[1]
|
Dan Dunn, J., Alvarez, L.A., Zhang, X. and Soldati, T. (2015) Reactive Oxygen Species and Mitochondria: A Nexus of Cellular Homeostasis. Redox Biology, 6, 472-485. https://doi.org/10.1016/j.redox.2015.09.005
|
[2]
|
Jhurry, N.D., Chakrabarti, M., McCormick, S.P., Holmes-Hampton, G.P. and Lindahl, P.A. (2012) Biophysical Investigation of the Ironome of Human Jurkat Cells and Mitochondria. Biochemistry, 51, 5276-5284. https://doi.org/10.1021/bi300382d
|
[3]
|
Rauen, U., Springer, A., Weisheit, D., Petrat, F., Korth, H., de Groot, H., et al. (2007) Assessment of Chelatable Mitochondrial Iron by Using Mitochondrion‐Selective Fluorescent Iron Indicators with Different Iron‐Binding Affinities. ChemBioChem, 8, 341-352. https://doi.org/10.1002/cbic.200600311
|
[4]
|
Battaglia, A.M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F. and Biamonte, F. (2020) Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells, 9, Article No. 1505. https://doi.org/10.3390/cells9061505
|
[5]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. https://doi.org/10.1038/s41418-017-0012-4
|
[6]
|
Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5
|
[7]
|
Liu, M., Kong, X., Yao, Y., Wang, X., Yang, W., Wu, H., et al. (2022) The Critical Role and Molecular Mechanisms of Ferroptosis in Antioxidant Systems: A Narrative Review. Annals of Translational Medicine, 10, 368-368. https://doi.org/10.21037/atm-21-6942
|
[8]
|
Sabharwal, S.S. and Schumacker, P.T. (2014) Mitochondrial ROS in Cancer: Initiators, Amplifiers or an Achilles’ Heel? Nature Reviews Cancer, 14, 709-721. https://doi.org/10.1038/nrc3803
|
[9]
|
Barrera, G., Gentile, F., Pizzimenti, S., Canuto, R., Daga, M., Arcaro, A., et al. (2016) Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants, 5, Article No. 7. https://doi.org/10.3390/antiox5010007
|
[10]
|
Hou, J., Jiang, C., Wen, X., Li, C., Xiong, S., Yue, T., et al. (2022) ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics. Frontiers in Pharmacology, 13, Article ID: 949863. https://doi.org/10.3389/fphar.2022.949863
|
[11]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239
|
[12]
|
Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609. https://doi.org/10.1021/acschembio.5b00245
|
[13]
|
Zou, Y., Palte, M.J., Deik, A.A., Li, H., Eaton, J.K., Wang, W., et al. (2019) A GPX4-Dependent Cancer Cell State Underlies the Clear-Cell Morphology and Confers Sensitivity to Ferroptosis. Nature Communications, 10, Article No. 1617. https://doi.org/10.1038/s41467-019-09277-9
|
[14]
|
Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., et al. (2022) CD8+ T Cells and Fatty Acids Orchestrate Tumor Ferroptosis and Immunity via ACSL4. Cancer Cell, 40, 365-378.e6. https://doi.org/10.1016/j.ccell.2022.02.003
|
[15]
|
Yang, Y., Zhu, T., Wang, X., Xiong, F., Hu, Z., Qiao, X., et al. (2022) ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers, 14, Article No. 5896. https://doi.org/10.3390/cancers14235896
|
[16]
|
Brown, C.W., Amante, J.J., Goel, H.L. and Mercurio, A.M. (2017) The Α6β4 Integrin Promotes Resistance to Ferroptosis. Journal of Cell Biology, 216, 4287-4297. https://doi.org/10.1083/jcb.201701136
|
[17]
|
Wu, J., Minikes, A.M., Gao, M., Bian, H., Li, Y., Stockwell, B.R., et al. (2019) Intercellular Interaction Dictates Cancer Cell Ferroptosis via NF2-YAP Signalling. Nature, 572, 402-406. https://doi.org/10.1038/s41586-019-1426-6
|
[18]
|
Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., et al. (2019) Ischemia-Induced ACSL4 Activation Contributes to Ferroptosis-Mediated Tissue Injury in Intestinal Ischemia/Reperfusion. Cell Death & Differentiation, 26, 2284-2299. https://doi.org/10.1038/s41418-019-0299-4
|
[19]
|
Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S.H., et al. (2020) The Role of Ferroptosis in Ionizing Radiation-Induced Cell Death and Tumor Suppression. Cell Research, 30, 146-162. https://doi.org/10.1038/s41422-019-0263-3
|
[20]
|
Reeves, A.R., Sansbury, B.E., Pan, M., Han, X., Spite, M. and Greenberg, A.S. (2021) Myeloid-Specific Deficiency of Long-Chain Acyl Coa Synthetase 4 Reduces Inflammation by Remodeling Phospholipids and Reducing Production of Arachidonic Acid-Derived Proinflammatory Lipid Mediators. The Journal of Immunology, 207, 2744-2753. https://doi.org/10.4049/jimmunol.2100393
|
[21]
|
Zhang, J., Liu, Y., Li, Q., Zuo, L., Zhang, B., Zhao, F., et al. (2023) ACSL4: A Double-Edged Sword Target in Multiple Myeloma, Promotes Cell Proliferation and Sensitizes Cell to Ferroptosis. Carcinogenesis, 44, 242-251. https://doi.org/10.1093/carcin/bgad015
|
[22]
|
Miao, Z., Tian, W., Ye, Y., Gu, W., Bao, Z., Xu, L., et al. (2022) Hsp90 Induces Acsl4-Dependent Glioma Ferroptosis via Dephosphorylating Ser637 at Drp1. Cell Death & Disease, 13, Article No. 548. https://doi.org/10.1038/s41419-022-04997-1
|
[23]
|
Liu, H., Xue, H., Guo, Q., Xue, X., Yang, L., Zhao, K., et al. (2025) Ferroptosis Meets Inflammation: A New Frontier in Cancer Therapy. Cancer Letters, 620, Article ID: 217696. https://doi.org/10.1016/j.canlet.2025.217696
|
[24]
|
Liu, J., Zhang, C., Wang, J., Hu, W. and Feng, Z. (2020) The Regulation of Ferroptosis by Tumor Suppressor p53 and Its Pathway. International Journal of Molecular Sciences, 21, Article No. 8387. https://doi.org/10.3390/ijms21218387
|
[25]
|
Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282. https://doi.org/10.1038/s41580-020-00324-8
|
[26]
|
Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. https://doi.org/10.1016/j.molcel.2015.06.011
|
[27]
|
Yang, C., Ko, B., Hensley, C.T., Jiang, L., Wasti, A.T., Kim, J., et al. (2014) Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial Pyruvate Transport. Molecular Cell, 56, 414-424. https://doi.org/10.1016/j.molcel.2014.09.025
|
[28]
|
Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A. and Feng, Z. (2010) Glutaminase 2, a Novel P53 Target Gene Regulating Energy Metabolism and Antioxidant Function. Proceedings of the National Academy of Sciences, 107, 7455-7460. https://doi.org/10.1073/pnas.1001006107
|
[29]
|
Araujo, L., Khim, P., Mkhikian, H., Mortales, C. and Demetriou, M. (2017) Glycolysis and Glutaminolysis Cooperatively Control T Cell Function by Limiting Metabolite Supply to N-Glycosylation. eLife, 6, e21330. https://doi.org/10.7554/elife.21330
|
[30]
|
LaMonte, G., Tang, X., Chen, J.L., Wu, J., Ding, C.C., Keenan, M.M., et al. (2013) Acidosis Induces Reprogramming of Cellular Metabolism to Mitigate Oxidative Stress. Cancer & Metabolism, 1, Article No. 23. https://doi.org/10.1186/2049-3002-1-23
|
[31]
|
Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194. https://doi.org/10.1146/annurev-bioeng-071516-044546
|
[32]
|
Suzuki, S., Venkatesh, D., Kanda, H., Nakayama, A., Hosokawa, H., Lee, E., et al. (2022) GLS2 Is a Tumor Suppressor and a Regulator of Ferroptosis in Hepatocellular Carcinoma. Cancer Research, 82, 3209-3222. https://doi.org/10.1158/0008-5472.can-21-3914
|
[33]
|
Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., et al. (2022) Wnt/Beta-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer. Cell Death & Differentiation, 29, 2190-2202. https://doi.org/10.1038/s41418-022-01008-w
|
[34]
|
He, Q., Chen, N., Wang, X., Li, P., Liu, L., Rong, Z., et al. (2023) Prognostic Value and Immunological Roles of GPX3 in Gastric Cancer. International Journal of Medical Sciences, 20, 1399-1416. https://doi.org/10.7150/ijms.85253
|
[35]
|
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0
|
[36]
|
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2
|
[37]
|
Soula, M., Weber, R.A., Zilka, O., Alwaseem, H., La, K., Yen, F., et al. (2020) Metabolic Determinants of Cancer Cell Sensitivity to Canonical Ferroptosis Inducers. Nature Chemical Biology, 16, 1351-1360. https://doi.org/10.1038/s41589-020-0613-y
|
[38]
|
Barayeu, U., Schilling, D., Eid, M., Xavier da Silva, T.N., Schlicker, L., Mitreska, N., et al. (2022) Hydropersulfides Inhibit Lipid Peroxidation and Ferroptosis by Scavenging Radicals. Nature Chemical Biology, 19, 28-37. https://doi.org/10.1038/s41589-022-01145-w
|
[39]
|
Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., et al. (2020) Energy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234. https://doi.org/10.1038/s41556-020-0461-8
|
[40]
|
Li, C., Dong, X., Du, W., Shi, X., Chen, K., Zhang, W., et al. (2020) LKB1-AMPK Axis Negatively Regulates Ferroptosis by Inhibiting Fatty Acid Synthesis. Signal Transduction and Targeted Therapy, 5, Article No. 187. https://doi.org/10.1038/s41392-020-00297-2
|
[41]
|
Zhao, Y., Li, M., Yao, X., Fei, Y., Lin, Z., Li, Z., et al. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487. https://doi.org/10.1016/j.celrep.2020.108487
|
[42]
|
Zhao, L., Zhou, X., Xie, F., Zhang, L., Yan, H., Huang, J., et al. (2022) Ferroptosis in Cancer and Cancer Immunotherapy. Cancer Communications, 42, 88-116. https://doi.org/10.1002/cac2.12250
|
[43]
|
Ma, P., Xiao, H., Yu, C., Liu, J., Cheng, Z., Song, H., et al. (2017) Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 17, 928-937. https://doi.org/10.1021/acs.nanolett.6b04269
|
[44]
|
Chow, E.K. and Ho, D. (2013) Cancer Nanomedicine: From Drug Delivery to Imaging. Science Translational Medicine, 5, 216rv214. https://doi.org/10.1126/scitranslmed.3005872
|
[45]
|
An, Y., Zhu, J., Liu, F., Deng, J., Meng, X., Liu, G., et al. (2019) Boosting the Ferroptotic Antitumor Efficacy via Site-Specific Amplification of Tailored Lipid Peroxidation. ACS Applied Materials & Interfaces, 11, 29655-29666. https://doi.org/10.1021/acsami.9b10954
|
[46]
|
Wang, X., Hua, P., He, C. and Chen, M. (2022) Non-Apoptotic Cell Death-Based Cancer Therapy: Molecular Mechanism, Pharmacological Modulators, and Nanomedicine. Acta Pharmaceutica Sinica B, 12, 3567-3593. https://doi.org/10.1016/j.apsb.2022.03.020
|
[47]
|
Gasparri, M.L., Besharat, Z.M., Farooqi, A.A., Khalid, S., Taghavi, K., Besharat, R.A., et al. (2018) MiRNAs and Their Interplay with PI3K/AKT/mTOR Pathway in Ovarian Cancer Cells: A Potential Role in Platinum Resistance. Journal of Cancer Research and Clinical Oncology, 144, 2313-2318. https://doi.org/10.1007/s00432-018-2737-y
|
[48]
|
Wiczling, P., Daghir-Wojtkowiak, E., Kaliszan, R., Markuszewski, M.J., Limon, J., Koczkowska, M., et al. (2019) Bayesian Multilevel Model of MicroRNA Levels in Ovarian-Cancer and Healthy Subjects. PLOS ONE, 14, e0221764. https://doi.org/10.1371/journal.pone.0221764
|
[49]
|
Mei, Y., Jiang, P., Shen, N., Fu, S. and Zhang, J. (2020) Identification of miRNA-mRNA Regulatory Network and Construction of Prognostic Signature in Cervical Cancer. DNA and Cell Biology, 39, 1023-1040. https://doi.org/10.1089/dna.2020.5452
|
[50]
|
Chen, X. and Zhang, N. (2018) Downregulation of lncRNA NEAT12 Radiosensitizes Hepatocellular Carcinoma Cells through Regulation of miR-101-3p/WEE1 Axis. Cell Biology International, 43, 44-55. https://doi.org/10.1002/cbin.11077
|
[51]
|
Luan, C., Li, Y., Liu, Z. and Zhao, C. (2020) Long Noncoding RNA MALAT1 Promotes the Development of Colon Cancer by Regulating miR-101-3p/STC1 Axis. OncoTargets and Therapy, 13, 3653-3665. https://doi.org/10.2147/ott.s242300
|
[52]
|
Li, K., Jiang, Y., Xiang, X., Gong, Q., Zhou, C., Zhang, L., et al. (2020) Long Non‐Coding RNA SNHG6 Promotes the Growth and Invasion of Non‐Small Cell Lung Cancer by Downregulating miR-101-3p. Thoracic Cancer, 11, 1180-1190. https://doi.org/10.1111/1759-7714.13371
|
[53]
|
Luo, Y., Niu, G., Yi, H., Li, Q., Wu, Z., Wang, J., et al. (2021) Nanomedicine Promotes Ferroptosis to Inhibit Tumour Proliferation in Vivo. Redox Biology, 42, Article ID: 101908. https://doi.org/10.1016/j.redox.2021.101908
|
[54]
|
Chen, Q., Espey, M.G., Krishna, M.C., Mitchell, J.B., Corpe, C.P., Buettner, G.R., et al. (2005) Pharmacologic Ascorbic Acid Concentrations Selectively Kill Cancer Cells: Action as a Pro-Drug to Deliver Hydrogen Peroxide to Tissues. Proceedings of the National Academy of Sciences, 102, 13604-13609. https://doi.org/10.1073/pnas.0506390102
|
[55]
|
Xiao, H., Du, M., Sun, X., Xu, R., Li, D., Yue, S., et al. (2024) A Highly Biocompatible Polyoxotungstate with Fenton‐Like Reaction Activity for Potent Chemodynamic Therapy of Tumors. Angewandte Chemie International Edition, 64, e202422949. https://doi.org/10.1002/anie.202422949
|
[56]
|
Xi, S., Yang, Y., Suo, J. and Sun, T. (2022) Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 873369. https://doi.org/10.3389/fbioe.2022.873369
|
[57]
|
Park, E. and Chung, S.W. (2019) ROS-Mediated Autophagy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822. https://doi.org/10.1038/s41419-019-2064-5
|
[58]
|
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J. and Jiang, X. (2016) Ferroptosis Is an Autophagic Cell Death Process. Cell Research, 26, 1021-1032. https://doi.org/10.1038/cr.2016.95
|
[59]
|
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. https://doi.org/10.1080/15548627.2016.1187366
|
[60]
|
Liu, X., Zhao, P., Wang, X., Wang, L., Zhu, Y., Song, Y., et al. (2019) Celastrol Mediates Autophagy and Apoptosis via the ROS/JNK and Akt/mTOR Signaling Pathways in Glioma Cells. Journal of Experimental & Clinical Cancer Research, 38, Article No. 184. https://doi.org/10.1186/s13046-019-1173-4
|
[61]
|
Fu, H., Wang, C., Yang, D., Wei, Z., Xu, J., Hu, Z., et al. (2018) Curcumin Regulates Proliferation, Autophagy, and Apoptosis in Gastric Cancer Cells by Affecting PI3K and P53 Signaling. Journal of Cellular Physiology, 233, 4634-4642. https://doi.org/10.1002/jcp.26190
|
[62]
|
Wei, S., Qiu, T., Yao, X., Wang, N., Jiang, L., Jia, X., et al. (2020) Arsenic Induces Pancreatic Dysfunction and Ferroptosis via Mitochondrial ROS-Autophagy-Lysosomal Pathway. Journal of Hazardous Materials, 384, Article ID: 121390. https://doi.org/10.1016/j.jhazmat.2019.121390
|
[63]
|
Andreani, C., Bartolacci, C. and Scaglioni, P.P. (2022) Ferroptosis: A Specific Vulnerability of RAS-Driven Cancers? Frontiers in Oncology, 12, Article ID: 923915. https://doi.org/10.3389/fonc.2022.923915
|
[64]
|
Lee, N., Carlisle, A.E., Peppers, A., Park, S.J., Doshi, M.B., Spears, M.E., et al. (2021) xCT-Driven Expression of GPX4 Determines Sensitivity of Breast Cancer Cells to Ferroptosis Inducers. Antioxidants, 10, Article No. 317. https://doi.org/10.3390/antiox10020317
|
[65]
|
Ye, F., Chai, W., Xie, M., Yang, M., Yu, Y., Cao, L., et al. (2019) HMGB1 Regulates Erastin-Induced Ferroptosis via RAS-JNK/p38 Signaling in HL-60/NRAS (Q61L) Cells. American Journal of Cancer Research, 9, 730-739.
|
[66]
|
Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Organelle-Specific Regulation of Ferroptosis. Cell Death & Differentiation, 28, 2843-2856. https://doi.org/10.1038/s41418-021-00859-z
|
[67]
|
Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024) 7-Dehydrocholesterol Dictates Ferroptosis Sensitivity. Nature, 626, 411-418. https://doi.org/10.1038/s41586-023-06983-9
|
[68]
|
Wang, H., Wang, C., Li, B., Zheng, C., Liu, G., Liu, Z., et al. (2023) Discovery of Ml210-Based Glutathione Peroxidase 4 (GPX4) Degrader Inducing Ferroptosis of Human Cancer Cells. European Journal of Medicinal Chemistry, 254, Article ID: 115343. https://doi.org/10.1016/j.ejmech.2023.115343
|
[69]
|
Cheff, D.M., Huang, C., Scholzen, K.C., Gencheva, R., Ronzetti, M.H., Cheng, Q., et al. (2023) The Ferroptosis Inducing Compounds RSL3 and ML162 Are Not Direct Inhibitors of GPX4 but of TXNRD1. Redox Biology, 62, Article ID: 102703. https://doi.org/10.1016/j.redox.2023.102703
|
[70]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[71]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
|
[72]
|
McBean, G.J. (2011) The Transsulfuration Pathway: A Source of Cysteine for Glutathione in Astrocytes. Amino Acids, 42, 199-205. https://doi.org/10.1007/s00726-011-0864-8
|
[73]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
|
[74]
|
Shimada, K., Hayano, M., Pagano, N.C. and Stockwell, B.R. (2016) Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity. Cell Chemical Biology, 23, 225-235. https://doi.org/10.1016/j.chembiol.2015.11.016
|