非酒精性脂肪性肝炎相关肝细胞癌的发病机制和治疗
Pathogenesis and Treatment of Hepatocellular Carcinoma Associated with Nonalcoholic Steatohepatitis
DOI: 10.12677/acm.2025.1551592, PDF, HTML, XML,   
作者: 梁舒惟, 陈辉帆, 韦慧怡, 张沚汀, 韩 澳, 李 宇:广西中医药大学研究生院,广西 南宁;庞浇安, 俞 渊*:广西中医药大学第一附属医院肝胆外科,广西 南宁
关键词: 肝细胞癌非酒精性脂肪性肝病疾病进展防治策略Hepatocellular Carcinoma Non-Alcoholic Fatty Liver Disease Disease Progression Prevention and Treatment Strategies
摘要: 肝细胞癌(HCC)目前仍是全球最常见的恶性肿瘤之一,具有较高的发病率和死亡率。近些年的趋势表明,非酒精性脂肪性肝病(NAFLD)的全球发病率在不断增加,成为HCC新病例的主要贡献者之一。本文对非酒精性脂肪性肝炎相关肝细胞癌的流行病学、发病机制、临床管理进行综述,以期为进一步研究和治疗非酒精性脂肪性肝炎相关肝细胞癌提供新的思路和参考。
Abstract: Hepatocellular carcinoma (HCC) remains one of the most common malignant tumors globally, with high incidence and mortality rates. Trends in recent years indicate that the global prevalence of non-alcoholic fatty liver disease (NAFLD) has been increasing, making it one of the primary contributors to new HCC cases. This article reviews the epidemiology, pathogenesis, and clinical management of hepatocellular carcinoma associated with nonalcoholic steatohepatitis (NASH), aiming to provide new insights and references for further research and treatment of this condition.
文章引用:梁舒惟, 庞浇安, 陈辉帆, 韦慧怡, 张沚汀, 韩澳, 李宇, 俞渊. 非酒精性脂肪性肝炎相关肝细胞癌的发病机制和治疗[J]. 临床医学进展, 2025, 15(5): 2063-2069. https://doi.org/10.12677/acm.2025.1551592

1. 流行病学

据报道[1],非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)的全球患病率估计为24%,南美洲和中东的感染率最高,其次是亚洲、美国和欧洲。NAFLD的特征是脂肪变性,也就是肝细胞中脂质过度积累,而脂肪变性以更严重的炎症形式发展,即非酒精性脂肪性肝炎(nonalcoholic steatohepatitis, NASH),又可能导致肝细胞癌(hepatocellular carcinoma, HCC)的发生。预计未来10年,NASH的发病率将增加高达56% [2]。由于当代生活方式的改变,肥胖症及其相关并发症的大流行正在迅速改变包括HCC在内的多种癌症的流行病学,其中NAFLD和NASH相关HCC的上升速度比HCV、HBV和其他HCC的病因更快[3]

2. 发病机制

2.1. 脂毒性

有研究发现[4],脂毒性会推动NAFLD患者亚组发生进行性肝脏炎症和纤维化,导致NASH的发生,甚至进展为肝硬化和肝癌。肝游离胆固醇(FC)超负荷介导的脂毒性是坏死炎症和纤维化的机制驱动因素,这是NASH的特征之一,在许多动物模型和一些NASH患者中也是如此。

而饮食、生活方式、肥胖、关键遗传多态性和继发于胰岛素抵抗的高胰岛素血症是导致胆固醇信号异常的关键驱动因素,从而导致FC在肝细胞内积累[5]。过量FC会对肝细胞、库普弗细胞(KCs)和肝星状细胞(HSC)产生一定的影响,在NASH的进展中也起着非常重要的作用,过量FC在这些细胞中诱导细胞毒性或促炎和促纤维化作用的亚细胞机制。脂毒性对不同的细胞也有着不同的影响。肝细胞会代谢血液中的脂质(甘油三酯和胆固醇),当其中脂毒性物质持续升高超过肝细胞的运输能力时,肝细胞损伤会加剧,疾病会发展到更严重的情况[6]。HSC是参与肝纤维化发生的主要细胞群,也是NASH进展的主要原因,脂毒性物质对TLR4的激活会促进HSC中的炎症和纤维化信号传导[7]。KCs细胞调节肝脏微环境的炎症反应,并通过分泌促炎细胞因子参与肝病的发展[8]

2.2. 遗传因素

NAFLD发生发展具有复杂的病理生理学,虽然它通常是由导致肥胖的慢性正能量平衡引起的,但有研究发现[9]在遗传易感性的背景下伴有内脏脂肪的显着积累。这种遗传易感性包括常见和罕见的基因变异,这些变异会累积增加NAFLD的风险。

一项荟萃分析[10]通过招募HBV相关HCC病例、HBV持续携带者和HBV自然清除受试者进行了病例对照研究。结果表明,PNPLA3 rs738409可能会增加健康人群患HCC的风险,但对HBV相关受试者患HCC的影响很小。

Patati样磷脂酶结构域蛋白3 (patatin like phospholipase domain containing 3, PNPLA3)也是相关的遗传风险因素,其单核苷酸多态性与代谢功能障碍相关脂肪性肝病风险增加、更严重的肝脏组织学(即脂肪性肝炎和纤维化的存在)以及肝细胞癌和肝硬化并发症的未来发展有关[11]

跨膜蛋白6超家族成员2 (transmembrane 6 superfamily member 2, TM6SF2)的E167K变体与NAFLD、纤维化和肝硬化以及NAFLD相关癌症也有一定的关联[12],这些都对于后续发现潜在的治疗靶点也有一定意义。

2.3. 肠道微生物

肠道是一个与许多身体器官相连的多功能器官,它在对新陈代谢控制中具有不可替代的作用。有研究[13]使NAFLD患者与健康患者进行对照,通过评估细菌过度生长、口腔转运时间和肠道通透性,发现尽管细菌过度生长的患病率和口腔通过时间没有差异,但NAFLD患者血浆中的肠道通透性、酒精和内毒素水平显著高于对照组。因此,NASH患者可能表现的是更高的肠道通透性,而肠道通透性的增加又使促炎介质不断流向肝脏。还有团队[14]通过对NAFLD相关肝硬化患者的肠道微生物群进行代谢组学的研究,并在离体模型中评估其对外周免疫反应的影响,发现生态失调是NAFLD肝硬化患者微生物群的特征。来自NAFLD相关肝细胞癌(NAFLD-associated HCC, NAFLD-HCC)微生物群的细菌提取物,会引发T细胞免疫抑制表型,其特征是调节性T细胞的扩增和CD8+ T细胞的衰减。也就说明NAFLD-HCC中的肠道微生物群具有独特的微生物组和代谢组特征,可以调节外周免疫反应,在NAFLD-HCC的发展中起着重要作用。

此外,肠道微生物群可以通过营养物质的代谢以及抗炎和促炎化合物的释放来影响全身和肝脏的代谢和炎症状态[15]。NAFLD患者的肝硬化是HCC的最大风险[16]。免疫细胞的作用、相关的分子途径的激活及细胞反应等机制都有可能促使NAFLD-HCC的发生。

除上述因素外,内质网应激、线粒体功能障碍、氧化应激等均有可能影响NASH进展[17]。目前,一些基于活体小鼠模型的实验研究进一步深化了我们对NAFLD发病机制的理解。然而,相关信号通路在HCC发生中的作用优先级尚未明确,且现有研究中采用的动物实验方式及模型,无法完全模拟人类NASH-HCC的疾病特征。因此,仍然需要开发和优化NASH-HCC的临床研究方式,更好地再现人类NASH-HCC病理学特征,并寻找能够阻止NAFLD/NASH进展的药物,这些都是未来重要的研究方向。

3. 临床管理

3.1. 预防和监测

尽管存在许多无创检测和评分系统来描述NAFLD和NASH的特征,但肝活检是唯一公认的NASH诊断方法[18]。有团队[19]通过问卷调查评估人们的总体健康生活方式评分,统计并分析了包括饮食、饮酒、体育活动、久坐行为、睡眠和吸烟在内的六种循证生活方式,最终每一种都与患NAFLD风险之间存在很强的相关性,也就是说较健康的人群中,NAFLD的患病率较低。肝脏是能量代谢的重要器官,能量代谢功能障碍或代谢综合征会影响其功能,导致NAFLD和NASH的进展。因此,控制其进展的主要方法包括针对能量过剩和过度肥胖,或特定的抗炎和抗纤维化疗法[20]。可以通过改变生活方式(饮食、锻炼和身体活动、减肥药、减肥手术)减轻体重,或通过医疗干预帮助限制能量过剩,或使用特定药物用于针对炎症和纤维化。

目前,生活方式干预是预防和控制NASH而不发生纤维化的最重要和最有效的策略。并且越来越多的证据表明[21],肠道–肝脏轴的破坏和微生物衍生的代谢物是NASH的发病机制。对于代谢综合征和NAFLD与体重过重(BMI > 25 kg/m2)和明显肥胖(BMI > 30 kg/m2)的患者,首先要做的就是对体重进行控制。唯一被有力地证明可以改善无严重肝纤维化的NAFLD患者肝损伤的治疗方法是通过饮食减轻体重[22]

对于药物预防,胰岛素增敏剂、降胆固醇药物、肠促胰岛素和细胞因子等药物均可作为NASH治疗靶点的作用。由于胰岛素抵抗是肝脏脂肪堆积过多的主要驱动力,在脂肪性肝炎和纤维化的发生和发展中起着关键作用。因此,格列酮类药物、二甲双胍、MSDC-0602K可以作为胰岛素增敏剂使用,能够一定程度上改善胰岛素抵抗的情况[23]。有团队[24]对NAFLD和NASH的病理机制和潜在药物治疗进行研究,发现了Pegozafermin是一种成纤维细胞生长因子21 (FGF21)类似物,可改善NAFLD和NASH患者的肝纤维化并降低肝脏脂肪分数。甲状腺激素受体-β (THRβ)激动剂Resmetriom是一种肝脏靶向THRβ激动剂,在患者中显示出NASH消退和纤维化消退效应具有抗脂肪、抗炎和抗纤维化作用的治疗剂具有NASH治疗的潜力,且有良好的安全性。

根据当前的EASL临床实践指南中[25],HCC监测计划应用于NASH相关肝硬化个体,主要包括间隔6个月的超声检查,和甲胎蛋白的检测。然而,NASH是一个会影响肾脏、心脏和血管等其他器官的多系统疾病,并且与代谢综合征的组成部分密切相关,因此NASH应作为一种多系统疾病与代谢综合征及其特征一起进行管理[26]。临床医生应考虑根据不同的患者来评估其基础疾病和合并症进行个体化管理,例如管理基础疾病糖尿病、高血压、动脉粥样硬化血脂异常、冠心病等。

但对于NAFLD-HCC的监测策略也有一些阻碍因素,例如肥胖患者的皮下脂肪和肝脏脂肪变性会影响超声检查的结果[27]。与其他病因的HCC患者相比,NAFLD/NASH相关HCC患者更常缺乏肝纤维化的表现,影响早期的监测[28]。因此,如何根据个体风险情况,制定有效的监测计划仍是需要探索的内容。

3.2. 治疗和预后

NAFLD及其更严重的形式NASH代表了一种日益增长的全球流行病和高度未满足的医疗需求,目前还没有特定的用于治疗NASH的疾病特异性疗法[29]。因此当NASH相关的HCC确诊时,治疗方法和预后同样取决于相应的肿瘤分期和Child-Pugh肝功能评分[30]。HCC的治疗方式包括从手术干预和局部区域治疗到全身治疗的一系列选择,影响选择的因素则包括肿瘤特征,如肿瘤大小和数量、有无转移、肝功能障碍的严重程度和肝硬化的程度、门静脉的通畅性、手术风险和患者的整体体能状态等[31]

对于早期、中期的HCC患者来说,经过全面评估全身情况、肝脏储备功能及肝脏肿瘤情况后,符合肝切除术和肝移植治疗条件的患者,外科治疗仍是获得长期生存的重要手段[32]。一项回顾性队列设计研究[33]将通过对比NASH组与非NASH组的相关数据,发现更多的NASH-HCC肿瘤具有微血管浸润,但肿瘤复发率保持较低。在一项病例匹配分析中[34],将代谢相关性肝病相关接受肝切除术的HCC患者与病毒、酒精相关性HCC患者进行对比,认为代谢相关性HCC的肝切除术似乎具有更高但可接受的手术风险。然而,长期结局似乎与临床和病理因素有关,而不是与病因学危险因素有关。有团队[35]通过多变量Cox回归分析发现,NASH-HCC的患者肝移植之后发生肝衰竭、复发性肝炎、排异反应等肝脏相关死亡的风险较低。这些考虑是由于大多数非NASH-HCC人群因乙型肝炎病毒、丙型肝炎病毒或酒精性肝病而导致肝脏疾病,而NASH-HCC患者在诊断为HCC时肝功能障碍的严重程度较低。

局部消融技术为由于病灶大小或位置等因素而不适合手术切除的孤立病灶患者提供了替代治疗选择[36]。此外,对于中期和不可切除的HCC,动脉定向疗法是局部治疗的另一种方式。这些干预措施经动脉实施,包括经动脉栓塞术(transarterial embolization, TAE)、经动脉化疗栓塞术(transarterial chemoembolization, TACE)和经动脉放射栓塞术(transarterial radioembolization, TARE),它们不仅旨在减少流向肿瘤的血流,诱导坏死,而且还将化疗药物或放射剂直接输送到肿瘤[37]

针对晚期HCC和无法进行手术治疗、局部治疗中期HCC患者,可以使用靶向药物小分子酪氨酸激酶抑制剂(tyrosine kinase inhibitor, TKI)和免疫检查点抑制剂(ICIs)进行全身治疗。有团队对三项随机III期临床试验进行荟萃分析[38],非病毒性HCC尤其是代谢相关性HCC,可能因代谢重编程、肝脂质积累、脂毒性驱动的慢性炎症等特征,以及NASH相关异常T细胞活化导致组织损伤进而造成的免疫监视受损,使得ICIs对NASH相关HCC患者的疗效可能较差。但目前相关的数据主要来自临床前研究和回顾性临床,证据水平较低,因此在缺乏前瞻性试验的确凿证据的情况下,免疫治疗的使用不应该取决于病因[39]。而免疫检查点阻断疗法,例如抗程序性细胞死亡PD-1/程序性死亡配体1 (PD-L1)抗体,彻底改变了病毒相关HCC的管理尽管其在治疗许多实体瘤方面具有良好的疗效,但它们在治疗NASH-HCC中的应用仍处于起步阶段[40]

值得注意的是,HCC肿瘤具有高度异质性和不同的基因突变以及多态性形式的遗传疾病,这可能决定当前治疗的有效性。因此,正在进行的临床试验应考虑最具代表性的多态性、基因突变和分子谱,以改进筛查和监测策略,以识别生物标志物,以指导NASH中HCC的早期个体化治疗并延缓其进展[41]。此,对于NASH-HCC的治疗需要更好地个性化治疗决策,根据疾病病因和患者实际临床症状等情况去选择最合适的治疗方法。

4. 结论

HCC目前是癌症相关死亡的第三大原因,生存率较低。许多的数据表明[42],目前NAFLD的流行病学负担是巨大的,并且还在继续增长。随着HBV预防和治疗在全球范围内的普及,HBV导致的死亡人数正在减少,而NAFLD相关死亡人数正在增加,相关的HCC也在增加,其中亚洲的发病病例和死亡人数最多。目前对于HCC的治疗依赖于根治性切除手术、肝移植、化疗、特异性靶向药物和免疫疗法等方式来延长患者的生存期。对于治疗NAFLD-NASH的药物,只有Rezdiffra (resmetirom)被批准使用,而许多其他药物仍在测试中[43]

除肝脏活检外,没有更好的非侵入性检测指标可用于预测NAFLD中的HCC风险。现在的监测指南也并未包含针对非肝硬化NAFLD患者的具体推荐,同时越来越多的证据表明[44],非肝硬化性NAFLD可导致HCC,这凸显了扩大HCC监测标准以包括这一部分患者的必要性。

近十余年来,NAFLD/NASH相关HCC病理生理学领域的研究已取得显著进展。未来,仍需要更多的试验来提供更具有科学性的临床证据,为临床提供更多、更明确的对于NAFLD/NASH相关HCC的监测和治疗方式。

NOTES

*通讯作者。

参考文献

[1] Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20.
https://doi.org/10.1038/nrgastro.2017.109
[2] Fang, J., Celton-Morizur, S. and Desdouets, C. (2023) NAFLD-Related HCC: Focus on the Latest Relevant Preclinical Models. Cancers, 15, Article No. 3723.
https://doi.org/10.3390/cancers15143723
[3] Alencar, R.S.d.S.M., Oliveira, C.P., Chagas, A.L., Fonseca, L.G.d., Maccali, C., Saud, L.R.d.C., et al. (2022) Hepatocellular Carcinoma (HCC) in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD): Screening, Treatment and Survival Analysis in a Brazilian Series. Clinics, 77, Article ID: 100097.
https://doi.org/10.1016/j.clinsp.2022.100097
[4] Ioannou, G.N. (2016) The Role of Cholesterol in the Pathogenesis of Nash. Trends in Endocrinology & Metabolism, 27, 84-95.
https://doi.org/10.1016/j.tem.2015.11.008
[5] Horn, C.L., Morales., A.L., Savard, C., Farrell, G.C. and Ioannou, G.N. (2021) Role of Cholesterol‐Associated Steatohepatitis in the Development of NASH. Hepatology Communications, 6, 12-35.
https://doi.org/10.1002/hep4.1801
[6] Zhao, Z., Zhong, L., Li, P., He, K., Qiu, C., Zhao, L., et al. (2020) Cholesterol Impairs Hepatocyte Lysosomal Function Causing M1 Polarization of Macrophages via Exosomal miR-122-5p. Experimental Cell Research, 387, Article ID: 111738.
https://doi.org/10.1016/j.yexcr.2019.111738
[7] Musso, G., Cassader, M., Paschetta, E. and Gambino, R. (2018) Bioactive Lipid Species and Metabolic Pathways in Progression and Resolution of Nonalcoholic Steatohepatitis. Gastroenterology, 155, 282-302.e8.
https://doi.org/10.1053/j.gastro.2018.06.031
[8] Guo, X., Yin, X., Liu, Z. and Wang, J. (2022) Non-Alcoholic Fatty Liver Disease (NAFLD) Pathogenesis and Natural Products for Prevention and Treatment. International Journal of Molecular Sciences, 23, Article No. 15489.
https://doi.org/10.3390/ijms232415489
[9] Lindén, D. and Romeo, S. (2023) Therapeutic Opportunities for the Treatment of NASH with Genetically Validated Targets. Journal of Hepatology, 79, 1056-1064.
https://doi.org/10.1016/j.jhep.2023.05.007
[10] Wang, P., Wu, C., Li, Y., Gong, Y. and Shen, N. (2020) PNPLA3 Rs738409 Is Not Associated with the Risk of Hepatocellular Carcinoma and Persistent Infection of Hepatitis B Virus (HBV) in HBV-Related Subjects: A Case-Control Study and Meta-Analysis on Asians. Gene, 742, Article ID: 144585.
https://doi.org/10.1016/j.gene.2020.144585
[11] Seko, Y., Lin, H., Wong, V.W. and Okanoue, T. (2024) Impact of pnpla3 in Lean Individuals and in Cryptogenic Steatotic Liver Disease. Liver International, 45, e16164.
https://doi.org/10.1111/liv.16164
[12] Sunami, Y., Rebelo, A. and Kleeff, J. (2021) Lipid Droplet-Associated Factors, PNPLA3, TM6SF2, and HSD17B Proteins in Hepatopancreatobiliary Cancer. Cancers, 13, Article No. 4391.
https://doi.org/10.3390/cancers13174391
[13] Volynets, V., Küper, M.A., Strahl, S., Maier, I.B., Spruss, A., Wagnerberger, S., et al. (2012) Nutrition, Intestinal Permeability, and Blood Ethanol Levels Are Altered in Patients with Nonalcoholic Fatty Liver Disease (NAFLD). Digestive Diseases and Sciences, 57, 1932-1941.
https://doi.org/10.1007/s10620-012-2112-9
[14] Behary, J., Amorim, N., Jiang, X., Raposo, A., Gong, L., McGovern, E., et al. (2021) Gut Microbiota Impact on the Peripheral Immune Response in Non-Alcoholic Fatty Liver Disease Related Hepatocellular Carcinoma. Nature Communications, 12, Article No. 187.
https://doi.org/10.1038/s41467-020-20422-7
[15] Svegliati-Baroni, G., Patrício, B., Lioci, G., Macedo, M.P. and Gastaldelli, A. (2020) Gut-Pancreas-Liver Axis as a Target for Treatment of NAFLD/NASH. International Journal of Molecular Sciences, 21, Article No. 5820.
https://doi.org/10.3390/ijms21165820
[16] Cavalcante, L.N., Dezan, M.G.F., Paz, C.L.d.S.L. and Lyra, A.C. (2022) Risk Factors for Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Arquivos de Gastroenterologia, 59, 540-548.
https://doi.org/10.1590/s0004-2803.202204000-93
[17] Nassir, F. (2022) NAFLD: Mechanisms, Treatments, and Biomarkers. Biomolecules, 12, Article No. 824.
https://doi.org/10.3390/biom12060824
[18] Sheka, A.C., Adeyi, O., Thompson, J., Hameed, B., Crawford, P.A. and Ikramuddin, S. (2020) Nonalcoholic Steatohepatitis: A Review. JAMA, 323, 1175-1183.
[19] Yuan, C., Zhang, C., Geng, X., Feng, C., Su, Y., Wu, Y., et al. (2024) Associations of an Overall Healthy Lifestyle with the Risk of Metabolic Dysfunction-Associated Fatty Liver Disease. BMC Public Health, 24, Article No. 3264.
https://doi.org/10.1186/s12889-024-20663-x
[20] Zhang, C. and Yang, M. (2021) Current Options and Future Directions for NAFLD and NASH Treatment. International Journal of Molecular Sciences, 22, Article No. 7571.
https://doi.org/10.3390/ijms22147571
[21] Xu, X., Poulsen, K.L., Wu, L., Liu, S., Miyata, T., Song, Q., et al. (2022) Targeted Therapeutics and Novel Signaling Pathways in Non-Alcohol-Associated Fatty Liver/Steatohepatitis (NAFL/NASH). Signal Transduction and Targeted Therapy, 7, Article No. 287.
https://doi.org/10.1038/s41392-022-01119-3
[22] Parola, M. and Pinzani, M. (2024) Liver Fibrosis in NAFLD/NASH: From Pathophysiology towards Diagnostic and Therapeutic Strategies. Molecular Aspects of Medicine, 95, Article ID: 101231.
https://doi.org/10.1016/j.mam.2023.101231
[23] Raza, S. (2021) Current Treatment Paradigms and Emerging Therapies for NAFLD/NASH. Frontiers in Bioscience, 26, 206-237.
https://doi.org/10.2741/4892
[24] Wei, S., Wang, L., Evans, P.C. and Xu, S. (2024) NAFLD and NASH: Etiology, Targets and Emerging Therapies. Drug Discovery Today, 29, Article ID: 103910.
https://doi.org/10.1016/j.drudis.2024.103910
[25] Tacke, F., Horn, P., Wai-Sun Wong, V., Ratziu, V., Bugianesi, E., Francque, S., et al. (2024) EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Journal of Hepatology, 81, 492-542.
https://doi.org/10.1016/j.jhep.2024.04.031
[26] Muthiah, M.D. and Sanyal, A.J. (2020) Current Management of Non‐Alcoholic Steatohepatitis. Liver International, 40, 89-95.
https://doi.org/10.1111/liv.14355
[27] Foerster, F., Gairing, S.J., Müller, L. and Galle, P.R. (2022) NAFLD-Driven HCC: Safety and Efficacy of Current and Emerging Treatment Options. Journal of Hepatology, 76, 446-457.
https://doi.org/10.1016/j.jhep.2021.09.007
[28] Pal Chaudhary, S., Reyes, S., Chase, M.L., Govindan, A., Zhao, L., Luther, J., et al. (2023) Resection of NAFLD/NASH-Related Hepatocellular Carcinoma (HCC): Clinical Features and Outcomes Compared with HCC due to Other Etiologies. The Oncologist, 28, 341-350.
https://doi.org/10.1093/oncolo/oyac251
[29] Velliou, R., Legaki, A., Nikolakopoulou, P., Vlachogiannis, N.I. and Chatzigeorgiou, A. (2023) Liver Endothelial Cells in NAFLD and Transition to NASH and HCC. Cellular and Molecular Life Sciences, 80, Article No. 314.
https://doi.org/10.1007/s00018-023-04966-7
[30] Falette Puisieux, M., Pellat, A., Assaf, A., Ginestet, C., Brezault, C., Dhooge, M., et al. (2022) Therapeutic Management of Advanced Hepatocellular Carcinoma: An Updated Review. Cancers, 14, Article No. 2357.
https://doi.org/10.3390/cancers14102357
[31] Shi, Y., Taherifard, E., Saeed, A. and Saeed, A. (2024) MASLD-Related HCC: A Comprehensive Review of the Trends, Pathophysiology, Tumor Microenvironment, Surveillance, and Treatment Options. Current Issues in Molecular Biology, 46, 5965-5983.
https://doi.org/10.3390/cimb46060356
[32] 中华人民共和国国家卫生健康委员会医政司. 原发性肝癌诊疗指南(2024年版) [J]. 协和医学杂志, 2024, 15(3): 532-559.
[33] Sadler, E.M., Mehta, N., Bhat, M., Ghanekar, A., Greig, P.D., Grant, D.R., et al. (2018) Liver Transplantation for NASH-Related Hepatocellular Carcinoma versus Non-NASH Etiologies of Hepatocellular Carcinoma. Transplantation, 102, 640-647.
https://doi.org/10.1097/tp.0000000000002043
[34] Conci, S., Cipriani, F., Donadon, M., Marchitelli, I., Ardito, F., Famularo, S., et al. (2022) Hepatectomy for Metabolic Associated Fatty Liver Disease (MAFLD) Related HCC: Propensity Case-Matched Analysis with Viral-and Alcohol-Related HCC. European Journal of Surgical Oncology, 48, 103-112.
https://doi.org/10.1016/j.ejso.2021.07.015
[35] Rajendran, L., Murillo Perez, C.F., Ivanics, T., Claasen, M.P.A.W., Hansen, B.E., Wallace, D., et al. (2023) Outcomes of Liver Transplantation in Non-Alcoholic Steatohepatitis (NASH) versus Non-Nash Associated Hepatocellular Carcinoma. HPB, 25, 556-567.
https://doi.org/10.1016/j.hpb.2023.01.019
[36] Khalid, M., Likhitsup, A. and Parikh, N.D. (2025) Embolic and Ablative Therapy for Hepatocellular Carcinoma. Clinics in Liver Disease, 29, 87-103.
https://doi.org/10.1016/j.cld.2024.08.003
[37] Hwang, S.Y., Danpanichkul, P., Agopian, V., Mehta, N., Parikh, N.D., Abou-Alfa, G.K., et al. (2025) Hepatocellular Carcinoma: Updates on Epidemiology, Surveillance, Diagnosis and Treatment. Clinical and Molecular Hepatology, 31, S228-S254.
https://doi.org/10.3350/cmh.2024.0824
[38] Pfister, D., Núñez, N.G., Pinyol, R., Govaere, O., Pinter, M., Szydlowska, M., et al. (2021) NASH Limits Anti-Tumour Surveillance in Immunotherapy-Treated HCC. Nature, 592, 450-456.
https://doi.org/10.1038/s41586-021-03362-0
[39] Pinter, M., Pinato, D.J., Ramadori, P. and Heikenwalder, M. (2022) NASH and Hepatocellular Carcinoma: Immunology and Immunotherapy. Clinical Cancer Research, 29, 513-520.
https://doi.org/10.1158/1078-0432.ccr-21-1258
[40] Guo, Z., Yao, Z., Huang, B., Wu, D., Li, Y., Chen, X., et al. (2024) MAFLD-Related Hepatocellular Carcinoma: Exploring the Potent Combination of Immunotherapy and Molecular Targeted Therapy. International Immunopharmacology, 140, Article ID: 112821.
https://doi.org/10.1016/j.intimp.2024.112821
[41] Gutiérrez-Cuevas, J., Lucano-Landeros, S., López-Cifuentes, D., Santos, A. and Armendariz-Borunda, J. (2022) Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers, 15, Article No. 23.
https://doi.org/10.3390/cancers15010023
[42] Younossi, Z.M., Kalligeros, M. and Henry, L. (2025) Epidemiology of Metabolic Dysfunction-Associated Steatotic Liver Disease. Clinical and Molecular Hepatology, 31, S32-S50.
https://doi.org/10.3350/cmh.2024.0431
[43] Khare, T., Liu, K., Chilambe, L.O. and Khare, S. (2025) NAFLD and NAFLD Related HCC: Emerging Treatments and Clinical Trials. International Journal of Molecular Sciences, 26, Article No. 306.
https://doi.org/10.3390/ijms26010306
[44] Wu, G., Bajestani, N., Pracha, N., Chen, C. and Makary, M.S. (2024) Hepatocellular Carcinoma Surveillance Strategies: Major Guidelines and Screening Advances. Cancers, 16, Article No. 3933.
https://doi.org/10.3390/cancers16233933