[1]
|
Hu, F., Yuan, L., Yang, Y., Xu, Y., Huang, Y., Hu, Y., et al. (2022) A Multicenter Investigation of 2773 Cases of Bloodstream Infections Based on China Antimicrobial Surveillance Network (CHINET). Frontiers in Cellular and Infection Microbiology, 12, Article 1075185. https://doi.org/10.3389/fcimb.2022.1075185
|
[2]
|
Qin, X., Ding, L., Hao, M., Li, P., Hu, F. and Wang, M. (2024) Antimicrobial Resistance of Clinical Bacterial Isolates in China: Current Status and Trends. JAC-Antimicrobial Resistance, 6, dlae052. https://doi.org/10.1093/jacamr/dlae052
|
[3]
|
Peng, Z., Hu, Y., Ye, Z., Deng, J., Yang, D., Xu, J., et al. (2024) One Health Approach of Enterococcal Population Structure and Antibacterial Resistance along the Food Chain—Four PLADs, China, 2015-2022. China CDC Weekly, 6, 1223-1231. https://doi.org/10.46234/ccdcw2024.246
|
[4]
|
李耘, 郑波, 薛峰, 等. 中国细菌耐药监测研究(CARST) 2021-2022年革兰氏阳性菌监测报告[J]. 中国临床药理学杂志, 2023, 39(23): 3509-3524.
|
[5]
|
Abdullahi, I.N., Lozano, C., Juárez-Fernández, G., Höfle, U., Simón, C., Rueda, S., et al. (2023) Nasotracheal Enterococcal Carriage and Resistomes: Detection of optrA-, poxtA-and cfrD-Carrying Strains in Migratory Birds, Livestock, Pets, and In-Contact Humans in Spain. European Journal of Clinical Microbiology & Infectious Diseases, 42, 569-581. https://doi.org/10.1007/s10096-023-04579-9
|
[6]
|
Bender, J.K., Cattoir, V., Hegstad, K., Sadowy, E., Coque, T.M., Westh, H., et al. (2018) Update on Prevalence and Mechanisms of Resistance to Linezolid, Tigecycline and Daptomycin in Enterococci in Europe: Towards a Common Nomenclature. Drug Resistance Updates, 40, 25-39. https://doi.org/10.1016/j.drup.2018.10.002
|
[7]
|
Antonelli, A., D’Andrea, M.M., Brenciani, A., Galeotti, C.L., Morroni, G., Pollini, S., et al. (2018) Characterization of poxtA, a Novel Phenicol-Oxazolidinone-Tetracycline Resistance Gene from an MRSA of Clinical Origin. Journal of Antimicrobial Chemotherapy, 73, 1763-1769. https://doi.org/10.1093/jac/dky088
|
[8]
|
Papagiannitsis, C.C., Tsilipounidaki, K., Malli, E. and Petinaki, E. (2019) Detection in Greece of a Clinical Enterococcus faecium Isolate Carrying the Novel Oxazolidinone Resistance Gene poxtA. Journal of Antimicrobial Chemotherapy, 74, 2461-2462. https://doi.org/10.1093/jac/dkz155
|
[9]
|
Dejoies, L., Sassi, M., Schutz, S., Moreaux, J., Zouari, A., Potrel, S., et al. (2021) Genetic Features of the poxtA Linezolid Resistance Gene in Human Enterococci from France. Journal of Antimicrobial Chemotherapy, 76, 1978-1985. https://doi.org/10.1093/jac/dkab116
|
[10]
|
Jung, Y., Cha, M., Woo, G. and Chi, Y. (2021) Characterization of Oxazolidinone and Phenicol Resistance Genes in Non-Clinical Enterococcal Isolates from Korea. Journal of Global Antimicrobial Resistance, 24, 363-369. https://doi.org/10.1016/j.jgar.2021.01.009
|
[11]
|
Baccani, I., Antonelli, A., Di Pilato, V., Coppi, M., Di Maggio, T., Spinicci, M., et al. (2021) Detection of poxtA2, a Presumptive poxtA Ancestor, in a Plasmid from a Linezolid-Resistant Enterococcus gallinarum Isolate. Antimicrobial Agents and Chemotherapy, 65, e0069521. https://doi.org/10.1128/aac.00695-21
|
[12]
|
Fioriti, S., Coccitto, S.N., Cedraro, N., Simoni, S., Morroni, G., Brenciani, A., et al. (2021) Linezolid Resistance Genes in Enterococci Isolated from Sediment and Zooplankton in Two Italian Coastal Areas. Applied and Environmental Microbiology, 87, e02958-20. https://doi.org/10.1128/aem.02958-20
|
[13]
|
Fukuda, A., Nakajima, C., Suzuki, Y. and Usui, M. (2024) Transferable Linezolid Resistance Genes (optrA and poxtA) in Enterococci Derived from Livestock Compost at Japanese Farms. Journal of Global Antimicrobial Resistance, 36, 336-344. https://doi.org/10.1016/j.jgar.2024.01.022
|
[14]
|
王梦莉, 黄金虎, 王丽平. 江苏省猪源poxtA阳性利奈唑胺耐药肠球菌的流行性及其分子分型[C]//中国畜牧兽医学会兽医药理毒理学分会. 中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集. 南京: 南京农业大学动物医学院, 2019: 213-214.
|
[15]
|
Moure, Z., Lara, N., Marín, M., Sola-Campoy, P.J., Bautista, V., Gómez-Bertomeu, F., et al. (2020) Interregional Spread in Spain of Linezolid-Resistant Enterococcus spp. Isolates Carrying the Optra and poxtA Genes. International Journal of Antimicrobial Agents, 55, Article ID: 105977. https://doi.org/10.1016/j.ijantimicag.2020.105977
|
[16]
|
Wu, W., Xiao, S., Han, L. and Wu, Q. (2025) Antimicrobial Resistance, Virulence Gene Profiles, and Molecular Epidemiology of Enterococcal Isolates from Patients with Urinary Tract Infections in Shanghai, China. Microbiology Spectrum, 13, e01217-24. https://doi.org/10.1128/spectrum.01217-24
|
[17]
|
Mortelé, O., van Kleef-van Koeveringe, S., Vandamme, S., Jansens, H., Goossens, H. and Matheeussen, V. (2024) Epidemiology and Genetic Diversity of Linezolid-Resistant Enterococcus Clinical Isolates in Belgium from 2013 to 2021. Journal of Global Antimicrobial Resistance, 38, 21-26. https://doi.org/10.1016/j.jgar.2024.04.010
|
[18]
|
Zarzecka, U., Zakrzewski, A.J., Chajęcka-Wierzchowska, W. and Zadernowska, A. (2022) Linezolid-Resistant Enterococcus spp. Isolates from Foods of Animal Origin—The Genetic Basis of Acquired Resistance. Foods, 11, Article 975. https://doi.org/10.3390/foods11070975
|
[19]
|
Lei, C., Chen, X., Liu, S., Li, T., Chen, Y. and Wang, H. (2021) Clonal Spread and Horizontal Transfer Mediate Dissemination of Phenicol-Oxazolidinone-Tetracycline Resistance Gene poxtA in Enterococci Isolates from a Swine Farm in China. Veterinary Microbiology, 262, Article ID: 109219. https://doi.org/10.1016/j.vetmic.2021.109219
|
[20]
|
Almeida-Santos, A.C., Duarte, B., Tedim, A.P., Teixeira, M.J., Prata, J.C., Azevedo, R.M.S., et al. (2025) The Healthy Human Gut Can Take It All: Vancomycin-Variable, Linezolid-Resistant Strains and Specific Bacteriocin-Species Interplay in enterococcus spp. Applied and Environmental Microbiology, 91, e01699-24. https://doi.org/10.1128/aem.01699-24
|
[21]
|
Nasir, S.A.R., Zeeshan, M., Ghanchi, N., Saeed, N., Ghayas, H., Zaka, S., et al. (2024) Linezolid-Resistant Enterococcus faecium Clinical Isolates from Pakistan: A Genomic Analysis. BMC Microbiology, 24, Article No. 347. https://doi.org/10.1186/s12866-024-03491-2
|
[22]
|
Abdullahi, I.N., Lozano, C., Zarazaga, M., Latorre-Fernández, J., Hallstrøm, S., Rasmussen, A., et al. (2024) Genomic Characterization and Phylogenetic Analysis of Linezolid-Resistant Enterococcus from the Nostrils of Healthy Hosts Identifies Zoonotic Transmission. Current Microbiology, 81, Article No. 225. https://doi.org/10.1007/s00284-024-03737-2
|
[23]
|
Li, P., Gao, M., Feng, C., Yan, T., Sheng, Z., Shi, W., et al. (2022) Molecular Characterization of Florfenicol and Oxazolidinone Resistance in Enterococcus Isolates from Animals in China. Frontiers in Microbiology, 13, Article 811692. https://doi.org/10.3389/fmicb.2022.811692
|
[24]
|
Cinthi, M., Coccitto, S.N., Fioriti, S., Morroni, G., Simoni, S., Vignaroli, C., et al. (2021) Occurrence of a Plasmid Co-Carrying cfr(D) and poxtA2 Linezolid Resistance Genes in Enterococcus faecalis and Enterococcus casseliflavus from Porcine Manure, Italy. Journal of Antimicrobial Chemotherapy, 77, 598-603. https://doi.org/10.1093/jac/dkab456
|
[25]
|
Schwarz, S., Zhang, W., Du, X., Krüger, H., Feßler, A.T., Ma, S., et al. (2021) Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clinical Microbiology Reviews, 34, e0018820. https://doi.org/10.1128/cmr.00188-20
|
[26]
|
D’Andrea, M.M., Antonelli, A., Brenciani, A., Di Pilato, V., Morroni, G., Pollini, S., et al. (2019) Characterization of Tn6349, a Novel Mosaic Transposon Carrying poxtA, cfr and Other Resistance Determinants, Inserted in the Chromosome of an ST5-MRSA-II Strain of Clinical Origin. Journal of Antimicrobial Chemotherapy, 74, 2870-2875. https://doi.org/10.1093/jac/dkz278
|
[27]
|
Top, J., Willems, R. and Bonten, M. (2008) Emergence of CC17 Enterococcus faecium: From Commensal to Hospital-Adapted Pathogen. FEMS Immunology & Medical Microbiology, 52, 297-308. https://doi.org/10.1111/j.1574-695x.2008.00383.x
|
[28]
|
Lee, T., Pang, S., Abraham, S. and Coombs, G.W. (2019) Antimicrobial-Resistant CC17 Enterococcus faecium: The Past, the Present and the Future. Journal of Global Antimicrobial Resistance, 16, 36-47. https://doi.org/10.1016/j.jgar.2018.08.016
|
[29]
|
Dang, X., Jiang, J., Chen, S., Huang, W., Jiao, Y., Wang, S., et al. (2025) Prevalence and Risk Factors of Multidrug-Resistant Enterococcal Infection in Clinical Dogs and Cats—China, 2018-2021. China CDC Weekly, 7, 77-83. https://doi.org/10.46234/ccdcw2025.017
|
[30]
|
Kohler, V., Vaishampayan, A. and Grohmann, E. (2018) Broad-Host-Range Inc18 Plasmids: Occurrence, Spread and Transfer Mechanisms. Plasmid, 99, 11-21. https://doi.org/10.1016/j.plasmid.2018.06.001
|
[31]
|
Egan, S.A., Shore, A.C., O’Connell, B., Brennan, G.I. and Coleman, D.C. (2020) Linezolid Resistance in Enterococcus faecium and Enterococcus faecalis from Hospitalized Patients in Ireland: High Prevalence of the MDR Genes optrA and poxtA in Isolates with Diverse Genetic Backgrounds. Journal of Antimicrobial Chemotherapy, 75, 1704-1711. https://doi.org/10.1093/jac/dkaa075
|
[32]
|
Shen, W., Cai, C., Dong, N., Chen, J., Zhang, R. and Cai, J. (2024) Mapping the Widespread Distribution and Transmission Dynamics of Linezolid Resistance in Humans, Animals, and the Environment. Microbiome, 12, Article No. 52. https://doi.org/10.1186/s40168-023-01744-2
|
[33]
|
Holman, D.B., Gzyl, K.E. and Kommadath, A. (2024) Florfenicol Administration in Piglets Co-Selects for Multiple Antimicrobial Resistance Genes. mSystems, 9, e01250-24. https://doi.org/10.1128/msystems.01250-24
|
[34]
|
Shan, X., Li, C., Zhang, L., Zou, C., Yu, R., Schwarz, S., et al. (2024) poxtA Amplification and Mutations in 23S rRNA Confer Enhanced Linezolid Resistance in Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 79, 3199-3203. https://doi.org/10.1093/jac/dkae342
|
[35]
|
Chen, W., Wang, Q., Wu, H., Xia, P., Tian, R., Li, R., et al. (2024) Molecular Epidemiology, Phenotypic and Genomic Characterization of Antibiotic-Resistant Enterococcal Isolates from Diverse Farm Animals in Xinjiang, China. Science of the Total Environment, 912, Article ID: 168683. https://doi.org/10.1016/j.scitotenv.2023.168683
|