基于有机–无机杂化钙钛矿单晶探测器的研究进展
Research Advances in Organic-Inorganic Perovskite Single Crystal Detectors
DOI: 10.12677/ms.2025.155120, PDF, HTML, XML,   
作者: 张一帆, 房 丹:长春理工大学物理学院,吉林 长春
关键词: 钙钛矿单晶光电探测器Perovskite Single Crystal Photodetector
摘要: 光电探测器广泛应用于民用和军事领域,如电磁辐射探测、环境监测、光通信和导弹制导等。有机-无机杂化钙钛矿单晶拥有优异的光电探测性能,与传统半导体材料(如Si、GaAs和GaN等)相比还有具有易掺杂、易制备、环境友好等优点。如今,有机–无机杂化钙钛矿单晶光电探测器在波长调控、灵敏度、开关比和暗电流等方面已经经历了相当大的进步,本文从光电探测的基本原理入手,主要介绍了有机–无机杂化钙钛矿单晶光电探测器的研究进展和现状,讨论了探测器性能改进和优化策略,旨在引发钙钛矿材料在探测领域发展的新思路。
Abstract: Photodetectors are widely used in both civilian and military fields, such as electromagnetic radiation detection, environmental monitoring, optical communication and missile guidance, etc. Organic-inorganic perovskite single crystals have excellent photoelectric detection performance. Compared with traditional semiconductor materials (such as Si, GaAs and GaN, etc.), they also have the advantages of easy doping, easy preparation and environmental friendliness. Nowadays, organic-inorganic perovskite single crystal photodetectors have made considerable progress in aspects such as wavelength regulation, sensitivity, switching ratio and dark current. Starting from the basic principles of photodetection, this paper mainly introduces the research progress and current situation of organic-inorganic perovskite single crystal photodetectors, and discusses the performance improvement and optimization strategies of the detectors. It aims to trigger new ideas for the development of perovskite materials in the field of detection.
文章引用:张一帆, 房丹. 基于有机–无机杂化钙钛矿单晶探测器的研究进展[J]. 材料科学, 2025, 15(5): 1141-1153. https://doi.org/10.12677/ms.2025.155120

1. 引言

光电探测器是将光信号,以电流或电压的方式转换成电信号的器件。其基本机制是通过半导体有源层吸收光子,产生电子–空穴对,随后在电场的作用下电子–空穴对被分离并收集到两侧电极端[1]-[3]。有机–无机杂化钙钛矿单晶材料因其优异的光电特性而备受关注,包括可调带隙宽度、高光吸收系数、高载流子迁移率以及长载流子扩散长度和寿命,这些特性使其成为光电器件有源层的理想选择[4]-[7]。例如,基于钙钛矿材料的太阳能电池已实现与硅基电池相当的功率转换效率[8]。其中,MAPbX3 (X = Cl, Br, I)钙钛矿单晶因其与紫外–可见光波段匹配的禁带宽度和可溶液制备的特点,在光电探测领域受到广泛研究[9]-[12]。然而,其较差的载流子迁移率和响应速度限制了器件性能的进一步提升。为此,研究人员通过多种优化策略显著改善了探测性能,展现出其在高性能光电探测器中的应用潜力。在这篇综述中,我们介绍了基于MAPbX3钙钛矿单晶的光电探测器的进展。讨论了所报道的光电探测器的品质因数参数以及不同的性能优化策略,并强调它们各自的优点。最后,我们对MAPbX3钙钛矿单晶光电探测器目前面临的挑战进行了简要的展望。

2. MAPbX3单晶探测器优化策略

2.1. 生长调控

由于MAPbX3钙钛矿单晶往往由溶液法进行生长,因此对所生长的单晶尺寸、厚度和维度控制仍面临挑战。溶液法虽然具有成本低、工艺简单等优势,但在生长过程中溶剂的挥发速率、前驱体浓度、温度梯度等因素都会显著影响单晶的形貌和质量,而对于光电探测器应用而言,需要制备出厚度均匀、缺陷少的大面积单晶,以保障载流子的高效传输和收集[13]-[17]。2015年,Dong研究团队通过溶液生长技术成功制备出大尺寸MAPbI3单晶,并构建了Au/MAPbI3/Ga/Glass垂直结构的光伏器件[18]。该单晶材料在光照条件下表现出优异的载流子传输特性,其扩散长度突破175 μm。然而,研究发现3 mm厚的MAPbI3吸收层反而制约了器件性能,器件的光响应性能受到限制,导致光响应水平偏低。如图1所示,团队对生长过程进行了适当控制以缩减晶体的纵向生长速率,发现当晶体厚度缩减至200 μm时器件的光电转换效率获得显著改善。不同厚度的钙钛矿单晶器件性能差异主要源于载流子扩散长度与光吸收、电荷复合之间的竞争机制。虽然厚晶体具有更高的光吸收率,但光生载流子需要跨越更长的路径才能到达电极,从而降低有效电荷收集效率,超出扩散长度的区域会成为载流子复合死区,导致光电流损失。2016年Dang等人利用底部籽晶生长法(BSSG)生长出了厘米级的MAPbI3大块单晶[19]。如图2(a)所示,团队利用一个由电机控制的转盘和前体浓度控制的方法,生长的MAPbI3单晶具有清晰平滑的自然晶面,尺寸达到1 × 1 × 0.8 cm。Zhao等人在2023年报道了一种通过稳态溶液微反应法制备高质量MAPbCl3钙钛矿单晶片的创新研究[20]。由图2(c)可以看到,该方法通过小孔速率控制和液面高度调控实现了对晶体生长速率、尺寸和厚度的精确控制,成功制备出厚度0.5 mm~2 mm、尺寸4.5 mm~10 mm的高结晶度单晶,具有纯相立方结构。基于该单晶制备的Au/MAPbCl3/Au金属–半导体–金属结构光电探测器表现出优异的性能:在395 nm光照和5 V偏压下,具有低暗电流特性,响应度达80 mA/W,上升/下降时间分别为22.3 μs和16.5 μs。研究发现,通过调控溶液过饱和度和生长条件,可有效控制晶体形貌与质量。

同时由于MAPbX3材料溶液制备的特性,其在维度调控上也具有显著优势。相比于三维单晶,一维纳米线代表着更小的载流子传输尺寸,同时往往具有更低的载流子散射概率、更长的载流子寿命和更高的迁移率。如图3(a)所示Ma等人利用一种模板辅助反溶剂结晶(TAAC)方法来制备了具有可设计的形状和有序排列的MAPbBr3纳米线和阵列,通过乙腈蒸汽的引入不仅降低了钙钛矿纳米线在环境中的损耗,同时提高了对光照的响应[21]。制备的器件在0.1 μW、1 V偏压的532 nm激光照射下,响应度和探测率分别达到1.55 A/W和1.21 × 1012 Jones,展现了一维钙钛矿单晶在光电探测领域的价值。Sun等人报道了一种利用光刻条纹进行三维受限结晶(3DCC),实现厚度可调的MAPbI3单晶阵列生长的办法[22]图3(d)展示了通过这种办法所制备的晶体阵列器件,显示出与块状钙钛矿单晶相当的高质量,具有从5 μm~500 μm的可定制厚度。制备的单晶阵列自驱动探测器在0 V偏压下显示出73 dB的宽线性动态范围,其器件暗电流只有0.89 pA,同时在523.1 W/cm2的光强下获得了5.24 × 109 A的光电流。以上结果表明单晶形貌和尺寸维度对载流子运输质量的影响较大,通过对生长过程的调控可以显著提高器件性能。

Figure 1. (a) Schematic diagram of the Au/MAPbI3/Ga/Glass device structure; (b)~(c) Comparison of responsivity and EQE between 3 mm and 200 μm-thick single-crystal devices; (d) Power-law fitting under varying light intensities

1. (a) Au/MAPbI3/Ga/Glass器件结构示意图;(b)~(c) 3 mm和200 μm厚的单晶器件响应度、EQE对比图;(d) 变光照强度幂律拟合图

Figure 2. (a) Schematic diagram of BSSG growth; (b) Optical images of MAPbI3 single crystals with (100) and (112) facets (c) MAPbCl3 single crystals (4.5 mm~10 mm in size) grown via micro-solution reaction; (d) Responsivity curves of the MAPbCl3 detector under 1 V~3 V bias; (e) I-V characteristics of the device; (f) Device response speed measurement

2. (a) BSSG生长示意图;(b) MAPbI3单晶(100)和(112)面光学照片;(c) 微溶液反应生长的4.5 mm~10 mm尺寸MAPbCl3单晶;(d) MAPbCl3探测器1 V~3 V偏压下响应度曲线;(e) 器件I-V特性图;(f) 器件响应速度测试图

Figure 3. (a) Schematic of the MAPbBr3 NWs device structure; (b) Dependence of the responsivity and detectivity of the device on the light intensity; (c) I-t curves of perovskite nanowire photodetectors measured; (d) Schematic illustration of the lateral-structured photodiode based on the MAPbI3 crystal array; (e) Current-voltage curves of the photodiode under light illumination with different intensities; (f) Lightintensity-dependent photocurrent for the device

3. (a) MAPbBr3 NW阵列光电探测器;(b) 器件的响应度和探测率与光强的关系;(c) 不同功率下测量的I-t曲线;(d) MAPbI3晶体阵列的横向结构光电二极管示意图;(e) 不同强度光照下的电流–电压曲线;(f) 器件的光强相关光电流曲线

2.2. 晶面取向调控

钙钛矿光电探测器的性能与其晶体晶面取向密切相关。不同晶面的原子排列差异会显著影响器件的关键性能,不同晶面通常表现出不同的电荷传输特性,寻找具有更规整的晶格排列和更少的晶界缺陷可显著提升载流子迁移率并降低暗电流[23]。此外,晶面取向还直接影响电极/钙钛矿界面的能带匹配和电荷提取效率,进而决定探测器的响应速度和量子效率。通过精确调控晶面取向,可以实现对光电探测器灵敏度、响应速度和稳定性的协同优化。Cheng等人在2018年通过籽晶逆温结晶生长了(如图4所示)不同晶面取向的单晶钙钛矿,使用小三角棱柱籽晶可生长出具有(100)和(110)晶面的大尺寸三角棱柱单晶[24]。XRD图谱表明单晶在这两个晶面具有完美的结晶完整性。单晶的(100)和(110)晶面上分别制作Au叉指电极,制备平面光探测器。最后结果发现(100)晶面的暗电流大于(110)晶面,且不同偏压下(100)晶面的光电流增长幅度略大于(110)晶面。同时不同晶面光探测器的响应度、外量子效率和探测率的变化趋势存在差异,反映出不同偏压下(100)和(110)晶面的载流子传输机制不同。

Figure 4. (a) MAPbCl3 single crystal growth process, photos of triangle prism MAPbCl3 single crystals; (b) XRD patterns of (100) and (110) planes of MAPbCl3 single crystal; (c) Responsivities and EQEs of MAPbCl3 single crystal on (100); (d) Responsivities and EQEs of MAPbCl3 single crystal on (110)

4. (a) MAPbCl3单晶生长过程,(100) (110)晶面图像;(b) MAPbCl3单晶的器件的(100) (110)晶面XRD图像;(c) MAPbCl3单晶在(100)面上的响应和EQE;(d) MAPbCl3单晶在(110)面上的响应和EQE

同年Yang等人构建了两种(001)平板和(110)棒晶面的的MAPbBr3钙钛矿晶体,并比较了光生载流子在不同MAPbBr3晶面上的输运行为[25]图5展示了团队对器件的表征对比,利用稳态PL和TRPL光谱实验表明,(001)面是器件光生自由载流子输运的更好选择。与基于(110)刻面的器件相比,用(001)暴露刻面制造的器件表现出高两个数量级的光电流和少一半的暗电流。两个器件在几个循环打开和关闭灯的周期之后没有明显的电流损失,表明动态光响应的出色稳定性和可重复性。对于(001)晶面的设备,光暗电流比大于750,而基于(110)晶面的器件仅为3.8。(001)晶面光电探测器的上升时间比(110)晶面光电探测器的上升时间短得多。以上结果可以看出不同晶面的原子排列和电子结构差异显著影响电荷传输行为,在生长的优势晶面中(100)/(001)所形成载流子传输网络缺陷态较少,载流子迁移率高,因而表现出更高的光电流和更低的暗电流。相比之下,(110)晶面存在更多的晶格畸变,导致载流子散射增强,迁移率降低。这些差异主要源于晶面依赖的缺陷分布差异,进而影响光生载流子迁移效率。

Figure 5. (a) XRD patterns of the MAPbBr3 rods (black) and plates (red); (b) TRPL decay profiles (excited at 405 nm) of the MAPbBr3 single plate (red) and single rod (black); (c)~(d) I-V curves of the MAPbBr3 single plate and single rod devices under dark condition and under illumination (light wavelength is of 350 nm with an intensity of1.32 mW cm2) (e)

5. (a) MAPbBr3杆(黑色)和板(红色)的XRD图案;(b) MAPbBr3单板(红色)和单杆(黑色)的TRPL衰减轮廓(405 nm激发);(c)~(d) 单板和单杆设备的I-V曲线在深色条件下和照明下(光波长为350 nm,强度为1.32 mW cm2);(e) MAPbBr3单板和单杆的设备的时间依赖性光电流响应

2.3. 电极调控

光电探测器的电极工艺对其性能至关重要,直接影响器件的核心指标。通过将电极材料和结构设计与半导体能带相匹配,优化欧姆接触或肖特基势垒,减少接触电阻和光损耗。因此电极工艺的优化是提升探测器灵敏度、响应速度和可靠性的关键环节。光电探测器电极工艺涉及多种材料选择、工艺方法和结构设计。通过优化这些方面,可以显著提升光电探测器的性能,满足不同应用场景的需求[26]-[28]

2022年Zheng等人通过在MAPbCl3钙钛矿单晶上制备具有不对称肖特基叉指接触解决了现有同类探测器性能与有效面积难以兼顾的问题,该探测器展现出优异的光电性能,为相关领域应用提供了新的思路[29]。如图6,他们通过热蒸发法,利用掩膜在单晶表面制备Au和Ag电极成平面叉指Au-Ag电极结构的光电探测器,其有效面积约为8 mm2。在0 V时,器件在410 nm处的响应度可达5.8 mA/W,而对称Au电极的器件几乎无响应;在30V反向偏压下,器件300 nm~420 nm波长区域有广泛的光响应,在415 nm处响应度高达0.24 A/W,是对称Au电极器件的7倍,外量子效率EQE可达73%,探测率D*可达1.1 × 1011 Jones,表明内建电场有效提升了探测器的灵敏度。另外器件在0 V时为响应时间为317 ms (上升)/6.82 ms (衰减),30 V反向偏压时为100 ms (上升)/2 ms (衰减),这表明通过电极调控形成的肖特基场结构有效提升了载流子分离效率。同年Gavranovic等人探究了有关叉指电极间距对钙钛矿光电探测器的性能影响[30]。他们制作了如图7所展示的从25 μm到125 μm电极间距的探测器件,在固定偏压2 V、576 nm光照下,随着电极间距减小,光电流密度显著增加。这是由于电极间距减小,光导增益增加,电荷复合受到抑制,但同时暗电流密度也会增大。结论明确了电极间距对基于钙钛矿单晶的平面型光电探测器输出性能的重要影响[30]

Figure 6. (a) Preparation process diagram of the Au/MAPbCl3 single crystal/Ag structured photodetector; (b) Energy band diagram for the device; (c) Photoresponse spectra of the devices with Au-Ag electrodes at 30 V reverse bias and with symmetrical Au electrodes at 30 V. Inset: the photoresponse spectra of the above two structured devices at 0 V; (d)~(e) Transient photocurrent response of the device with the light source of a 355 nm pulsed laser at 0 V and 30 V reverse bias

6. (a) Au/MAPbCl3单晶/Ag结构光电探测器的制备过程图;(b) 电极与钙钛矿间的能级示意图;(c) 带有Au/AG电极在30 V反向偏置和对称的Au电极在30 V处的设备的光响应光谱,在0 V处的光响应光谱;(d)~(e) 设备的瞬态光电流响应,355 nm脉冲激光器的光源在0 V和30 V反向偏置下的响应谱

Figure 7. (a) Schematic diagram of MAPbBr3-based photodetectors with interdigital electrode spacings of 25 μm, 50 μm, 75 μm, 100 μm, and 125 μm; (b)~(d) Photoresponse spectrum, detectivity spectrum, and photoswitching response of the 50 μm-spacing detector

7. (a) 基于MAPbBr3的25 μm、50 μm、75 μm、100 μm、125 μm叉指间距的探测器件示意图;(b)~(d) 50 μm探测器件的光响应谱、探测率谱、光开关响应谱

在2023年Mahapatra等人针对钙钛矿单晶的电极材质对器件的影响进行研究,他们在(100)晶面上,通过溅射磁控法沉积100 nm厚的Pt或Au电极,制备不同电极间距的平面结构PDs [31]。研究发现,Pt电极与钙钛矿形成的肖特基势垒高度(SBH)比Au电极更有利于电荷提取。在2 V偏压,0.1 mW/cm2蓝光照射下,图8展示了基于Pt电极的PD的光电流、响应度(R)、比探测率D*和外量子效率(EQE)分别约为基于Au电极PD的2倍、5倍、5倍和6倍。同时,通过SCLC法测得两种电极器件的陷阱密度和载流子迁移率相近,表明晶体质量对实验结果影响较小,验证了电极选择对PD性能的重要性。以上结果可以观察到不同电极材料对有机–无机杂化钙钛矿单晶器件在肖特基势垒高度、电荷提取效率和内建电场调控等方面存在显著影响。较高的肖特基势垒及非对称电极所形成的电场可以有效增强载流子分离效率,减少缺陷复合,这对生长的单晶材料所固有的广泛的表面缺陷至关重要。

Figure 8. (a) Schematic diagrams of Au/perovskite and Pt/perovskite devices; (b) Energy band alignment between metal electrodes and perovskite; (c)~(e) Device responsivity spectrum, detectivity spectrum, and EQE spectrum

8. (a) Au/钙钛矿及Pt/钙钛矿器件示意图;(b) 金属电极与钙钛矿能带示意图;(c)~(e) 器件响应度谱、探测率谱、外量子效率谱

2.4. 异质结器件

为了提高响应速度,通过引入具有强近红外或紫外吸收特性的材料并构成异质结已成为钙钛矿器件优化的有效策略。这种复合策略不仅能够充分利用钙钛矿材料本身的优异光电特性,还可实现光谱响应的有效延伸[32]-[34]。例如,将窄带隙半导体材料与钙钛矿结合,可显著增强器件在近红外波段的响应能力,而引入宽带隙氧化物或硫化物等紫外敏感材料则能够有效提升器件在紫外区域的探测性能。这种复合结构的设计不仅突破了单一钙钛矿材料的光谱响应限制,还为开发宽光谱、高性能的光电探测器提供了新的技术路径。

Li等人报道了采用反溶剂扩散的生长方法在p-Si表面生长了MAPbBr3微晶,图9展示了其器件结构、响应谱以及界面能带示意图。通过构建Au/MAPbBr3/Si/Au的结构成功的制备了基于MAPbBr3/Si异质结的自供电窄带探测器[35]。在0 V偏压下对器件的响应谱进行测试获得了半峰宽仅为18.2 nm的响应。对器件施加0 V偏压和−1 V偏压时,其光电流强度没有发生明显的变化。主要原因是由于高质量MAPbBr3单晶具备较长的载流子扩散长度。同时他们发现在异质结的界面间存在较高的缺陷密度。如图9(a)为器件的工作原理图,从图中可以观察到异质结界面间的空间电荷区起到分离电子和空穴对的作用,而外部的单晶主要是起到特性吸收的作用,通过自身的结构特性对入射光进行过滤。

Figure 9. (a) Device structure of the self-powered MAPbBr3/Si heterojunction; (b) Operational mechanism of the self-powered narrowband photodetector; (c) Photoresponse measurement results; (d) Energy band diagram of the heterojunction

9. (a) 自供电MAPbBr3/Si异质结器件结构;(b) 自供电窄带探测器的工作机制;(c) 光响应测试结果;(d) 异质结能带结构

Figure 10. (a) Device schematics of Ag⁺-doped and Sb²⁺-doped MAPbBr3 photodetectors; (b) Power-dependent I-V characteristics; (c) Comparative responsivity spectra; (d) MAPbI3/GaN heterostructure device; (e) Energy band alignment at the MAPbI3/GaN interface; (f) Cross-sectional SEM image of the interface; (g) Power-dependent photoswitching behavior; (h) Switching speed at 0.25 mW/cm² illumination; (i) Wavelength-dependent switching performance

10. (a) 掺Ag+与掺Sb2+的MAPbBr3器件示意图;(b) 器件变功率I-V谱;(c) 响应度谱对比;(d) MAPbI3/GaN结构器件;(e) MAPbI3/GaN能带接触;(f) 界面处SEM;(g) 变功率光开关;(h) 0.25 mW/cm2下开关速度;(i) 变波长开关测试

Anilkumar等人报道了通过在Sb3+掺杂的n型MAPbBr3单晶表面外延生长Ag+掺杂的p型MAPbBr3单晶,制备了如图10(a)所示器件结构的基于金属掺杂的p-n结自供电光电二极管[36]。制备的p-n结光电二极管在反向偏压下暗电流较低,在50 mW/cm2绿光照射下,开路电压高达0.95 V,短路电流为5 μA,展现出明显的光伏效应。在零偏压下,对530 nm光照具有高灵敏度,响应度可达0.41 A/W,比探测率为6.39 × 1011 Jones,且上升时间为14 ms,下降时间为10 ms。凭借p-n结耗尽区的内建电场和不对称肖特基势垒形成的电场,展现出优异的自供电特性和对530 nm光照的高灵敏度。Zhou的课题组报道了一种基于MAPbI3/GaN结构的无ETL和含C60作为ETL的光电探测器[37]图10(e)展现了器件的能带变化,I-V曲线呈现良好的整流行为,正向偏压下光电流与暗电流比值大,0.2 V时暗电流低至5.99 × 1010 A,光电流为3.48 × 108 A。I-T曲线显示器件光响应稳定、可靠、可重复,0.25 mW/cm2光强下,上升时间为0.34 s,衰减时间为0.59 s。这种异质结结构为器件的紫外吸收作出贡献,光谱表明其在300 nm~800 nm有宽光谱吸收,500 nm处有吸收峰。

Figure 11. (a) MAPbI3/Si heterojunction device; (b) Schematic of photoinduced carrier transport under illumination; (c) Current-voltage (I-V) characteristics; (d) Perovskite single crystal epitaxially coupled on Si substrate; (e) MAPbCl3/Si heterojunction device; (f) Carrier transport mechanism under illumination; (g) Wavelength-dependent I-V characteristics; (h) Responsivity and detectivity of MAPbCl3/Si device; (i) Temporal photoresponse (on/off switching).

11. (a) MAPbI3/Si异质结器件;(b) 器件光照下载流子运动示意图;(c) I-V图谱;(d) 与Si耦合生长的钙钛矿单晶;(e) MAPbCl3/Si异质结器件;(f) 器件光照下载流子运动示意图;(g) 变光波长的I-V测试图;(h) MAPbCl3/Si器件响应度及探测图;(i) 开关响应图谱

图11(a),Wu等人在2022年利用碘化(3-氨丙基)三乙氧基硅烷(APTES)对Si晶片表面进行修饰,将MAPbI3晶种置于修饰后Si晶片上,最后通过逆温度结晶法,将带有晶种的Si晶片转移到预热的MAPbI3/γ-丁内酯(GBL)溶液中生长大尺寸MAPbI3单晶,从而实现MAPbI3与Si的异质集成[38]。与MAPbI3单晶相比,MAPbI3/Si异质结的PL峰发生红移,PL寿命显著缩短,表明存在界面载流子提取过程。器件暗电流极低,开/关比达到103。940 nm光照时的上升时间和下降时间分别为5/42 ms和25/57 ms,相比MAPbI3单晶器件有显著提升。在2023年Wang等人继续使用APTES耦连的方法在Si片上生长了MAPbCl3/Si异质结,利用异质结中光电压的角度依赖效应,实现了高性能的紫外偏振光检测[39]图11(g)显示异质结器件电流比MAPbCl3单晶器件低约10倍,在266 nm~785 nm光照下,光电流随波长变化呈现不同趋势,在377 nm处光电流最大,响应度和探测率的最大值分别可达5 A/W和1 × 1013 Jones。在自供电模式下,该器件光电压和光电流随光功率密度变化,开关比高达900,响应时间快至46 μs (上升时间)和112 μs (下降时间),远优于MAPbCl3单晶器件。

3. 结论

有机–无机杂化钙钛矿单晶光电探测器因其优异的光电特性在近年来取得了显著的研究进展,本文综述了MAPbX3钙钛矿单晶光电探测器的优化策略,包括生长调控、晶面取向调控、电极调控以及异质结器件的设计。通过以上几种方法为其他的有机–无机杂化钙钛矿单晶光电探测器性能优化方法提供了启示,进一步探索新型材料体系与结构设计,例如通过籽晶法将一维籽晶生长在单晶体块上,实现更低的载流子散射几率,减少复合损失,从而获得更长的载流子输运距离。或通过多层复合电极能带设计,进一步提高载流子收集效率,提升器件量子效率。或者通过与宽带隙材料构成异质结,进一步展宽探测范围和器件效率。总之,以上几种方法为日后开发有机–无机杂化钙钛矿单晶光电探测器提供了研究基础,同时也展现出其在光电二极管、光通信和光开关和机器视觉等领域中有着巨大的潜力。

参考文献

[1] Xu, Y., Wang, X., Zhao, J., Pan, Y., Li, Y., Elemike, E.E., et al. (2021) Solution-Processed Epitaxial Growth of MAPbI3 Single-Crystal Films for Highly Stable Photodetectors. Frontiers in Materials, 8, Article ID: 651957.
https://doi.org/10.3389/fmats.2021.651957
[2] Byun, H.R., Park, D.Y., Oh, H.M., Namkoong, G. and Jeong, M.S. (2017) Light Soaking Phenomena in Organic-Inorganic Mixed Halide Perovskite Single Crystals. ACS Photonics, 4, 2813-2820.
https://doi.org/10.1021/acsphotonics.7b00797
[3] Yuan, F., Wu, Z., Dong, H., Xi, J., Xi, K., Divitini, G., et al. (2017) High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. The Journal of Physical Chemistry C, 121, 15318-15325.
https://doi.org/10.1021/acs.jpcc.7b02101
[4] He, Z., Yang, Y., Liu, J., Li, J., Lu, X., Zou, J., et al. (2023) Antisolvent-Treated MAPbI3 and PbS Quantum Dots for High-Performance Broadband Photodetectors. ACS Applied Nano Materials, 6, 1119-1128.
https://doi.org/10.1021/acsanm.2c04619
[5] Wang, Y., Song, J., Chu, L., Zang, Y., Tu, Y., Ye, J., et al. (2023) Buried Solvent Assisted Perovskite Crystallization for Efficient and Stable Inverted Solar Cells. Journal of Power Sources, 558, Article ID: 232626.
https://doi.org/10.1016/j.jpowsour.2023.232626
[6] Azpiroz, J.M., Mosconi, E., Bisquert, J. and De Angelis, F. (2015) Defect Migration in Methylammonium Lead Iodide and Its Role in Perovskite Solar Cell Operation. Energy & Environmental Science, 8, 2118-2127.
https://doi.org/10.1039/c5ee01265a
[7] Zhang, Q., Yao, L., Li, B., Fang, D., Wang, D., Li, J., et al. (2023) Defect Recombination Suppression and Carrier Extraction Improvement for Efficient CsPbBr3/SnO2 Heterojunction Photodetectors. Nanotechnology, 34, Article ID: 235706.
https://doi.org/10.1088/1361-6528/acb713
[8] Jeong, J., Kim, M., Seo, J., Lu, H., Ahlawat, P., Mishra, A., et al. (2021) Pseudo-Halide Anion Engineering for α-FAPbI3 Perovskite Solar Cells. Nature, 592, 381-385.
https://doi.org/10.1038/s41586-021-03406-5
[9] Fatema, K., Ahmed, M.T., Hossain, M.K. and Ahmed, F. (2022) Structural and Morphological Properties of Single and Mixed Halide Pb-Based Perovskites. Advances in Condensed Matter Physics, 2022, Article ID: 6001569.
https://doi.org/10.1155/2022/6001569
[10] Handa, T., Tahara, H., Aharen, T., Shimazaki, A., Wakamiya, A. and Kanemitsu, Y. (2020) Large Thermal Expansion Leads to Negative Thermo-Optic Coefficient of Halide Perovskite CH3NH3PbCl3. Physical Review Materials, 4, Article ID: 074604.
https://doi.org/10.1103/physrevmaterials.4.074604
[11] Wei, K.H., Chen, B.J., Zhang, L.B., Zhu, H.R. and Fan, S.H. (2022) Investigation on Multiphoton Absorption in MAPbBr3 and MAPbCl3 Single-Crystals under Excitation Wavelength up to Mid-Infrared. Laser Physics Letters, 19, Article ID: 056003.
https://doi.org/10.1088/1612-202x/ac5ccd
[12] Schuck, G., Többens, D.M., Koch-Müller, M., Efthimiopoulos, I. and Schorr, S. (2018) Infrared Spectroscopic Study of Vibrational Modes across the Orthorhombic-Tetragonal Phase Transition in Methylammonium Lead Halide Single Crystals. The Journal of Physical Chemistry C, 122, 5227-5237.
https://doi.org/10.1021/acs.jpcc.7b11499
[13] Bernasconi, A., Page, K., Dai, Z., Tan, L.Z., Rappe, A.M. and Malavasi, L. (2018) Ubiquitous Short-Range Distortion of Hybrid Perovskites and Hydrogen-Bonding Role: The MAPbCl3 Case. The Journal of Physical Chemistry C, 122, 28265-28272.
https://doi.org/10.1021/acs.jpcc.8b10086
[14] Senocrate, A., Kim, G.Y., Grätzel, M. and Maier, J. (2019) Thermochemical Stability of Hybrid Halide Perovskites. ACS Energy Letters, 4, 2859-2870.
https://doi.org/10.1021/acsenergylett.9b01605
[15] Bari, M., Wu, H., Bokov, A.A., Ali, R.F., Tailor, H.N., Gates, B.D., et al. (2021) Room-Temperature Synthesis, Growth Mechanisms and Opto-Electronic Properties of Organic-inorganic Halide Perovskite CH3NH3PbX3 (X = I, Br, and Cl) Single Crystals. CrystEngComm, 23, 3326-3339.
https://doi.org/10.1039/d0ce01690j
[16] He, C., Zha, G., Deng, C., An, Y., Mao, R., Liu, Y., et al. (2019) Refractive Index Dispersion of Organic-Inorganic Hybrid Halide Perovskite CH3NH3PbX3 (X = Cl, Br, I) Single Crystals. Crystal Research and Technology, 54, Article ID: 1900011.
https://doi.org/10.1002/crat.201900011
[17] Ding, J., Cheng, X., Jing, L., Zhou, T., Zhao, Y. and Du, S. (2017) Polarization-Dependent Optoelectronic Performances in Hybrid Halide Perovskite MAPbX3 (X = Br, Cl) Single-Crystal Photodetectors. ACS Applied Materials & Interfaces, 10, 845-850.
https://doi.org/10.1021/acsami.7b13111
[18] Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., et al. (2015) Electron-Hole Diffusion Lengths > 175 μm in Solution-Grown CH3NH3PbI3 Single Crystals. Science, 347, 967-970.
https://doi.org/10.1126/science.aaa5760
[19] Dang, Y., Ju, D., Wang, L. and Tao, X. (2016) Recent Progress in the Synthesis of Hybrid Halide Perovskite Single Crystals. CrystEngComm, 18, 4476-4484.
https://doi.org/10.1039/c6ce00655h
[20] Zhao, D., Sun, X., Cong, L., Wang, X., Wang, Z. and Du, X. (2023) Controllable Preparation of High-Quality MAPbCl3 Perovskite Single Crystal Sheets. Journal of Alloys and Compounds, 960, Article ID: 170537.
https://doi.org/10.1016/j.jallcom.2023.170537
[21] Ma, F., Huang, Z., Ziółek, M., Yue, S., Han, X., Rong, D., et al. (2023) Template-Assisted Synthesis of a Large-Area Ordered Perovskite Nanowire Array for a High-Performance Photodetector. ACS Applied Materials & Interfaces, 15, 12024-12031.
https://doi.org/10.1021/acsami.2c20887
[22] Sun, Y., Liu, X., Deng, W., Zhang, X., Lu, Z., Chang, Z., et al. (2022) A Three‐Dimensional Confined Crystallization Strategy toward Controllable Growth of High‐Quality and Large‐Area Perovskite Single Crystals. Advanced Functional Materials, 32, Article ID: 2112758.
https://doi.org/10.1002/adfm.202112758
[23] Li, B., Shen, T. and Yun, S. (2023) Recent Progress of Crystal Orientation Engineering in Halide Perovskite Photovoltaics. Materials Horizons, 10, 13-40.
https://doi.org/10.1039/d2mh00980c
[24] Cheng, X., Jing, L., Zhao, Y., Du, S., Ding, J. and Zhou, T. (2018) Crystal Orientation-Dependent Optoelectronic Properties of MAPbCl3 Single Crystals. Journal of Materials Chemistry C, 6, 1579-1586.
https://doi.org/10.1039/c7tc05156e
[25] Yang, H., Zhou, Y., Yang, Y., Yi, D., Ye, T., Lam, T.D., et al. (2018) Crystal Facet Engineering Induced Anisotropic Transport of Charge Carriers in a Perovskite. Journal of Materials Chemistry C, 6, 11707-11713.
https://doi.org/10.1039/c8tc04961k
[26] Roccaforte, F., La Via, F. and Raineri, V. (2005) Ohmic Contacts to SiC. International Journal of High Speed Electronics and Systems, 15, 781-820.
https://doi.org/10.1142/s0129156405003429
[27] Türüt, A. (2020) On Current-Voltage and Capacitance-Voltage Characteristics of Metal-Semiconductor Contacts. Turkish Journal of Physics, 44, 302-347.
https://doi.org/10.3906/fiz-2007-11
[28] Huan, Y., Sun, S., Gu, C., Liu, W., Ding, S., Yu, H., et al. (2018) Recent Advances in Β-Ga2O3-Metal Contacts. Nanoscale Research Letters, 13, Article No. 246.
https://doi.org/10.1186/s11671-018-2667-2
[29] Yu, J., Zheng, J., Tian, N., Li, L., Qu, Y., Huang, Y., et al. (2022) High Performance of CH3NH3PbCl3 Perovskite Single Crystal Photodetector with a Large Active Area Using Asymmetrical Schottky Interdigital Contacts. RSC Advances, 12, 23578-23583.
https://doi.org/10.1039/d2ra02976f
[30] Gavranovic, S., Pospisil, J., Zmeskal, O., Novak, V., Vanysek, P., Castkova, K., et al. (2022) Electrode Spacing as a Determinant of the Output Performance of Planar-Type Photodetectors Based on Methylammonium Lead Bromide Perovskite Single Crystals. ACS Applied Materials & Interfaces, 14, 20159-20167.
https://doi.org/10.1021/acsami.1c24362
[31] Mahapatra, A., Anilkumar, V., Chavan, R.D., Yadav, P. and Prochowicz, D. (2023) Understanding the Origin of Light Intensity and Temperature Dependence of Photodetection Properties in a MAPbBr3 Single-Crystal-Based Photoconductor. ACS Photonics, 10, 1424-1433.
https://doi.org/10.1021/acsphotonics.3c00033
[32] Chen, P., Wang, E., Yin, X., Xie, H., Que, M., Gao, B., et al. (2018) Additive-Assisted One-Step Formed Perovskite/Hole Conducting Materials Graded Heterojunction for Efficient Perovskite Solar Cells. Journal of Colloid and Interface Science, 532, 182-189.
https://doi.org/10.1016/j.jcis.2018.07.100
[33] Ji, X., Li, M., He, Y., Li, W., Liang, B., Li, C., et al. (2024) Gradient Distributed and Tightly Integrated Perovskite Heterojunction Constructed by Electric Field-Driven Ion Deposition for High-Performance X-Ray Detection. Nano Letters, 24, 16047-16054.
https://doi.org/10.1021/acs.nanolett.4c04488
[34] Li, L., Yan, H., Li, S., Xu, H., Qu, D., Hu, A., et al. (2024) Lateral Phase Heterojunction for Perovskite Microoptoelectronics. Advanced Materials, 36, Article ID: 2409201.
https://doi.org/10.1002/adma.202409201
[35] Li, Z., Huang, S., Chen, Y., Zhou, Q., Jiang, H., Zhang, Y., et al. (2022) Vapor-Deposited Amino Coupling of Hybrid Perovskite Single Crystals and Silicon Wafers toward Highly Efficient Multiwavelength Photodetection. ACS Applied Materials & Interfaces, 14, 52476-52485.
https://doi.org/10.1021/acsami.2c14466
[36] Anilkumar, V., Mahapatra, A., Nawrocki, J., Chavan, R.D., Yadav, P. and Prochowicz, D. (2023) Metal‐Doped MAPbBr3 Single Crystal P‐n Junction Photodiode for Self‐Powered Photodetection. Advanced Optical Materials, 12, Article ID: 2302032.
https://doi.org/10.1002/adom.202302032
[37] Zou, C., Liu, Q., Chen, K., Chen, F., Zhao, Z., Cao, Y., et al. (2022) A High-Performance Polarization-Sensitive and Stable Self-Powered UV Photodetector Based on a Dendritic Crystal Lead-Free Metal-Halide CsCu2I3/GaN Heterostructure. Materials Horizons, 9, 1479-1488.
https://doi.org/10.1039/d1mh02073k
[38] Wu, J., Zhang, X., Wang, Z., et al. (2023) Near-Infrared Polarization-Sensitive Photodetection via Interfacial Symmetry Engineering of Si/MAPbI3 Heterostructural Single Crystal. Materials Horizons, 10, 952-959.
[39] Wang, Z., Zhang, X., Wu, J., Liang, L., Niu, X., Chen, Q., et al. (2023) Utilizing Angle‐Dependent Photovoltage Effect in a CH3NH3PbCl3/Si Heterojunction toward High‐Performance Polarized Light Detection in Ultraviolet Region. Advanced Optical Materials, 11, Article ID: 2202383.
https://doi.org/10.1002/adom.202202383