of Cleaner Production, 413, Article 137474. https://doi.org/10.1016/j.jclepro.2023.137474
|
[24]
|
Ji, C., Xu, W., Han, Q., Zhao, T., Deng, J. and Peng, Z. (2023) Light of Carbon: Recent Advancements of Carbon Dots for LEDs. Nano Energy, 114, Article 108623. https://doi.org/10.1016/j.nanoen.2023.108623
|
[25]
|
Limbu, S. and Singh, L.R. (2024) Exploring Luminescent Color Tunability and Efficient Energy Transfer Mechanism of a Single-Phased Hexagonal Nanophosphor for White Light Emitting Diodes (WLEDs) Application. Journal of Alloys and Compounds, 970, Article 172580. https://doi.org/10.1016/j.jallcom.2023.172580
|
[26]
|
Manayil Parambil, A., Nabeel Mattath, M., Rajamani, P., Pham, P.V., Kumar, G. and Ponnusamy, V.K. (2023) Biogenic Fluorescent Carbon Dots Modulated Fabrication of Concatenate Logic Library and Pattern-Mediated Molecular Keypad Lock for Chemical Sensing Application. Chemical Engineering Journal, 463, Article 142354. https://doi.org/10.1016/j.cej.2023.142354
|
[27]
|
Xu, L., Bai, X., Guo, L., Yang, S., Jin, P. and Yang, L. (2019) Facial Fabrication of Carbon Quantum Dots (CDs)-Modified N-TiO2-X Nanocomposite for the Efficient Photoreduction of Cr(VI) under Visible Light. Chemical Engineering Journal, 357, 473-486. https://doi.org/10.1016/j.cej.2018.09.172
|
[28]
|
Rajendran, S., Zichri, S.B., Usha Vipinachandran, V., Jelinek, R. and Bhunia, S.K. (2021) Triphenylphosphonium‐Derived Bright Green Fluorescent Carbon Dots for Mitochondrial Targeting and Rapid Selective Detection of Tetracycline. ChemNanoMat, 7, 545-552. https://doi.org/10.1002/cnma.202100125
|
[29]
|
Gao, W., Song, H., Wang, X., Liu, X., Pang, X., Zhou, Y., et al. (2017) Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in vitro and in vivo. ACS Applied Materials & Interfaces, 10, 1147-1154. https://doi.org/10.1021/acsami.7b16991
|
[30]
|
Shan, X., Chai, L., Ma, J., Qian, Z., Chen, J. and Feng, H. (2014) B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection. The Analyst, 139, 2322-2325. https://doi.org/10.1039/c3an02222f
|
[31]
|
He, Y., Li, X., Yao, G., Fang, S., Yu, H., Zou, T., et al. (2024) Microwave-Assisted Preparation of Yellow Fluorescent Graphitic Carbon Nitride Quantum Dots for Trace Tetracycline-Specific Detection. Chemosphere, 362, Article 142863. https://doi.org/10.1016/j.chemosphere.2024.142863
|
[32]
|
Xu, Y., Tang, C., Huang, H., Sun, C., Zhang, Y., Ye, Q., et al. (2014) Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 42, 1252-1258. https://doi.org/10.1016/s1872-2040(14)60765-9
|
[33]
|
邓祥, 黄小梅, 邓子禾, 等. 新型碳量子点荧光探针的制备及其对Mn2+的选择性检测[J]. 激光与光电子学进展, 2024, 61(15): 1-8.
|
[34]
|
Sadhu, V.A., Park, T.J. and Kailasa, S.K. (2024) Synthesis of Green Fluorescent Carbon Dots Using Cysteine and Maltose as Ecofriendly Ligands for the Detection of Venlafaxine Anti-Depression Drug in Pharmaceutical and Plasma Samples. Inorganic Chemistry Communications, 168, Article 112980. https://doi.org/10.1016/j.inoche.2024.112980
|
[35]
|
梁美琪, 王子涵, 刘洋, 等. 基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ) [J]. 分析测试学报, 2024, 43(1): 182-190
|
[36]
|
Liu, Y., Cheng, D., Wang, B., Yang, J., Hao, Y., Tan, J., et al. (2024) Carbon Dots‐Inked Paper with Single/Two‐Photon Excited Dual‐Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. Advanced Materials, 36, Article ID: 2403775. https://doi.org/10.1002/adma.202403775
|
[37]
|
Ren, H., Labidi, A., Gao, T., Padervand, M., Liang, X. and Wang, C. (2024) Efficient Conversion of Bio-Waste Lignin into High-Value Fluorescent Nitrogen-Modified Carbon Quantum Dots for Live-Cell Imaging. Industrial Crops and Products, 216, Article 118832. https://doi.org/10.1016/j.indcrop.2024.118832
|
[38]
|
Lodha, S.R., Gore, A.H., Merchant, J.G., Pillai, A.J., Patel, H.P., Maulvi, F.A., et al. (2024) Selective Detection of Azelnidipine in Pharmaceuticals via Carbon Dot Mediated Spectrofluorimetric Method: A Green Approach. Luminescence, 39, e4738. https://doi.org/10.1002/bio.4738
|
[39]
|
Ullal, N., Sahoo, B., Sunil, D., Kulkarni, S.D., Bhat K., U. and P. J., A. (2024) Yellow Emissive and High Fluorescence Quantum Yield Carbon Dots from Perylene-3,4,9,10-Tetracarboxylic Dianhydride for Anticounterfeiting Applications. Dalton Transactions, 53, 16287-16302. https://doi.org/10.1039/d4dt02219j
|
[40]
|
Krushna, B.R.R., Sandeep, D.H., Manjunatha, K., Sharma, S.C., Panda, M., Krithika, C., et al. (2024) Sustainable Latent Fingerprint Enhancement with Ink-Free Printing and Shape Memory Behavior Using Parthenium Hysterophorus-Derived Carbon Dots. Sustainable Materials and Technologies, 40, e00951. https://doi.org/10.1016/j.susmat.2024.e00951
|
[41]
|
Ma, Y., Mao, L., Cui, C., Hu, Y., Chen, Z., Zhan, Y., et al. (2024) Nitrogen-Doped Carbon Dots as Fluorescent Probes for Sensitive and Selective Determination of Fe3+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, Article 124347. https://doi.org/10.1016/j.saa.2024.124347
|
[42]
|
Rahmatian, N., Abbasi, S., Abbasi, N. and Tavakkoli Yaraki, M. (2024) Alginate-Carbon Dot Nanocomposite: A Green Approach Towards Designing Turn-On Aptasenor for Candida Albicans Fungus. International Journal of Biological Macromolecules, 282, Article 137315. https://doi.org/10.1016/j.ijbiomac.2024.137315
|
[43]
|
Qiu, H.X., Zhang, Z. and Wang, Y.C. (2021) Research Progress on Carbon Dots Phosphor Applied in Light-Emitting Diode Devices. Journal of University of Shanghai for Science and Technology, 43, 140-147.
|
[44]
|
Jozefowicza, M., Heldt, J.R., Karolczak, J. and Heldt, J. (2003) Fluorescence Quenching and Solvation Processes of Fluorenone and 4-Hydroxyfluorenone in Binary Solvents. Zeitschrift für Naturforschung A, 58, 144-156. https://doi.org/10.1515/zna-2003-2-312
|
[45]
|
Wang, B., Gu, C., Jiao, Y., Gao, Y., Liu, X., Guo, J., et al. (2023) Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta, 253, Article 123975. https://doi.org/10.1016/j.talanta.2022.123975
|
[46]
|
Miao, J., Ji, W., Yu, J., Cheng, J., Huang, Y., Arabi, M., et al. (2023) A Triple-Emission Ratiometric Fluorescence Sensor Based on Carbon Dots-Au Nanoclusters Nanocomposite for Detection of Tetracycline. Sensors and Actuators B: Chemical, 384, Article 133636. https://doi.org/10.1016/j.snb.2023.133636
|
[47]
|
Li, T., Guo, G., Xing, H., Wang, Y., Luo, X., Wang, L., et al. (2023) Energy Transfer Mediated Rapid and Visual Discrimination of Tetracyclines and Quercetin in Food by Using N, Cu Co-Doped Carbon Dots. Analytica Chimica Acta, 1239, Article 340706. https://doi.org/10.1016/j.aca.2022.340706
|
[48]
|
Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P. (2019) Optically-Active Nanocrystals for Inner Filter Effect-Based Fluorescence Sensing: Achieving Better Spectral Overlap. TrAC Trends in Analytical Chemistry, 110, 183-190. https://doi.org/10.1016/j.trac.2018.11.002
|
[49]
|
谢勇, 韩明杰, 徐钰豪, 等. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
|