[1]
|
Anderson, C.F., Chakroun, R.W., Grimmett, M.E., Domalewski, C.J., Wang, F. and Cui, H. (2022) Collagen-Binding Peptide-Enabled Supramolecular Hydrogel Design for Improved Organ Adhesion and Sprayable Therapeutic Delivery. Nano Letters, 22, 4182-4191. https://doi.org/10.1021/acs.nanolett.2c00967
|
[2]
|
Abalymov, A., Pinchasik, B., Akasov, R.A., Lomova, M. and Parakhonskiy, B.V. (2023) Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules, 24, 4532-4552. https://doi.org/10.1021/acs.biomac.3c00503
|
[3]
|
He, S., Guo, B., Sun, X., Shi, M., Zhang, H., Yao, F., et al. (2022) Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. ACS Applied Materials & Interfaces, 14, 45869-45879. https://doi.org/10.1021/acsami.2c13371
|
[4]
|
Lv, A., Lv, X., Tian, S., Xie, T., Xu, X. and Sun, S. (2023) Tough, Self-Healing, and Antimicrobial Hydrogel Sensors Based on Hydrogen-Bonded, Cross-Linked Chitosan and MWCNTs. ACS Applied Polymer Materials, 5, 6452-6462. https://doi.org/10.1021/acsapm.3c01039
|
[5]
|
Luo, H., Jiang, L., Guo, Y., Li, M., Hu, L., Wu, H., et al. (2024) Extreme Toughening of Conductive Hydrogels through Synergistic Effects of Mineralization, Salting‐Out, and Ion Coordination Induced by Multivalent Anions. Small, 21, Article 2409565. https://doi.org/10.1002/smll.202409565
|
[6]
|
Ju, H., Zhu, Q.L., Zuo, M., Liang, S., Du, M., Zheng, Q., et al. (2023) Toughening Hydrogels by Forming Robust Hydrazide‐Transition Metal Coordination Complexes. Chemistry—A European Journal, 29, e202300969. https://doi.org/10.1002/chem.202300969
|
[7]
|
Liu, P., Zhang, Y., Guan, Y. and Zhang, Y. (2023) Peptide‐Crosslinked, Highly Entangled Hydrogels with Excellent Mechanical Properties but Ultra‐Low Solid Content. Advanced Materials, 35, Article 2210021. https://doi.org/10.1002/adma.202210021
|
[8]
|
Wang, H., Zhang, Q., Chen, S., Liu, X., Liu, J., He, W., et al. (2024) Highly Conductive Supramolecular Salt Gel Electrolyte for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 41, 56170-56180. https://doi.org/10.1021/acsami.4c12666
|
[9]
|
Xiang, C., Wen, C., Wang, Z., Tian, Y., Li, Y., Liao, Y., et al. (2025) Multifunctional Conductive Hydrogel for Sensing Underwater Applications and Wearable Electroencephalogram Recording. ACS Applied Materials & Interfaces, 17, 8327-8339. https://doi.org/10.1021/acsami.4c19660
|
[10]
|
Seo, Y., Kim, B.S., Ballance, W.C., Aw, N., Sutton, B. and Kong, H. (2020) Transparent and Flexible Electronics Assembled with Metallic Nanowire-Layered Nondrying Glycerogel. ACS Applied Materials & Interfaces, 12, 13040-13050. https://doi.org/10.1021/acsami.9b21697
|
[11]
|
Chen, Y., Estevez, D., Zhu, Z., Wang, Y., Mai, Y. and Qin, F. (2024) Multifunctional Conductive Hydrogel Composites with Nickel Nanowires and Liquid Metal Conductive Highways. ACS Applied Materials & Interfaces, 16, 29267-29281. https://doi.org/10.1021/acsami.4c05344
|
[12]
|
Lu, Y., Yue, Y., Ding, Q., Mei, C., Xu, X., Wu, Q., et al. (2021) Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. ACS Applied Materials & Interfaces, 13, 50281-50297. https://doi.org/10.1021/acsami.1c16828
|
[13]
|
Liu, G.W., Pickett, M.J., Kuosmanen, J.L.P., Ishida, K., Madani, W.A.M., White, G.N., et al. (2024) Drinkable in Situ-Forming Tough Hydrogels for Gastrointestinal Therapeutics. Nature Materials, 23, 1292-1299. https://doi.org/10.1038/s41563-024-01811-5
|
[14]
|
Quadrado, R.F.N., Zhai, Z., Zavadinack, M., Klassen, G., Iacomini, M., Edgar, K.J., et al. (2024) All-Polysaccharide, Self-Healing, pH-Sensitive, in Situ-Forming Hydrogel of Carboxymethyl Chitosan and Aldehyde-Functionalized Hydroxyethyl Cellulose. Carbohydrate Polymers, 336, Article 122105. https://doi.org/10.1016/j.carbpol.2024.122105
|
[15]
|
Li, X., Lin, H., Yu, Y., Lu, Y., He, B., Liu, M., et al. (2024) In Situ Rapid‐Formation Sprayable Hydrogels for Challenging Tissue Injury Management. Advanced Materials, 36, Article 2400310. https://doi.org/10.1002/adma.202400310
|
[16]
|
Li, Y., Liu, J., Zhang, Q., Hu, N., Jiang, Z., Kan, Q., et al. (2024) Growth of Double-Network Tough Hydrogel Coatings by Surface-Initiated Polymerization. ACS Applied Materials & Interfaces, 16, 10822-10831. https://doi.org/10.1021/acsami.4c00370
|
[17]
|
Ge, G., Mandal, K., Haghniaz, R., Li, M., Xiao, X., Carlson, L., et al. (2023) Deep Eutectic Solvents‐Based Ionogels with Ultrafast Gelation and High Adhesion in Harsh Environments. Advanced Functional Materials, 33, Article 2207388. https://doi.org/10.1002/adfm.202207388
|
[18]
|
Zhao, W., Qu, X., Xu, Q., Lu, Y., Yuan, W., Wang, W., et al. (2020) Ultrastretchable, Self‐Healable, and Wearable Epidermal Sensors Based on Ultralong Ag Nanowires Composited Binary‐Networked Hydrogels. Advanced Electronic Materials, 6, Article 2000267. https://doi.org/10.1002/aelm.202000267
|
[19]
|
Zou, X., Wang, X., Gou, M., Yue, O., Bai, Z., Zhang, H., et al. (2022) Ultra-Strong Adhesive, Self-Healing and Electroactive Bio-Based Hydrogels for the On-Demand Fabrication of Sandwich-Inspired Smart Electronic Sensing Floors. Journal of Materials Chemistry A, 10, 14555-14567. https://doi.org/10.1039/d2ta03782c
|
[20]
|
Lei, T., Wang, Y., Feng, Y., Duan, X., Zhang, Q., Wan, A., et al. (2025) PNIPAAm-Based Temperature Responsive Ionic Conductive Hydrogels for Flexible Strain and Temperature Sensing. Journal of Colloid and Interface Science, 678, 726-741. https://doi.org/10.1016/j.jcis.2024.09.131
|
[21]
|
Zhao, H., Hao, S., Fu, Q., Zhang, X., Meng, L., Xu, F., et al. (2022) Ultrafast Fabrication of Lignin-Encapsulated Silica Nanoparticles Reinforced Conductive Hydrogels with High Elasticity and Self-Adhesion for Strain Sensors. Chemistry of Materials, 34, 5258-5272. https://doi.org/10.1021/acs.chemmater.2c00934
|
[22]
|
Sun, D., Feng, Y., Sun, S., Yu, J., Jia, S., Dang, C., et al. (2022) Transparent, Self‐Adhesive, Conductive Organohydrogels with Fast Gelation from Lignin‐Based Self‐Catalytic System for Extreme Environment‐Resistant Triboelectric Nanogenerators. Advanced Functional Materials, 32, Article 2201335. https://doi.org/10.1002/adfm.202201335
|
[23]
|
Jiang, J., Zhao, W. and Zhao, L. (2024) Ultrarapid Gelation of Porous Ti3C2Tx Mxene Monoliths Induced by Ionic Liquids. Nano Letters, 24, 3196-3203. https://doi.org/10.1021/acs.nanolett.4c00093
|
[24]
|
Suezawa, T., Sasaki, N., Yukawa, Y., Assan, N., Uetake, Y., Onuma, K., et al. (2023) Ultra‐Rapid and Specific Gelation of Collagen Molecules for Transparent and Tough Gels by Transition Metal Complexation. Advanced Science, 10, Article 2302637. https://doi.org/10.1002/advs.202302637
|
[25]
|
Lyu, Y., Ji, Z., Liu, D., Xu, X., Guo, R., Shi, X., et al. (2025) Spider-Silk Inspired Ultrafast Alkali-Induced Molecular Aggregation for 3D Printing Arbitrary Tubular Hydrogels. Materials Horizons, 12, 520-530. https://doi.org/10.1039/d4mh01291g
|
[26]
|
Yu, W., Yang, Y., Wang, Y., Hu, L., Hao, J., Xu, L., et al. (2024) Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation. Nano-Micro Letters, 16, Article No. 94. https://doi.org/10.1007/s40820-023-01302-3
|
[27]
|
Hashemnejad, S.M. and Kundu, S. (2017) Probing Gelation and Rheological Behavior of a Self-Assembled Molecular Gel. Langmuir, 33, 7769-7779. https://doi.org/10.1021/acs.langmuir.7b01531
|
[28]
|
Shi, X. and Wu, P. (2021) A Smart Patch with On‐Demand Detachable Adhesion for Bioelectronics. Small, 17, Article 2101220. https://doi.org/10.1002/smll.202101220
|
[29]
|
Yang, Q., Chen, R., Li, M., Song, H., Zhao, X., Zhang, L., et al. (2024) High Antimicrobial Electrotherapy and Wound Monitoring Hydrogel with Bimetal Phenolic Networks for Smart Healthcare. Advanced Functional Materials, 35, Article 2413080. https://doi.org/10.1002/adfm.202413080
|
[30]
|
Zhang, J., Jin, K., Feng, Y., Lu, D., Chen, M., Wang, H., et al. (2024) Injectable Self-Healing and Anti-Dissolving Low-Molecular-Weight Hydrogels Enabled by Ionic Cross-Linking for Cell Encapsulation. ACS Macro Letters, 14, 20-25. https://doi.org/10.1021/acsmacrolett.4c00725
|
[31]
|
Cheng, R., Xu, M., Zhang, X., Jiang, J., Zhang, Q. and Zhao, Y. (2023) Hydrogen Bonding Enables Polymer Hydrogels with Ph‐Induced Reversible Dynamic Responsive Behaviors. Angewandte Chemie International Edition, 62, e202302900. https://doi.org/10.1002/anie.202302900
|
[32]
|
Hu, J., Shan, F., Tian, Y., Wei, J., Chen, Z., Liu, W., et al. (2025) Deep Eutectic Solvent-Mediated Sunlight Polymerization for Rapid Fabrication of Degradable Hydrogel-Based Wearable Sensors. Chemical Engineering Journal, 504, Article 158837. https://doi.org/10.1016/j.cej.2024.158837
|
[33]
|
Wang, Z., Li, B., Nie, C., Zhang, R., Qu, S., Shao, Q., et al. (2025) Photothermal Conjugated Polymer Microneedle with Biofilm Elimination and Angiogenesis for Diabetic Wound Healing. Nano Letters, 25, 2911-2921. https://doi.org/10.1021/acs.nanolett.4c06284
|
[34]
|
Wu, Y., Yang, Z., Li, X., Li, T., Zheng, J., Hu, M., et al. (2023) A Self-Assembled Hydrogel Dressing as Multi-Target Therapeutics to Promote Wound Healing. Chemical Engineering Journal, 477, Article 147145. https://doi.org/10.1016/j.cej.2023.147145
|
[35]
|
Park, B., Shin, J.H., Ok, J., Park, S., Jung, W., Jeong, C., et al. (2022) Cuticular Pad-Inspired Selective Frequency Damper for Nearly Dynamic Noise-Free Bioelectronics. Science, 376, 624-629. https://doi.org/10.1126/science.abj9912
|
[36]
|
Song, D., Li, X., Jang, M., Lee, Y., Zhai, Y., Hu, W., et al. (2023) An Ultra‐Thin MXene Film for Multimodal Sensing of Neuroelectrical Signals with Artifacts Removal. Advanced Materials, 35, Article 2304956. https://doi.org/10.1002/adma.202304956
|
[37]
|
Tang, H., Li, Y., Chen, B., Chen, X., Han, Y., Guo, M., et al. (2022) In Situ Forming Epidermal Bioelectronics for Daily Monitoring and Comprehensive Exercise. ACS Nano, 16, 17931-17947. https://doi.org/10.1021/acsnano.2c03414
|
[38]
|
Huang, X., Chen, C., Ma, X., Zhu, T., Ma, W., Jin, Q., et al. (2023) In Situ Forming Dual‐Conductive Hydrogels Enable Conformal, Self‐Adhesive and Antibacterial Epidermal Electrodes. Advanced Functional Materials, 33, Article 2302846. https://doi.org/10.1002/adfm.202302846
|