[1]
|
Zhang, S., Wang, L., Feng, J., Jiang, Y., Li, L., Hu, Y., et al. (2024) Fabrication of Flexible Silica Aerogel Composite Blankets from an Aqueous Fumed Silica-Based Slurry. Science China Materials, 67, 1332-1339. https://doi.org/10.1007/s40843-023-2787-5
|
[2]
|
Kantor, Z., Wu, T., Zeng, Z., Gaan, S., Lehner, S., Jovic, M., et al. (2022) Heterogeneous Silica-Polyimide Aerogel-In-aerogel Nanocomposites. Chemical Engineering Journal, 443, Article ID: 136401. https://doi.org/10.1016/j.cej.2022.136401
|
[3]
|
Mohammadi, A. and Moghaddas, J. (2015) Synthesis, Adsorption and Regeneration of Nanoporous Silica Aerogel and Silica Aerogel-Activated Carbon Composites. Chemical Engineering Research and Design, 94, 475-484. https://doi.org/10.1016/j.cherd.2014.09.003
|
[4]
|
张安杰, 刘东升, 李蕾蕾, 等. 环境友好型气凝胶材料研究进展[J]. 三峡生态环境监测, 2024, 9(1): 9-18.
|
[5]
|
Zheng, H., Shan, H., Bai, Y., Wang, X., Liu, L., Yu, J., et al. (2015) Assembly of Silica Aerogels within Silica Nanofibers: Towards a Super-Insulating Flexible Hybrid Aerogel Membrane. RSC Advances, 5, 91813-91820. https://doi.org/10.1039/c5ra18137b
|
[6]
|
Kistler, S.S. (1931) Coherent Expanded Aerogels and Jellies. Nature, 127, 741. https://doi.org/10.1038/127741a0
|
[7]
|
Niculescu, A., Tudorache, D., Bocioagă, M., Mihaiescu, D.E., Hadibarata, T. and Grumezescu, A.M. (2024) An Updated Overview of Silica Aerogel-Based Nanomaterials. Nanomaterials, 14, Article No. 469. https://doi.org/10.3390/nano14050469
|
[8]
|
巩升鑫. 柔性二氧化硅气凝胶的制备及其孔结构与热导率关系研究[D]: [硕士学位论文]. 北京: 北京化工大学, 2024.
|
[9]
|
李承东, 陈照峰, 姚伯龙, 等. SiO2气凝胶骨架增强改性研究进展[J]. 宇航材料工艺, 2019, 49(5): 1-5.
|
[10]
|
潘月磊, 程旭东, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
|
[11]
|
Temel, T.M., İkizler, B.K., Terzioğlu, P., Yücel, S. and Elalmış, Y.B. (2017) The Effect of Process Variables on the Properties of Nanoporous Silica Aerogels: An Approach to Prepare Silica Aerogels from Biosilica. Journal of Sol-Gel Science and Technology, 84, 51-59. https://doi.org/10.1007/s10971-017-4469-x
|
[12]
|
Omranpour, H. and Motahari, S. (2013) Effects of Processing Conditions on Silica Aerogel during Aging: Role of Solvent, Time and Temperature. Journal of Non-Crystalline Solids, 379, 7-11. https://doi.org/10.1016/j.jnoncrysol.2013.07.025
|
[13]
|
He, F., Zhao, H., Qu, X., Zhang, C. and Qiu, W. (2009) Modified Aging Process for Silica Aerogel. Journal of Materials Processing Technology, 209, 1621-1626. https://doi.org/10.1016/j.jmatprotec.2008.04.009
|
[14]
|
吕璐涛, 杨宗霖, 刘伟, 等. 气凝胶材料的研究进展及其在航空航天领域的应用[J]. 高分子通报, 2022(4): 11-29.
|
[15]
|
范良成, 黄玉叶, 黄骏. 二氧化硅气凝胶的制备技术介绍[J]. 陶瓷, 2019(8): 31-33.
|
[16]
|
Karamikamkar, S., Naguib, H.E. and Park, C.B. (2020) Advances in Precursor System for Silica-Based Aerogel Production toward Improved Mechanical Properties, Customized Morphology, and Multifunctionality: A Review. Advances in Colloid and Interface Science, 276, Article ID: 102101. https://doi.org/10.1016/j.cis.2020.102101
|
[17]
|
Dowson, M., Grogan, M., Birks, T., Harrison, D. and Craig, S. (2012) Streamlined Life Cycle Assessment of Transparent Silica Aerogel Made by Supercritical Drying. Applied Energy, 97, 396-404. https://doi.org/10.1016/j.apenergy.2011.11.047
|
[18]
|
王宝和, 于才渊, 王喜忠. 纳米多孔材料的超临界干燥新技术[J]. 化学工程, 2005, 33(2): 13-17.
|
[19]
|
陈龙武, 甘礼华, 岳天仪, 等. 超临界干燥法制备SiO2气凝胶的研究[J]. 高等学校化学学报, 1995(6): 840-843.
|
[20]
|
Khudeev, I.I., Lebedev, A.E., Mochalova, M.S. and Menshutina, N.V. (2024) Modeling and Techno-Economic Optimization of the Supercritical Drying of Silica Aerogels. Drying Technology, 42, 812-835. https://doi.org/10.1080/07373937.2024.2318439
|
[21]
|
Xiao, H., Lv, J., Tan, W., He, X., Chen, M., Zeng, K., et al. (2022) Ultrasound-Assisted Freeze-Drying Process for Polyimide Aerogels. Chemical Engineering Journal, 450, Article ID: 138344. https://doi.org/10.1016/j.cej.2022.138344
|
[22]
|
阿拉腾沙嘎, 郭凯月. 冷冻干燥法制备气凝胶材料研究进展[J]. 中国陶瓷, 2022, 58(6): 17-25.
|
[23]
|
Pan, Q., Liu, Q., Shi, Y., Yang, D., Lan, Y. and Wang, T. (2025) A Facile Strategy for Freeze-Drying Preparation of Silica Aerogel from Sodium Silicate. Ceramics International, 51, 5342-5350. https://doi.org/10.1016/j.ceramint.2024.11.508
|
[24]
|
Jung, I., Gurav, J.L., Ha, T., Choi, S.G., Baek, S. and Park, H. (2012) The Properties of Silica Aerogels Hybridized with SiO2 Nanoparticles by Ambient Pressure Drying. Ceramics International, 38, S105-S108. https://doi.org/10.1016/j.ceramint.2011.04.060
|
[25]
|
吴国友, 程璇, 余煜玺, 等. 常压干燥制备二氧化硅气凝胶[J]. 化学进展, 2010, 22(10): 1892-1900.
|
[26]
|
王斌, 王丽娜, 魁尚文, 等. 常压干燥法制备气凝胶的研究进展[J]. 化学通报, 2022, 85(8): 927-936.
|
[27]
|
Li, B., Gao, X., Li, X., Liu, Z. and He, N. (2017) Monolithic Organosilica Aerogel Consisting of Hollow Microspheres by a Simple Ambient Pressure Drying Process. Materials Letters, 199, 21-23. https://doi.org/10.1016/j.matlet.2017.03.138
|
[28]
|
Maleki, H., Whitmore, L. and Hüsing, N. (2018) Novel Multifunctional Polymethylsilsesquioxane-Silk Fibroin Aerogel Hybrids for Environmental and Thermal Insulation Applications. Journal of Materials Chemistry A, 6, 12598-12612. https://doi.org/10.1039/c8ta02821d
|
[29]
|
王肇嘉, 路国忠, 何光明, 等. 气凝胶岩棉复合保温材料的制备与性能研究[J]. 新型建筑材料, 2022, 49(1): 124-126+137.
|
[30]
|
Liu, S., Zhu, P. and Li, X. (2020) Design Approach for Improving Fire-Resistance Performance of Tunnel Lining Based on SiO2 Aerogel Coating. Journal of Performance of Constructed Facilities, 34, Article ID: 04020031. https://doi.org/10.1061/(asce)cf.1943-5509.0001439
|
[31]
|
Štandeker, S., Novak, Z. and Knez, Ž. (2007) Adsorption of Toxic Organic Compounds from Water with Hydrophobic Silica Aerogels. Journal of Colloid and Interface Science, 310, 362-368. https://doi.org/10.1016/j.jcis.2007.02.021
|
[32]
|
Wei, W., Hu, H., Ji, X., Yan, Z., Sun, W. and Xie, J. (2018) Selective Adsorption of Organic Dyes by Porous Hydrophilic Silica Aerogels from Aqueous System. Water Science and Technology, 78, 402-414. https://doi.org/10.2166/wst.2018.313
|
[33]
|
Vareda, J.P., Valente, A.J.M. and Durães, L. (2020) Silica Aerogels/Xerogels Modified with Nitrogen-Containing Groups for Heavy Metal Adsorption. Molecules, 25, Article No. 2788. https://doi.org/10.3390/molecules25122788
|
[34]
|
Smirnova, I., Suttiruengwong, S., Seiler, M. and Arlt, W. (2004) Dissolution Rate Enhancement by Adsorption of Poorly Soluble Drugs on Hydrophilic Silica Aerogels. Pharmaceutical Development and Technology, 9, 443-452. https://doi.org/10.1081/pdt-200035804
|
[35]
|
Oh, J.K., Kohli, N., Zhang, Y., Min, Y., Jayaraman, A., Cisneros-Zevallos, L., et al. (2016) Nanoporous Aerogel as a Bacteria Repelling Hygienic Material for Healthcare Environment. Nanotechnology, 27, Article ID: 085705. https://doi.org/10.1088/0957-4484/27/8/085705
|
[36]
|
穆锐, 刘元雪, 刘晓英, 等. SiO2气凝胶复合材料及其在航空航天领域的研究进展[J]. 复合材料学报, 2024, 41(7): 3355-3371.
|
[37]
|
Hasan, M.A., Rashmi, S., Esther, A.C.M., Bhavanisankar, P.Y., Sherikar, B.N., Sridhara, N., et al. (2018) Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications. Journal of Materials Engineering and Performance, 27, 1265-1273. https://doi.org/10.1007/s11665-018-3232-y
|
[38]
|
He, J., Li, X., Su, D., Ji, H. and Wang, X. (2016) Ultra-Low Thermal Conductivity and High Strength of Aerogels/Fibrous Ceramic Composites. Journal of the European Ceramic Society, 36, 1487-1493. https://doi.org/10.1016/j.jeurceramsoc.2015.11.021
|
[39]
|
Rocha, H., Lafont, U. and Semprimoschnig, C. (2019) Environmental Testing and Characterization of Fibre Reinforced Silica Aerogel Materials for Mars Exploration. Acta Astronautica, 165, 9-16. https://doi.org/10.1016/j.actaastro.2019.07.030
|
[40]
|
Gurav, J.L., Jung, I., Park, H., Kang, E.S. and Nadargi, D.Y. (2010) Silica Aerogel: Synthesis and Applications. Journal of Nanomaterials, 2010, Article ID: 409310. https://doi.org/10.1155/2010/409310
|
[41]
|
Yu, X., Huang, M., Wang, X., Tang, G.H. and Du, M. (2023) Plasmon Silica Aerogel for Improving High-Temperature Solar Thermal Conversion. Applied Thermal Engineering, 219, Article ID: 119419. https://doi.org/10.1016/j.applthermaleng.2022.119419
|
[42]
|
Chen, H., Zhu, P., Yan, X., Xu, X. and Wang, X. (2023) Exploring the Application Potential and Performance of SiO2 Aerogel Mortar in Various Tunnel High-Temperature Environments. Fire, 6, Article No. 407. https://doi.org/10.3390/fire6100407
|