[1]
|
Zhu, T. (2023) Hemodynamic Influences of Remimazolam versus Propofol during the Induction Period of General Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Pain Physician Journal, 26, E761-E773. https://doi.org/10.36076/ppj.2023.26.e761
|
[2]
|
Schmalix, W., Petersen, K., Pesic, M. and Stöhr, T. (2024) The Metabolism of the New Benzodiazepine Remimazolam. Current Drug Metabolism, 25, 164-173. https://doi.org/10.2174/0113892002301026240318060307
|
[3]
|
Soejima, T., Ueda, K., Hasegawa, S., Motoe, H., Okada, K., Ito, Y.M., et al. (2022) Change in Cerebral Circulation during the Induction of Anesthesia with Remimazolam. Journal of Anesthesia, 37, 92-96. https://doi.org/10.1007/s00540-022-03135-7
|
[4]
|
Nakai, T., Kako, E., Ota, H., So, M. and Sobue, K. (2024) Remimazolam Anaphylaxis in a Patient Not Allergic to Brotizolam: A Case Report and Literature Review. BMC Anesthesiology, 24, Article No. 204. https://doi.org/10.1186/s12871-024-02591-w
|
[5]
|
Kilpatrick, G.J., McIntyre, M.S., Cox, R.F., Stafford, J.A., Pacofsky, G.J., Lovell, G.G., et al. (2007) CNS 7056: A Novel Ultra-Short-Acting Benzodiazepine. Anesthesiology, 107, 60-66. https://doi.org/10.1097/01.anes.0000267503.85085.c0
|
[6]
|
Paton, D.M., (2021) Remimazolam: A Short-Acting Benzodiazepine for Procedural Sedation. Drugs of Today, 57, 337-346. https://doi.org/10.1358/dot.2021.57.5.3264119
|
[7]
|
Schüttler, J., Eisenried, A., Lerch, M., Fechner, J., Jeleazcov, C. and Ihmsen, H. (2020) Pharmacokinetics and Pharmacodynamics of Remimazolam (CNS 7056) after Continuous Infusion in Healthy Male Volunteers: Part I. Pharmacokinetics and Clinical Pharmacodynamics. Anesthesiology, 132, 636-651. https://doi.org/10.1097/aln.0000000000003103
|
[8]
|
Gao, Y., Ihmsen, H., Hu, Z., Sun, W., Fang, Y., Wang, Z., et al. (2023) Pharmacokinetics of Remimazolam after Intravenous Infusion in Anaesthetised Children. British Journal of Anaesthesia, 131, 914-920. https://doi.org/10.1016/j.bja.2023.08.019
|
[9]
|
Antonik, L.J., Goldwater, D.R., Kilpatrick, G.J., Tilbrook, G.S. and Borkett, K.M. (2012) A Placebo-and Midazolam-Controlled Phase I Single Ascending-Dose Study Evaluating the Safety, Pharmacokinetics, and Pharmacodynamics of Remimazolam (CNS 7056): Part I. Safety, Efficacy, and Basic Pharmacokinetics. Anesthesia & Analgesia, 115, 274-283. https://doi.org/10.1213/ane.0b013e31823f0c28
|
[10]
|
Pesic, M., Stöhr, T., Ossig, J., Borkett, K., Donsbach, M., Dao, V., et al. (2020) Remimazolam Has Low Oral Bioavailability and No Potential for Misuse in Drug-Facilitated Sexual Assaults, with or without Alcohol: Results from Two Randomised Clinical Trials. Drugs in R&D, 20, 267-277. https://doi.org/10.1007/s40268-020-00317-0
|
[11]
|
Pesic, M., Schippers, F., Saunders, R., Webster, L., Donsbach, M. and Stoehr, T. (2020) Pharmacokinetics and Pharmacodynamics of Intranasal Remimazolam—A Randomized Controlled Clinical Trial. European Journal of Clinical Pharmacology, 76, 1505-1516. https://doi.org/10.1007/s00228-020-02984-z
|
[12]
|
Petersen, K., Schmalix, W., Pesic, M. and Stohr, T. (2024) Carboxylesterase 1-Based Drug-Drug Interaction Potential of Remimazolam: In-vitro Studies and Literature Review. Current Drug Metabolism, 25, 431-445. https://doi.org/10.2174/0113892002308233240801104910
|
[13]
|
Freyer, N., Knöspel, F., Damm, G., Greuel, S., Schneider, C., Seehofer, D., et al. (2019) Metabolism of Remimazolam in Primary Human Hepatocytes during Continuous Long-Term Infusion in a 3-D Bioreactor System. Drug Design, Development and Therapy, 13, 1033-1047. https://doi.org/10.2147/dddt.s186759
|
[14]
|
Zhou, Y., Hu, P. and Jiang, J. (2017) Metabolite Characterization of a Novel Sedative Drug, Remimazolam in Human Plasma and Urine Using Ultra High-Performance Liquid Chromatography Coupled with Synapt High-Definition Mass Spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 137, 78-83. https://doi.org/10.1016/j.jpba.2017.01.016
|
[15]
|
Stöhr, T., Colin, P.J., Ossig, J., Pesic, M., Borkett, K., Winkle, P., et al. (2021) Pharmacokinetic Properties of Remimazolam in Subjects with Hepatic or Renal Impairment. British Journal of Anaesthesia, 127, 415-423. https://doi.org/10.1016/j.bja.2021.05.027
|
[16]
|
苯磺酸瑞马唑仑临床应用指导意见专家组. 苯磺酸瑞马唑仑临床应用指导意见[J]. 中华麻醉学杂志, 2023, 43(8): 904-911.
|
[17]
|
Sheng, X., Liang, Y., Yang, X., Li, L., Ye, X., Zhao, X., et al. (2019) Safety, Pharmacokinetic and Pharmacodynamic Properties of Single Ascending Dose and Continuous Infusion of Remimazolam Besylate in Healthy Chinese Volunteers. European Journal of Clinical Pharmacology, 76, 383-391. https://doi.org/10.1007/s00228-019-02800-3
|
[18]
|
Chae, D., Kim, H., Song, Y., Choi, Y.S. and Han, D.W. (2022) Pharmacodynamic Analysis of Intravenous Bolus Remimazolam for Loss of Consciousness in Patients Undergoing General Anaesthesia: A Randomised, Prospective, Double-Blind Study. British Journal of Anaesthesia, 129, 49-57. https://doi.org/10.1016/j.bja.2022.02.040
|
[19]
|
Oh, E.J., Chung, Y.J., Lee, J., Kwon, E.J., Choi, E.A., On, Y.K., et al. (2023) Comparison of Propofol vs. Remimazolam on Emergence Profiles after General Anesthesia: A Randomized Clinical Trial. Journal of Clinical Anesthesia, 90, Article 111223. https://doi.org/10.1016/j.jclinane.2023.111223
|
[20]
|
Wiltshire, H.R., Kilpatrick, G.J., Tilbrook, G.S. and Borkett, K.M. (2012) A Placebo-and Midazolam-Controlled Phase I Single Ascending-Dose Study Evaluating the Safety, Pharmacokinetics, and Pharmacodynamics of Remimazolam (CNS 7056): Part II. Population Pharmacokinetic and Pharmacodynamic Modeling and Simulation. Anesthesia & Analgesia, 115, 284-296. https://doi.org/10.1213/ane.0b013e318241f68a
|
[21]
|
Bae, M.I., Bae, J., Song, Y., Kim, M. and Han, D.W. (2023) Comparative Analysis of the Performance of Electroencephalogram Parameters for Monitoring the Depth of Sedation during Remimazolam Target-Controlled Infusion. Anesthesia & Analgesia, 138, 1295-1303. https://doi.org/10.1213/ane.0000000000006718
|
[22]
|
Park, S.J., Min, S.K., Choi, G., Kim, J.E. and Kim, H.Y. (2024) The Degree of Respiratory Depression According to the Effect-Site Concentration in Remimazolam Target-Controlled Infusion: A Randomised Controlled Trial. European Journal of Anaesthesiology, 41, 728-737. https://doi.org/10.1097/eja.0000000000002045
|
[23]
|
Lohmer, L.L., Schippers, F., Petersen, K.U., Stoehr, T. and Schmith, V.D. (2020) Time‐to‐Event Modeling for Remimazolam for the Indication of Induction and Maintenance of General Anesthesia. The Journal of Clinical Pharmacology, 60, 505-514. https://doi.org/10.1002/jcph.1552
|
[24]
|
Io, T., Saunders, R., Pesic, M., Petersen, K. and Stoehr, T. (2021) A Miniature Pig Model of Pharmacological Tolerance to Long-Term Sedation with the Intravenous Benzodiazepines; Midazolam and Remimazolam. European Journal of Pharmacology, 896, Article 173886. https://doi.org/10.1016/j.ejphar.2021.173886
|
[25]
|
Vellinga, R., Koomen, J.V., Eleveld, D.J., Stöhr, T., Pesic, M., Struys, M.M.R.F., et al. (2023) Target-Controlled Infusion of Remimazolam in Healthy Volunteers Shows Some Acute Tolerance. Anesthesiology, 140, 207-219. https://doi.org/10.1097/aln.0000000000004811
|
[26]
|
Xu, W., Hu, J., Liu, W., Zhu, Q., Gong, X., Zhu, P., et al. (2020) Remimazolan Inhibits Glioma Cell Growth and Induces Apoptosis through Down‐Regulation of NF‐κB Pathway. IUBMB Life, 73, 341-348. https://doi.org/10.1002/iub.2433
|
[27]
|
Shi, M., Chen, J., Liu, T., Dai, W., Zhou, Z., Chen, L., et al. (2022) Protective Effects of Remimazolam on Cerebral Ischemia/Reperfusion Injury in Rats by Inhibiting of NLRP3 Inflammasome-Dependent Pyroptosis. Drug Design, Development and Therapy, 16, 413-423. https://doi.org/10.2147/dddt.s344240
|
[28]
|
Wen, T., Wen, J. and Yao, C. (2024) Remimazolam Inhibits Postoperative Cognitive Impairment after Cardiopulmonary Bypass by Alleviating Neuroinflammation and Promoting Microglia M2 Polarization. Brain Research, 1838, Article 148975. https://doi.org/10.1016/j.brainres.2024.148975
|
[29]
|
Duan, M., Yu, N., Liu, J., Zhao, Y., Zhang, J., Song, S., et al. (2025) Remimazolam Suppresses Oxidative Stress and Apoptosis in Cerebral Ischemia/Reperfusion Injury by Regulating AKT/GSK-3β/NRF2 Pathway. Drug Design, Development and Therapy, 19, 111-128. https://doi.org/10.2147/dddt.s478692
|
[30]
|
郭小丽, 杨昌明, 王婵, 等. 基于Sirt1/FoxO1通路探讨瑞马唑仑减轻脓毒症小鼠脑损伤的机制研究[J]. 中国实验动物学报, 2023, 31(1): 82-90.
|
[31]
|
Zhou, Z., Yang, Y., Wei, Y. and Xie, Y. (2024) Remimazolam Attenuates LPS-Derived Cognitive Dysfunction via Subdiaphragmatic Vagus Nerve Target α7nAChR-Mediated Nrf2/HO-1 Signal Pathway. Neurochemical Research, 49, 1306-1321. https://doi.org/10.1007/s11064-024-04115-x
|
[32]
|
Zhou, L., Shi, H., Xiao, M., Liu, W., Wang, L., Zhou, S., et al. (2025) Remimazolam Attenuates Lipopolysaccharide-Induced Neuroinflammation and Cognitive Dysfunction. Behavioural Brain Research, 476, Article 115268. https://doi.org/10.1016/j.bbr.2024.115268
|
[33]
|
Mao, Q., Liang, B., Leng, Z., Ma, W., Chen, Y. and Xie, Y. (2024) Remimazolam Ameliorates Postoperative Cognitive Dysfunction after Deep Hypothermic Circulatory Arrest through HMGB1-TLR4-NF-κB Pathway. Brain Research Bulletin, 217, Article 111086. https://doi.org/10.1016/j.brainresbull.2024.111086
|
[34]
|
Shen, R., Liu, Z., Fei, L., Zhang, Y., Xu, L. and Xuan, C. (2024) Remimazolam Improves the Markers of Postresuscitation Cerebral Injury in a Swine Model of Cardiac Arrest. Shock, 61, 783-790. https://doi.org/10.1097/shk.0000000000002331
|
[35]
|
Chen, C., Lan, L. and Xu, K. (2025) Remimazolam Combined with Andrographolide Improve Postoperative Cognitive Dysfunction in Rats after Cardiopulmonary Bypass through the AMPK/SIRT1 Signaling Pathway. Journal of Integrative Neuroscience, 24, Article 25665. https://doi.org/10.31083/jin25665
|
[36]
|
Zhou, X., Zhang, C., Wang, L. and Jin, S. (2022) Remimazolam Induced Cognitive Dysfunction in Mice via Glutamate Excitotoxicity. Translational Neuroscience, 13, 104-115. https://doi.org/10.1515/tnsci-2022-0220
|
[37]
|
Liu, X., Guo, L., Duan, B., Wu, J. and Wang, E. (2022) Novel Benzodiazepine Remimazolam Tosylate Delays Neurodegeneration of Aged Mice via Decreasing Tau Phosphorylation. NeuroToxicology, 92, 156-165. https://doi.org/10.1016/j.neuro.2022.08.003
|
[38]
|
Shi, W., Wu, X., Yuan, C., Kuang, T., Xie, X., Gong, W., et al. (2024) Effect of Remimazolam Toluene Sulfonate on the Cognitive Function of Juveniles and Its Mechanism of Action. European Journal of Medical Research, 29, Article No. 543. https://doi.org/10.1186/s40001-024-02142-6
|
[39]
|
Tang, Z., Sun, S., Lin, Z., Wen, Y., Li, S., Shen, J., et al. (2024) Neonatal Anesthesia with Remimazolam Reduces the Expression of Synaptic Proteins and Increases Depressive Behavior in Adult Mice. Neuroscience Letters, 842, Article 137971. https://doi.org/10.1016/j.neulet.2024.137971
|
[40]
|
Zhao, J., Yu, T., He, R., Li, M., Xia, W. and Lu, Y. (2024) Effects of Remimazolam and Surgery on Cognition in a Tibia Fracture Mouse Model. International Immunopharmacology, 143, Article 113464. https://doi.org/10.1016/j.intimp.2024.113464
|
[41]
|
Yang, M., Zhu, H., Peng, L., Yin, T., Sun, S., Du, Y., et al. (2024) Neuronal HIPK2-HDAC3 Axis Regulates Mitochondrial Fragmentation to Participate in Stroke Injury and Post-Stroke Anxiety Like Behavior. Experimental Neurology, 380, Article 114906. https://doi.org/10.1016/j.expneurol.2024.114906
|
[42]
|
Fan, J., Feng, J., Yang, L., Zhang, Q. and Li, H. (2025) Remimazolam Alleviates Sleep Deprivation Induced Anxiety-Like Behaviors via Regulating the STING Pathway. Neuroscience Letters, 847, Article 138095. https://doi.org/10.1016/j.neulet.2024.138095
|
[43]
|
Cheng, H., Gan, L., Wang, Y., Li, L. and Li, Y. (2023) Effect of Sleep Deprivation by MMP-WM on Rat Neurological Function and Tau Protein in Hippocampus. Cellular and Molecular Biology, 69, 103-108. https://doi.org/10.14715/cmb/2023.69.11.16
|
[44]
|
Cheung, H., Yu, T., Yi, X., Wu, Y., Wang, Q., Gu, X., et al. (2024) An Ultra-Short-Acting Benzodiazepine in Thalamic Nucleus Reuniens Undermines Fear Extinction via Intermediation of Hippocamposeptal Circuits. Communications Biology, 7, Article No. 728. https://doi.org/10.1038/s42003-024-06417-w
|
[45]
|
Wang, K., Wang, Y., Zhang, T., Chang, B., Fu, D. and Chen, X. (2024) The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neuroscience Bulletin, 41, 107-130. https://doi.org/10.1007/s12264-024-01265-4
|
[46]
|
Xu, H., Chen, Y., Xie, P., Lei, T., Liu, K., Liu, X., et al. (2024) Remimazolam Attenuates Myocardial Ischemia-Reperfusion Injury by Inhibiting the NF-κB Pathway of Macrophage Inflammation. European Journal of Pharmacology, 965, Article 176276. https://doi.org/10.1016/j.ejphar.2023.176276
|
[47]
|
Liu, X., Shui, G., Wang, Y., Chen, T., Zhang, P., Liu, L., et al. (2025) Remimazolam Alleviates Myocardial Ischemia/Reperfusion Injury and Inflammation via Inhibition of the NLRP3/IL-1β Pathway in Mice. International Journal of Molecular Medicine, 55, Article No. 57. https://doi.org/10.3892/ijmm.2025.5498
|
[48]
|
Yoshikawa, Y., Oura, S., Kanda, M., Chaki, T., Hirata, N., Edanaga, M., et al. (2024) Comparison of the Negative Effect of Remimazolam and Propofol on Cardiac Contractility: Analysis of a Randomised Parallel‐Group Trial and a Preclinical ex vivo Study. Clinical and Experimental Pharmacology and Physiology, 51, e13840. https://doi.org/10.1111/1440-1681.13840
|
[49]
|
Yang, M. and Li, L. (2024) Remimazolam Attenuates Inflammation in Bronchopneumonia through the Inhibition of NLRP3 Activity by PDPK1 Ubiquitination. Chemical Biology & Drug Design, 103, e14438. https://doi.org/10.1111/cbdd.14438
|
[50]
|
Zhang, L., Zhao, D., Lv, H. and Jiang, X. (2024) Remimazolam Alleviates Ventilator-Induced Lung Injury by Activating TSPO to Inhibit Macrophage Pyroptosis. Discovery Medicine, 36, Article 1600. https://doi.org/10.24976/discov.med.202436187.146
|
[51]
|
Li, R., Zhang, C., Ren, J., Deng, G., Gao, Y., Gao, X., et al. (2025) Remimazolam Inhibits Apoptosis of Endothelial and Epithelial Cells by Activating the PI3K/AKT Pathway in Acute Lung Injury. International Immunopharmacology, 147, Article 113949. https://doi.org/10.1016/j.intimp.2024.113949
|
[52]
|
Song, J., Yu, W., Chen, S., Huang, J., Zhou, C. and Liang, H. (2024) Remimazolam Attenuates Inflammation and Kidney Fibrosis Following Folic Acid Injury. European Journal of Pharmacology, 966, Article 176342. https://doi.org/10.1016/j.ejphar.2024.176342
|
[53]
|
Fang, H., Zhang, Y., Wang, J., Li, L., An, S., Huang, Q., et al. (2021) Remimazolam Reduces Sepsis-Associated Acute Liver Injury by Activation of Peripheral Benzodiazepine Receptors and P38 Inhibition of Macrophages. International Immunopharmacology, 101, Article 108331. https://doi.org/10.1016/j.intimp.2021.108331
|
[54]
|
Shi, Y., Deng, H., Zhang, Z., Zhu, X. and Zeng, Z. (2024) Remimazolam Protects the Liver from Ischemia-Reperfusion Injury by Inhibiting the MAPK/ERK Pathway. BMC Anesthesiology, 24, Article No. 251. https://doi.org/10.1186/s12871-024-02641-3
|
[55]
|
Yin, T., He, L., Du, Y., Liu, J., Peng, L., Yang, M., et al. (2024) Macrophage WNK1 Senses Intracellular Hypo-Chlorine to Regulate Vulnerability to Sepsis Attack during Hypochloremia. International Immunopharmacology, 139, Article 112721. https://doi.org/10.1016/j.intimp.2024.112721
|
[56]
|
Xie, H., Lu, F., Liu, W., Wang, E., Wang, L. and Zhong, M. (2021) Remimazolam Alleviates Neuropathic Pain via Regulating Bradykinin Receptor B1 and Autophagy. Journal of Pharmacy and Pharmacology, 73, 1643-1651. https://doi.org/10.1093/jpp/rgab080
|
[57]
|
Peng, Y., Zhang, Y., Wang, W., Liu, B., Zhang, Z., Gong, Z., et al. (2024) Potential Role of Remimazolam in Alleviating Bone Cancer Pain in Mice via Modulation of Translocator Protein in Spinal Astrocytes. European Journal of Pharmacology, 979, Article 176861. https://doi.org/10.1016/j.ejphar.2024.176861
|
[58]
|
Hoshino, R., Ohashi, N., Uta, D., Ohashi, M., Deguchi, H. and Baba, H. (2024) Actions of Remimazolam on Inhibitory Transmission of Rat Spinal Dorsal Horn Neurons. Journal of Pharmacological Sciences, 155, 63-73. https://doi.org/10.1016/j.jphs.2024.04.002
|