基于碳点的四环素荧光检测
Fluorescence Detection of Tetracycline Based on Carbon Dots
DOI: 10.12677/aac.2025.152021, PDF, HTML, XML,    科研立项经费支持
作者: 王艺霖*, 马子晴, 王从聪, 李奕璇, 张杰睿, 宁桐琳, 张 双, 任诗佳, 夏怡静:沈阳师范大学化学化工学院,辽宁 沈阳
关键词: 碳点微波法荧光检测四环素Carbon Dots Microwave Method Fluorescence Detection Tetracycline
摘要: 本文以柠檬酸和尿素为原料,通过微波法一步制备出荧光性能良好的碳点(CDs)。基于四环素与CDs之间的相互作用,构建了一种特异性检测四环素的荧光探针。采用紫外–可见吸收光谱和荧光光谱对CDs和四环素进行表征,发现四环素的紫外吸收光谱与CDs的荧光激发光谱之间存在的重叠区域,可能是由于CDs与四环素之间产生了荧光内滤效应(IFE)导致CDs荧光猝灭。讨论荧光体系溶剂组成、pH等单变量因素对CDs荧光猝灭效果的影响,在最佳检测条件下探究CDs荧光强度与四环素浓度之间的线性关系。实验结果表明,四环素的检出限为1.1 × 109 mol/L。该方法选择性好、灵敏度高,在特异性检测四环素领域具有较好前景。
Abstract: In this paper, carbon dots (CDs) with good fluorescence properties were prepared in one step by microwave method using citric acid and urea as raw materials. Based on the fluorescence quenching of CDs by tetracycline, a fluorescence probe was constructed to detect tetracycline specifically. CDs and tetracycline were characterized by UV-VIS absorption spectra and fluorescence spectra. It was found that the UV absorption spectra of tetracycline overlapped with the fluorescence excitation spectra of CDs to a large extent, which may be due to the fluorescence internal filtration effect (IFE) between CDs and tetracycline. The influence of univariate factors such as solvent composition and pH on the fluorescence quenching effect of CDs was discussed, and the linear relationship between fluorescence intensity of CDs and tetracycline concentration was investigated under the optimal detection conditions. The experimental results showed that the detection limit of tetracycline was 1.1 × 109 mol/L. The method has good selectivity and high sensitivity, and has a good prospect in the field of specific detection of tetracycline.
文章引用:王艺霖, 马子晴, 王从聪, 李奕璇, 张杰睿, 宁桐琳, 张双, 任诗佳, 夏怡静. 基于碳点的四环素荧光检测[J]. 分析化学进展, 2025, 15(2): 211-222. https://doi.org/10.12677/aac.2025.152021

1. 引言

四环素是一类广谱抗生素,其抗菌范围涵盖了阴性细菌、螺旋体、专性细胞内细菌以及原生动物寄生虫[1],主要应用于畜牧养殖业中[2]。随着抗生素的兴起,四环素畜禽养殖中使用呈逐年递增趋势。大量的四环素残留造成严重的生态风险和危害人体健康等环境问题[3]。为降低四环素的残留危害,建立设施齐全的检测机制,定期对畜牧养殖场的畜禽及市场内的动物源性食品进行抽查是必不可少的。目前应用于四环素残留检测的分析技术主要有:液相色谱–质谱法(LC-MS) [4] [5]、高效液相色谱法(HPLC) [6] [7]、微生物法[8] [9]、酶联免疫分析法(ELISA) [10] [11]、电化学法[12] [13]等。其中,HPLC、LC-MS法对操作人员水平要求较高,仪器费用较昂贵;ELISA、微生物法耗时长;电化学法操作繁琐、重复性欠佳。相比之下,荧光分析法因其具有高灵敏度、高选择性、简便的优点,可用于实际样品的检测和可视化分析[14]

碳点(CDs)是量子点的一种,尺寸通常在10 nm以下,具有成本低、合成途径简单多样、水溶性强、环境友好、生物相容性好、表面可功能化、荧光强度高等优良性能[15]-[17]。此外,由于其良好的荧光特性,CDs已应用于生物体内成像[18] [19]、太阳能电池[20] [21]、光催化[22] [23]、光电器件[24] [25]、化学传感[26] [27]等领域。

由于CDs具有较大的比表面积,其表面分布着丰富活性位点和官能团,这些活性位点和官能团可以有选择性地与检测物通过静态猝灭效应(SQE)、动态猝灭效应(DQE)、光诱导电子转移(PET)、分子内电荷转移(ICT)、荧光共振能量转移(FRET)、荧光内滤(IFE)等荧光传感机制发生相互作用,使荧光探针的荧光信号发生变化,实现定性定量检测。截至目前,已有多项基于CDs的荧光探针被报道。Sathish等[28]以三苯基磷为碳源合成了荧光量子产率高达61%的绿光碳点并应用于亚细胞线粒体成像和四环素特异性检测,检出限为1.5 × 106 mol/L。Gao等[29]以柠檬酸为原料,采用简单的一步水热法合成了红光碳点,可作为荧光探针用于特殊的Pt2+、Au3+和Pd2+的检测。Shan等[30]用硼掺杂的碳点检测过氧化氢,检出限为1 × 102 mol/L。由此可见,开发荧光性能良好的碳点作为荧光探针进行四环素检测具有极大研究价值。

本文对利用CDs作为荧光探针进行荧光检测进行了深入研究,我们采用了节能且环保的微波法[31]快速合成了碳点。四环素可特异性猝灭CDs,识别过程不受溶液环境限制,可对各类水体进行检验,为四环素污染检测提供了新思路。

2. 实验部分

2.1. 材料与仪器

柠檬酸(纯度 ≥ 99.5%)、尿素(纯度99.8%)购自北京化工厂。四环素(Tetracyclines, TC)、磺胺甲恶唑(Sulfamethoxazole, SMZ)、酒石酸泰洛星(Tylosin tartrate, TYT)、罗红霉素(Roxithromycin, ROX)、氯霉素(Chloramphenicol, CM)、盐酸左氧氟沙星(Levofloxacin hydrochloride, LEV)、红霉素(Erythromycin, ERY)、泰拉霉素(Tulathromycin, TULA)等购自上海麦克林生化科技有限公司,乙醇、盐酸、氢氧化钠,实验所用试剂均为分析纯,实验用水为去离子水。

UH-5300紫外可见光谱仪(日本日立公司);Cary Eclipse 荧光分光光度计(美国瓦里安公司);H3-18K台式高速离心机(湖南可成仪器设备有限公司);M1-L213B微波炉(广东美的厨房电器制造有限公司上海);TENSOR II傅里叶变换红外光谱仪(德国布鲁克公司);BAS124S电子天平(德国赛多利斯公司);Talos F200X G2场发射透射电子显微镜(美国赛默飞公司)。

2.2. 实验方法

2.2.1. CDs的制备

CDs的合成采用微波法。将1 g柠檬酸和2 g尿素溶解在20 mL去离子水中,搅拌均匀,形成无色透明的溶液;然后将混合后的溶液放在微波炉中,中火(700 W)加热6分钟,在加热的过程中,溶液由无色透明变成棕色,最后变为深棕色的固体,标志着CDs的形成;最后将深棕色的固体重新分散在30 mL无水乙醇中,离心2次,每次10分钟,离心速率为8000转每分钟。离心后保留上层清液,去除沉淀的大颗粒固体,得到CDs溶液。

2.2.2. 荧光分析法检测四环素

准确称取0.0444 g的四环素,将其溶解于10 mL无水乙醇中,配置成1 × 102 mol/L的四环素溶液。使用1 mol/L的盐酸和氢氧化钠固体调节CDs溶液pH至3.3,用移液枪准确移取0.30 mL CDs溶液、0.30 mL四环素溶液、2.40 mL无水乙醇,混匀后测其荧光激发光谱,其中四环素溶液浓度为1 × 103 mol/L。在400 nm的激发波长下,扫描发射光谱范围为420~750 nm,测试并记录数据。

3. 结果与讨论

3.1. CDs的表征

通过紫外可见吸收光谱对CDs结构进行表征,如图1(A)所示,CDs在紫外吸收区有明显的吸收,说明CDs中的C=C发生了π→π*跃迁[32]。合成的CDs分散良好,如图1(B)所示,粒径在4.5~7 nm之间。高分辨率TEM (HRTEM)图像显示,大多数颗粒为无晶格的无定形碳颗粒和石墨;少数颗粒为准球形且具有清晰的晶格条纹,平均晶格间距为0.21 nm。CDs荧光量子产率为14.1%,与已报道的CDs相比具有良好的荧光性能(表1)。

3.2. 探究CDs荧光探针最佳制备条件

3.2.1. 溶剂组成对CDs荧光强度的影响

溶剂的极性对荧光有较大的影响,在不同的溶剂中有显著改变[43]。本文探究了在不同乙醇–水体积比下CDs的荧光强度。按表2依次配制水体积分数fw为0%、15%、30%、45%、60%、75%、80%、84%、88%的待测液。在400 nm的激发波长下,比较各组样品最大发射波长处CDs荧光强度。结果如图2所示,纯乙醇体系情况下,CDs荧光强度最强。随着水体积分数增大,CDs荧光强度减小。这是由于CDs荧光发射由π→π*和n→π*跃迁引起,随着溶剂极性的增强,碳点HOMO-LUMO能隙逐渐减小,导致荧光发射峰逐渐红移。此外,CDs表面非成键的孤对电子易与溶剂形成氢键,随着水体积分数增加,氢键作用加强,使CDs发生π→π*跃迁概率降低,量子产率减少,荧光强度降低[44]

Figure 1. (A) TRTEM images of CDs; (B) UV-vis absorption spectra of CDs

1. (A) CDs的HRTEM图像;(B) CDs的紫外可见吸收光谱图

Table 1. Comparison of quantum yield of CDs

1. CDs量子产率比较

CDs

Quantum Yield

Ref.

CQDs

28. 4 %

[33]

CM-CDs

32.81 %

[34]

Mn, Cl, N-CDs

5.3 %

[35]

CDs

23.7 %

[36]

N-CQDs

22.2 %

[37]

N-CDs

21.15 %

[38]

PTCDA-CDs

53.22 %

[39]

PCDs

10.2 %

[40]

N-CDs

45 %

[41]

PbCDs

4.1 %

[42]

CDs

14.1 %

本文

Table 2. Sample composition table

2. 样品组成表

CDs/mL

C2H5OH/mL

H2O/mL

Bulk volume/mL

Volume fraction of H2O/%

0.3

2.70

0.00

3.00

0

0.3

2.25

0.45

3.00

15

0.3

1.80

0.90

3.00

30

续表

0.3

1.35

1.35

3.00

45

0.3

0.90

1.80

3.00

60

0.3

0.45

2.25

3.00

75

0.3

0.30

2.40

3.00

80

0.3

0.18

2.52

3.00

84

0.3

0.06

2.64

3.00

88

Figure 2. Fluorescence excitation spectra of CDs in different proportions of water-ethanol systems

2. 不同比例水–乙醇体系CDs的荧光激发光谱

3.2.2. 体系pH对CDs荧光强度的影响

采用1 mol/L的盐酸和氢氧化钠固体调节体系pH,探究在不同pH值下(pH = 1.8~12.3)下CDs的荧光强度。结果如图3所示,CDs荧光强度在pH = 1.8~12.3范围内保持着较高且稳定的状态,在pH = 3.3时,CDs的荧光强度最大。

Figure 3. Fluorescence intensity of CDs at different pH

3. 不同pH下CDs的荧光强度

3.3. 四环素对CDs的选择性猝灭

以无水乙醇为溶剂,配制浓度为1 × 102 mol/L的四环素、磺胺甲恶唑、酒石酸泰洛星、罗红霉素、氯霉素、盐酸左氧氟沙星、红霉素、泰拉霉素溶液,所用剂量见表3。用移液枪准确移取0.30 mL CDs溶液、0.30 mL四环素溶液、2.40 mL无水乙醇,混匀后分别测定其荧光发射光谱。调节荧光分光光度计激发波长为400 nm,比较最大发射波长511 nm处CDs荧光强度的变化。由图4可知,仅CDs存在下,511 nm处有明显的荧光发射峰。在四环素存在情况下,CDs荧光猝灭程度最大,而除四环素外的其它抗生素对体系荧光强度猝灭程度较小,因此实现了在511 nm处对四环素的选择性猝灭。

Table 3. Quality of antibiotics

3. 抗生素质量

Antibiotic name

The quality weighted/g

四环素(TC)

0.0444

氯霉素(CM)

0.0323

磺胺甲恶唑(SMZ)

0.0253

盐酸左氧氟沙星(LEV)

0.0398

酒石酸泰洛星(TYT)

0.1982

泰拉霉素(TULA)

0.0806

红霉素(EPY)

0.0734

罗红霉素(ROX)

0.0837

Figure 4. (A) Chemical structure of antibiotic drugs; (B) Fluorescence emission spectra of CDs after antibiotic solution with the same concentration was added

4. (A) 抗生素类药物的化学结构;(B) 相同浓度的抗生素溶液加入后CDs的荧光发射光谱图

3.4. 四环素对CDs的检测条件的优化

采用1 mol/L的盐酸和氢氧化钠固体调节体系pH,以无水乙醇为溶剂,配制浓度为1 × 105 mol/L的四环素溶液。用移液枪准确移取0.30 mL CDs溶液、0.30 mL四环素溶液、2.40 mL无水乙醇,混匀后分别测定其荧光发射光谱。由图5可知,当体系pH为8.6时,CDs荧光猝灭程度最大,因此后续实验均在pH为8.6的条件下进行。

Figure 5. Fluorescence intensity of CDs after adding TC at different pH levels

5. 不同pH下加入TC后CDs的荧光强度

3.5. CDs对四环素的荧光检测性能

以无水乙醇为溶剂,调节体系pH为8.6,探究不同浓度四环素对CDs的猝灭程度。结果如图6(A)所示,当四环素浓度在1 × 108 mol/L~1 × 107 mol/L的线性范围内时,随着四环素浓度的升高,CDs荧光猝灭程度增大。如图6(B)所示,线性方程为 y=4.85× 10 8 x+267.65 ,线性相关系数为R2 = 0.9944,根据3δ/k (δ为标准偏差,k为线性方程的斜率)计算该方法的检出限为1.1 × 109 mol/L。与已报道的CDs探针相比(表4),本方法检测四环素残留具有可靠性,且具有经济性,为实际样品中四环素残留检测提供新思路。

3.6. CDs对四环素的荧光检测机理

当吸收体的吸收光谱与荧光体的激发或发射光谱之间存在显著的重叠区域时,吸收体吸光度的变化可以相应地引起荧光体的荧光信号相应改变,这一转换过程即为荧光内滤效应(IFE) [48] [49]。选择红霉素作为典型非四环素类抗生素,测定四环素、红霉素的紫外可见吸收光谱和CDs的荧光激发光谱,结果如图7所示。可观察到,四环素的紫外可见吸收光谱与CDs荧光激发光谱存在部分重叠,四环素将作为吸收体将竞争吸收CDs的激发光,导致CDs的荧光猝灭,即发生IFE过程。相比之下,红霉素的紫外可见吸收光谱与CDs荧光激发光谱重叠程度较小,因此对CDs几乎无荧光猝灭作用。

Figure 6. (A) Fluorescence emission spectra of CDs after antibiotic solutions with different concentrations were added; (B) Probe CDs was used to detect the linear relationship curve of tetracycline concentration

6. (A) 不同浓度的抗生素溶液加入后CDs的荧光发射光谱图;(B) 探针CDs检测四环素浓度线性关系曲线

Table 4. Comparison of tetracycline detection methods

4. 检测四环素方法比较

Fluorescent probe

Linear range (mol/L)

Limit of detection (mol/L)

Ref.

CDs

1.6 × 10−5~3.9 × 10−3

1.5 × 10−6

[28]

R-CDs

4.0 × 10−5~3.0 × 10−6

3.9 × 10−9

[45]

CDs-AuNCs

5.0 × 10−7~4.0 × 10−5

5.6 × 10−8

[46]

N, Cu-CDs

1.0 × 10−5~1.0 × 10−4

3.7 × 10−9

[47]

CDs

1.0 × 10−7~1.0 × 10−8

1.1 × 109

本文

Figure 7. (A) UV-VIS absorption spectra of tetracycline and non-tetracycline antibiotics and fluorescence excitation spectra of CDs; (B), (C) Diagram of the mechanism of fluorescence internal filtration effect

7. (A) 荧光内滤效应机理图;(B),(C)四环素和非四环素类抗生素的紫外可见吸收光谱和CDs的荧光激发光谱

3.7. CDs对四环素的荧光检测的抗干扰能力

为进一步验证CDs对四环素的荧光检测的抗干扰能力,本文使用无水乙醇作为溶剂,在CDs溶液中加入等量的四环素与非四环素类抗生素如磺酸甲恶唑、酒石酸泰洛星、罗红霉素、氯霉素、盐酸左氧氟沙星、红霉素、泰拉霉素,最终四环素与非四环素类抗生素浓度均为为1 × 103 mol/L。以不添加四环素类抗生素的溶液作为空白对照,在400 nm的激发波长下,比较CDs的荧光猝灭程度。如图8所示,与非四环素类抗生素混合后,四环素仍能对CDs产生较强的荧光猝灭效应,说明该CDs荧光探针抗干扰能力较强、可应用于实际样品中四环素含量的监测。

Figure 8. Fluorescence intensity of CDs after mixing tetracycline with other antibiotics

8. 四环素与其它抗生素混合后CDs的荧光强度

4. 结论

采用微波法一步合成了CDs。基于四环素与CDs之间的荧光内滤效应,以CDs作为荧光探针,建立了一种快速、高效的荧光分析法。制备出的CDs荧光强度高且稳定,四环素对其可选择性猝灭,进而可将其应用在四环素的特异性检测中。为提高CDs检测四环素的灵敏度,探究了CDs荧光探针的最佳制备条件。实验结果表明,当以无水乙醇作为溶剂,体系pH在3.3左右时,CDs荧光强度最大。检验CDs对四环素的荧光检测性能,当四环素浓度在1 × 108 mol/L~1 × 107mol/L内,CDs荧光强度与四环素的浓度呈现良好的线性关系,检出限为1.1 × 109 mol/L。通过进一步表征,验证了四环素特异性猝灭CDs是IFE机理。此外,CDs荧光探针抗干扰能力强、绿色环保,可在四环素检测中得到推广。

基金项目

国家级大学生创新创业训练计划项目(202410166025)。

NOTES

*通讯作者。

参考文献

[1] Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M. and Bjørklund, G. (2023) The Impact of Tetracycline Pollution on the Aquatic Environment and Removal Strategies. Antibiotics, 12, Article 440.
https://doi.org/10.3390/antibiotics12030440
[2] Pérez-Rodríguez, M., Pellerano, R.G., Pezza, L. and Pezza, H.R. (2018) An Overview of the Main Foodstuff Sample Preparation Technologies for Tetracycline Residue Determination. Talanta, 182, 1-21.
https://doi.org/10.1016/j.talanta.2018.01.058
[3] Chang, D., Mao, Y., Qiu, W., Wu, Y. and Cai, B. (2023) The Source and Distribution of Tetracycline Antibiotics in China: A Review. Toxics, 11, Article 214.
https://doi.org/10.3390/toxics11030214
[4] Gab-Allah, M.A., Lijalem, Y.G., Yu, H., Lim, D.K., Ahn, S., Choi, K., et al. (2023) Accurate Determination of Four Tetracycline Residues in Chicken Meat by Isotope Dilution-Liquid Chromatography/Tandem Mass Spectrometry. Journal of Chromatography A, 1691, Article 463818.
https://doi.org/10.1016/j.chroma.2023.463818
[5] Zhang, T., Zhang, X., Yu, J., Hu, H., He, P., Li, Z., et al. (2024) Rapid Determination of Tetracyclines in Drinking and Environmental Waters Using Fully Automatic Solid-Phase Extraction with Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 29, Article 2921.
https://doi.org/10.3390/molecules29122921
[6] Li, P., Rao, D., Wang, Y. and Hu, X. (2022) Adsorption Characteristics of Polythiophene for Tetracyclines and Determination of Tetracyclines in Fish and Chicken Manure by Solid Phase Extraction-HPLC Method. Microchemical Journal, 173, Article 106935.
https://doi.org/10.1016/j.microc.2021.106935
[7] Butovskaya, E., Carrillo Heredero, A.M., Segato, G., Faggionato, E., Borgia, M., Marchis, D., et al. (2024) Quantitative Determination of Tetracyclines in Medicated Feed for Food-Producing Animals by HPLC-DAD. Food Additives & Contaminants: Part A, 41, 601-609.
https://doi.org/10.1080/19440049.2024.2341115
[8] Liu, Y., Luo, Y., Li, W., Xu, X., Wang, B., Xu, X., et al. (2024) Current Analytical Strategies for the Determination of Quinolone Residues in Milk. Food Chemistry, 430, Article 137072.
https://doi.org/10.1016/j.foodchem.2023.137072
[9] Astudillo, D., Pokrant, E., Bravo, C., Ríos, A., Navarrete, M.J., Maddaleno, A., et al. (2023) Detection of Antimicrobial Residues in Animal Manure by a Microbiological Screening Methodology: A Non-Invasive Tool in Animal Production. Food Control, 148, Article 109649.
https://doi.org/10.1016/j.foodcont.2023.109649
[10] Dai, P., Zhang, Y., Hong, Y., Xiong, J., Du, H., Duan, L., et al. (2023) Production of High Affinity Monoclonal Antibody and Development of Indirect Competitive Chemiluminescence Enzyme Immunoassay for Gentamicin Residue in Animal Tissues. Food Chemistry, 400, Article 134067.
https://doi.org/10.1016/j.foodchem.2022.134067
[11] Adabi, M., Reza Faryabi, M., Nili-Ahmadabadi, A., Gharekhani, J. and Mehri, F. (2022) Evaluation of Tetracycline Antibiotics Residues in Chicken Tissues Using the Four-Plate Test, ELISA, and HPLC Methods in Iran. International Journal of Environmental Analytical Chemistry, 104, 2014-2023.
https://doi.org/10.1080/03067319.2022.2054710
[12] Besharati, M., Hamedi, J., Hosseinkhani, S. and Saber, R. (2019) A Novel Electrochemical Biosensor Based on TetX2 Monooxygenase Immobilized on a Nano-Porous Glassy Carbon Electrode for Tetracycline Residue Detection. Bioelectrochemistry, 128, 66-73.
https://doi.org/10.1016/j.bioelechem.2019.02.010
[13] Kareem, A., Thenmozhi, K., Hari, S., Ponnusamy, V.K. and Senthilkumar, S. (2024) Metal-Free Carbon-Based Anode for Electrochemical Degradation of Tetracycline and Metronidazole in Wastewater. Chemosphere, 351, Article 141219.
https://doi.org/10.1016/j.chemosphere.2024.141219
[14] 杨杰, 杨学山, 马晓彤. 微波法制备荧光碳量子点及其对牛奶中四环素的快速检测[J]. 食品与发酵科技, 2022, 58(5): 111-117, 141.
[15] Wang, B. and Lu, S. (2022) The Light of Carbon Dots: From Mechanism to Applications. Matter, 5, 110-149.
https://doi.org/10.1016/j.matt.2021.10.016
[16] Liu, J., Li, R. and Yang, B. (2020) Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS Central Science, 6, 2179-2195.
https://doi.org/10.1021/acscentsci.0c01306
[17] Alafeef, M., Srivastava, I., Aditya, T. and Pan, D. (2023) Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small, 20, Article ID: 2303937.
https://doi.org/10.1002/smll.202303937
[18] Sun, Z., Zhou, W., Luo, J., Fan, J., Wu, Z., Zhu, H., et al. (2022) High-Efficient and pH-Sensitive Orange Luminescence from Silicon-Doped Carbon Dots for Information Encryption and Bio-Imaging. Journal of Colloid and Interface Science, 607, 16-23.
https://doi.org/10.1016/j.jcis.2021.08.188
[19] Arul, V., Chandrasekaran, P., Sivaraman, G. and Sethuraman, M.G. (2023) Biogenic Preparation of Undoped and Heteroatoms Doped Carbon Dots: Effect of Heteroatoms Doping in Fluorescence, Catalytic Ability and Multicolour in-vitro Bio-Imaging Applications—A Comparative Study. Materials Research Bulletin, 162, Article 112204.
https://doi.org/10.1016/j.materresbull.2023.112204
[20] Wang, X., Xu, L., Ge, S., Foong, S.Y., Liew, R.K., Fong Chong, W.W., et al. (2023) Biomass-Based Carbon Quantum Dots for Polycrystalline Silicon Solar Cells with Enhanced Photovoltaic Performance. Energy, 274, Article 127354.
https://doi.org/10.1016/j.energy.2023.127354
[21] Cheruku, R., Kim, J.H., Krishna, V.B.M. and Periyat, P. (2023) Photo-Electrodes Decorated with Carbon Quantum Dots: Efficient Dye-Sensitized Solar Cells. Results in Engineering, 20, Article 101611.
https://doi.org/10.1016/j.rineng.2023.101611
[22] Lu, J., Shi, Y., Chen, Z., Sun, X., Yuan, H., Guo, F., et al. (2023) Photothermal Effect of Carbon Dots for Boosted Photothermal-Assisted Photocatalytic Water/Seawater Splitting into Hydrogen. Chemical Engineering Journal, 453, Article 139834.
https://doi.org/10.1016/j.cej.2022.139834
[23] Singh, P., Rani, N., Kumar, S., Kumar, P., Mohan, B., Pallavi, et al. (2023) Assessing the Biomass-Based Carbon Dots and Their Composites for Photocatalytic Treatment of Wastewater. Journal of Cleaner Production, 413, Article 137474.
https://doi.org/10.1016/j.jclepro.2023.137474
[24] Ji, C., Xu, W., Han, Q., Zhao, T., Deng, J. and Peng, Z. (2023) Light of Carbon: Recent Advancements of Carbon Dots for LEDs. Nano Energy, 114, Article 108623.
https://doi.org/10.1016/j.nanoen.2023.108623
[25] Limbu, S. and Singh, L.R. (2024) Exploring Luminescent Color Tunability and Efficient Energy Transfer Mechanism of a Single-Phased Hexagonal Nanophosphor for White Light Emitting Diodes (WLEDs) Application. Journal of Alloys and Compounds, 970, Article 172580.
https://doi.org/10.1016/j.jallcom.2023.172580
[26] Manayil Parambil, A., Nabeel Mattath, M., Rajamani, P., Pham, P.V., Kumar, G. and Ponnusamy, V.K. (2023) Biogenic Fluorescent Carbon Dots Modulated Fabrication of Concatenate Logic Library and Pattern-Mediated Molecular Keypad Lock for Chemical Sensing Application. Chemical Engineering Journal, 463, Article 142354.
https://doi.org/10.1016/j.cej.2023.142354
[27] Xu, L., Bai, X., Guo, L., Yang, S., Jin, P. and Yang, L. (2019) Facial Fabrication of Carbon Quantum Dots (CDs)-Modified N-TiO2-X Nanocomposite for the Efficient Photoreduction of Cr(VI) under Visible Light. Chemical Engineering Journal, 357, 473-486.
https://doi.org/10.1016/j.cej.2018.09.172
[28] Rajendran, S., Zichri, S.B., Usha Vipinachandran, V., Jelinek, R. and Bhunia, S.K. (2021) Triphenylphosphonium‐Derived Bright Green Fluorescent Carbon Dots for Mitochondrial Targeting and Rapid Selective Detection of Tetracycline. ChemNanoMat, 7, 545-552.
https://doi.org/10.1002/cnma.202100125
[29] Gao, W., Song, H., Wang, X., Liu, X., Pang, X., Zhou, Y., et al. (2017) Carbon Dots with Red Emission for Sensing of Pt2+, Au3+, and Pd2+ and Their Bioapplications in vitro and in vivo. ACS Applied Materials & Interfaces, 10, 1147-1154.
https://doi.org/10.1021/acsami.7b16991
[30] Shan, X., Chai, L., Ma, J., Qian, Z., Chen, J. and Feng, H. (2014) B-Doped Carbon Quantum Dots as a Sensitive Fluorescence Probe for Hydrogen Peroxide and Glucose Detection. The Analyst, 139, 2322-2325.
https://doi.org/10.1039/c3an02222f
[31] He, Y., Li, X., Yao, G., Fang, S., Yu, H., Zou, T., et al. (2024) Microwave-Assisted Preparation of Yellow Fluorescent Graphitic Carbon Nitride Quantum Dots for Trace Tetracycline-Specific Detection. Chemosphere, 362, Article 142863.
https://doi.org/10.1016/j.chemosphere.2024.142863
[32] Xu, Y., Tang, C., Huang, H., Sun, C., Zhang, Y., Ye, Q., et al. (2014) Green Synthesis of Fluorescent Carbon Quantum Dots for Detection of Hg2+. Chinese Journal of Analytical Chemistry, 42, 1252-1258.
https://doi.org/10.1016/s1872-2040(14)60765-9
[33] 邓祥, 黄小梅, 邓子禾, 等. 新型碳量子点荧光探针的制备及其对Mn2+的选择性检测[J]. 激光与光电子学进展, 2024, 61(15): 1-8.
[34] Sadhu, V.A., Park, T.J. and Kailasa, S.K. (2024) Synthesis of Green Fluorescent Carbon Dots Using Cysteine and Maltose as Ecofriendly Ligands for the Detection of Venlafaxine Anti-Depression Drug in Pharmaceutical and Plasma Samples. Inorganic Chemistry Communications, 168, Article 112980.
https://doi.org/10.1016/j.inoche.2024.112980
[35] 梁美琪, 王子涵, 刘洋, 等. 基于锰、氯、氮共掺杂碳点的光学双模和智能手机成像检测Cr(Ⅵ) [J]. 分析测试学报, 2024, 43(1): 182-190
[36] Liu, Y., Cheng, D., Wang, B., Yang, J., Hao, Y., Tan, J., et al. (2024) Carbon Dots‐Inked Paper with Single/Two‐Photon Excited Dual‐Mode Thermochromic Afterglow for Advanced Dynamic Information Encryption. Advanced Materials, 36, Article ID: 2403775.
https://doi.org/10.1002/adma.202403775
[37] Ren, H., Labidi, A., Gao, T., Padervand, M., Liang, X. and Wang, C. (2024) Efficient Conversion of Bio-Waste Lignin into High-Value Fluorescent Nitrogen-Modified Carbon Quantum Dots for Live-Cell Imaging. Industrial Crops and Products, 216, Article 118832.
https://doi.org/10.1016/j.indcrop.2024.118832
[38] Lodha, S.R., Gore, A.H., Merchant, J.G., Pillai, A.J., Patel, H.P., Maulvi, F.A., et al. (2024) Selective Detection of Azelnidipine in Pharmaceuticals via Carbon Dot Mediated Spectrofluorimetric Method: A Green Approach. Luminescence, 39, e4738.
https://doi.org/10.1002/bio.4738
[39] Ullal, N., Sahoo, B., Sunil, D., Kulkarni, S.D., Bhat K., U. and P. J., A. (2024) Yellow Emissive and High Fluorescence Quantum Yield Carbon Dots from Perylene-3,4,9,10-Tetracarboxylic Dianhydride for Anticounterfeiting Applications. Dalton Transactions, 53, 16287-16302.
https://doi.org/10.1039/d4dt02219j
[40] Krushna, B.R.R., Sandeep, D.H., Manjunatha, K., Sharma, S.C., Panda, M., Krithika, C., et al. (2024) Sustainable Latent Fingerprint Enhancement with Ink-Free Printing and Shape Memory Behavior Using Parthenium Hysterophorus-Derived Carbon Dots. Sustainable Materials and Technologies, 40, e00951.
https://doi.org/10.1016/j.susmat.2024.e00951
[41] Ma, Y., Mao, L., Cui, C., Hu, Y., Chen, Z., Zhan, Y., et al. (2024) Nitrogen-Doped Carbon Dots as Fluorescent Probes for Sensitive and Selective Determination of Fe3+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, Article 124347.
https://doi.org/10.1016/j.saa.2024.124347
[42] Rahmatian, N., Abbasi, S., Abbasi, N. and Tavakkoli Yaraki, M. (2024) Alginate-Carbon Dot Nanocomposite: A Green Approach Towards Designing Turn-On Aptasenor for Candida Albicans Fungus. International Journal of Biological Macromolecules, 282, Article 137315.
https://doi.org/10.1016/j.ijbiomac.2024.137315
[43] Qiu, H.X., Zhang, Z. and Wang, Y.C. (2021) Research Progress on Carbon Dots Phosphor Applied in Light-Emitting Diode Devices. Journal of University of Shanghai for Science and Technology, 43, 140-147.
[44] Jozefowicza, M., Heldt, J.R., Karolczak, J. and Heldt, J. (2003) Fluorescence Quenching and Solvation Processes of Fluorenone and 4-Hydroxyfluorenone in Binary Solvents. Zeitschrift für Naturforschung A, 58, 144-156.
https://doi.org/10.1515/zna-2003-2-312
[45] Wang, B., Gu, C., Jiao, Y., Gao, Y., Liu, X., Guo, J., et al. (2023) Novel Preparation of Red Fluorescent Carbon Dots for Tetracycline Sensing and Its Application in Trace Determination. Talanta, 253, Article 123975.
https://doi.org/10.1016/j.talanta.2022.123975
[46] Miao, J., Ji, W., Yu, J., Cheng, J., Huang, Y., Arabi, M., et al. (2023) A Triple-Emission Ratiometric Fluorescence Sensor Based on Carbon Dots-Au Nanoclusters Nanocomposite for Detection of Tetracycline. Sensors and Actuators B: Chemical, 384, Article 133636.
https://doi.org/10.1016/j.snb.2023.133636
[47] Li, T., Guo, G., Xing, H., Wang, Y., Luo, X., Wang, L., et al. (2023) Energy Transfer Mediated Rapid and Visual Discrimination of Tetracyclines and Quercetin in Food by Using N, Cu Co-Doped Carbon Dots. Analytica Chimica Acta, 1239, Article 340706.
https://doi.org/10.1016/j.aca.2022.340706
[48] Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P. (2019) Optically-Active Nanocrystals for Inner Filter Effect-Based Fluorescence Sensing: Achieving Better Spectral Overlap. TrAC Trends in Analytical Chemistry, 110, 183-190.
https://doi.org/10.1016/j.trac.2018.11.002
[49] 谢勇, 韩明杰, 徐钰豪, 等. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.