铁死亡在肿瘤相关的研究进展
Research Progress of Ferroptosis in Tumor-Related Studies
DOI: 10.12677/acm.2025.1551597, PDF, HTML, XML,    科研立项经费支持
作者: 刘春东, 雷小楠, 樊清睿:西安医学院研究生处,陕西 西安;杜 春*:陕西省人民医院泌尿外科,陕西 西安
关键词: 铁死亡纳米载体mitoROSmiR-101-3pAscACSL4GPX4Ferroptosis Nanocarrier mitoROS miR-101-3p Asc ACSL4 GPX4
摘要: 铁是几乎所有生物系统中必不可少的金属。然而,细胞内的铁含量需要严格调节,因为过量的铁会随着ROS的产生而产生破坏性影响,铁死亡是一种新型的由铁依赖性脂质过氧化作用引起的氧化调节细胞死亡。铁死亡涉及遗传、代谢和蛋白质的调节、触发和执行机制,在很大程度上与其他形式的受调节细胞死亡不重叠。脂质代谢对于肿瘤的增殖以及侵袭、转染都具有很重要的作用,例如细胞膜层面的高水平膜脂质与肿瘤细胞抵御活性氧(ROS)的损伤密切相关,由于高饱和度的膜脂对于氧化反应的刺激不敏感这为肿瘤细胞无形中提供了保护作用。目前主流的肿瘤化疗采用诱导凋亡的方式杀死或抑制肿瘤细胞。然而,越来越明显地是,肿瘤细胞可能对这些依赖凋亡的抗肿瘤方式表现出内在或获得性抵抗,从而大大增加了治疗失败和治疗后复发的风险。对于肿瘤而言,越来越多研究表明,在肿瘤组织中,铁死亡被显著抑制,导致了肿瘤不受控制地转移以及侵袭,这也为调节靶向肿瘤细胞的死亡对于肿瘤的免疫治疗提供了一种新的治疗方式以及为其他以异常细胞增生的疾病提供新的治疗思路。有趣的是,治疗耐药的癌细胞,特别是那些间充质状态和易于转移的癌细胞,非常容易发生铁死亡。目前许多研究证实:铁死亡与肿瘤存在密切的联系,并且涉及一系列机制,并且铁死亡还可以根除一些凋亡不敏感的肿瘤细胞,激活铁死亡途径可能是克服传统癌症治疗耐药机制的潜在策略。故此铁死亡的相关研究进展对于肿瘤的治疗而言具有重要的意义。
Abstract: Iron is an essential metal in almost all biological systems. However, the intracellular iron content needs to be strictly regulated because excessive iron can have destructive effects along with the generation of reactive oxygen species (ROS). Ferroptosis is a novel type of oxidative regulated cell death caused by iron-dependent lipid peroxidation. Ferroptosis involves the regulatory, triggering and execution mechanisms of genetics, metabolism and proteins, and largely does not overlap with other forms of regulated cell death. Lipid metabolism plays a very important role in the proliferation. High levels of membrane lipids at the cellular membrane level are highly correlated with the ability of tumor cells to avoid damage from reactive oxygen species (ROS). Because membrane lipids with high saturation are insensitive to the stimuli of oxidation reactions, they provide an invisible protective effect for tumor cells. Currently, the mainstream tumor chemotherapy uses the method of inducing apoptosis to kill or inhibit tumor cells. However, it is becoming increasingly evident that tumor cells may exhibit intrinsic or acquired resistance to these apoptosis-dependent anti-tumor approaches, which greatly increases the risk of treatment failure and recurrence after treatment. For tumors, more and more studies have shown that in tumor tissues, ferroptosis is significantly inhibited, leading to uncontrolled metastasis and invasion of tumors. This also provides a new treatment approach for tumor immunotherapy by regulating the death of targeted tumor cells, and offers new treatment ideas for other diseases characterized by abnormal cell proliferation. Interestingly, cancer cells resistant to treatment, especially those in a mesenchymal state and prone to metastasis, are highly susceptible to ferroptosis. Currently, many studies have confirmed that there is a close relationship between ferroptosis and tumors, involving a series of mechanisms. Moreover, ferroptosis can also eradicate some tumor cells that are insensitive to apoptosis. Activating the ferroptosis pathway may be a potential strategy to overcome the resistance mechanisms of traditional cancer treatments. Therefore, the relevant research progress of ferroptosis is of great significance for the treatment of tumors.
文章引用:刘春东, 雷小楠, 樊清睿, 杜春. 铁死亡在肿瘤相关的研究进展[J]. 临床医学进展, 2025, 15(5): 2099-2109. https://doi.org/10.12677/acm.2025.1551597

1. 引言

铁死亡是一种铁依赖性脂质过氧化作用引起的氧化调节的细胞死亡。目前研究发现铁死亡的诱导首先依赖于ATP的产生。线粒体不仅作为铁利用的主要位点和氧化代谢的主要调控因子,还是作为氧化磷酸化(OXPHOS)的主要调节者,线粒体是细胞内ROS的主要产生者[1]。线粒体也是铁代谢和体内平衡的中心。有相关研究表明线粒体内含有高达细胞内总铁的20%~50% [2] [3]。线粒体铁不仅参与铁硫(Fe-S)簇生和血红素合成,还存在一个自由氧化还原活性铁池[4],它积极参与线粒体ROS (mitoROS)的积累。此外虽然DNA氧化损伤也有利于铁死亡,但多不饱和脂肪酸(PUFAs)的脂质过氧化在驱动溶解性细胞死亡中起主要作用。

铁死亡与线粒体具有紧密的联系,二者都涉及遗传,线粒体内具有遗传物质,铁死亡同样受遗传影响,是在基因的调控作用下的一种细胞死亡方式,目前有证据表明,线粒体的代谢活性是产生L-ROS以及铁死亡必需的。并且线粒体通过环境依赖的代谢作用在促进铁死亡中起着重要作用。总之,线粒体的生物发生、动力学和更替影响线粒体的数量和质量,尽管铁死亡与线粒体之间的联系已经得到明确,遗憾的是,潜在分子机制方面依然是一片空白,并且其与环境的关系尚且模糊,这将是一个具有广阔前景的研究领域。

铁死亡在形态和生化上不同于细胞凋亡,细胞凋亡是RCD研究最多的形式[5]。铁死亡伴有细胞肿胀和质膜破裂,而凋亡细胞通常表现为细胞收缩和质膜起泡[6]。铁死亡不需要激活caspase就可完成。自噬降解途径通常保护细胞免于凋亡,但选择性自噬(如铁蛋白自噬和脂质自噬)有利于铁凋亡。综上所述,铁死亡具有独特的细胞和分子机制,它改变了氧化剂和抗氧化剂之间的平衡,有利于质膜和亚细胞细胞器的氧化损伤,在抗氧化系统中也起到了关键作用[7]

2. 铁死亡在肿瘤方面的研究进展

2.1. 肿瘤细胞线粒体ROS修饰

对于肿瘤细胞而言,要完成大量的细胞增殖,必不可少的就是线粒体所提供的ATP,然而,线粒体在产生ATP的同时,也会产生大量的活性氧(ROS),mitoROS作为致癌信号转导级联的第二信使,包括由丝裂原活化蛋白激酶(MAPK)和转录因子NF-κB驱动的信号转导级联[8]。积聚后,mitoROS可与线粒体膜上的PUFAs发生反应,导致脂质过氧化、线粒体DNA (mtDNA)损伤以及ETC复合物中mtDNA编码亚基的随后缺陷[9]。这种修饰不仅在癌细胞中被观察到,而且在那些氧化应激增加的疾病,如慢性炎症和神经退行性疾病中也被观察到[4]。对此而言,区别这种修饰在何种条件下发生肿瘤或者说如何排除其他疾病对于肿瘤的干扰有助于临床化应用的进展。

2.2. ACSL4与肿瘤铁死亡

铁死亡与脂质过氧化密切相关,其中调节PUFA代谢的酶,特别是ACSL4。在免疫治疗相关的情况下,ACSL4激活PUFAs并使癌细胞对铁死亡敏感[10]。酰基辅酶A合成酶长链家族成员4 (ACSL4)和溶血磷脂酰胆碱酰基转移酶3 (LPCAT3) [11]-[13],是铁死亡的重要驱动因素。ACSL4缺乏会损害T细胞介导的抗肿瘤反应,从而加速肿瘤进展,这表明ACSL4可以通过调节肿瘤铁死亡来控制抗肿瘤免疫[14]。ACSL4在铁致死过程中的作用是基于其与辅酶A连接长链pufa的能力,包括花生四烯酸和肾上腺酸,然后它们可以被各种LPCAT酶在磷脂中重新酯化。在三阴性乳腺癌细胞系亚群中的表达与它们对铁死亡诱导剂的敏感性相关[15],这种相关性似乎与治疗耐药的间充质癌细胞和透明细胞肾癌相同。对于乳腺癌而言,三阴性乳腺癌的ACSL4表达明显高于正常乳腺癌,这种标志物对于三阴性乳腺癌的治疗以及预后有着重要的意义。因此,ACSL4表达的抑制可能是细胞对铁死亡脱敏的主要机制,受多种信号通路调节[16] [17]。与此相反的是,ACSL4表达/活性的增加可能在各种病理生理环境下促进铁死亡[18] [19]。不仅如此,ACSL4还可以激活AA启动前列腺素和白三烯合成的生产过程[20]。然后通过释放炎症介质激活非特异性免疫反应。最后来看,目前研究显示,ACSL4在多种肿瘤组织中的表达呈现显著异质性[21] [22],其表达水平的上调或下调与患者预后的关联尚未明确,仍存在争议。此外,依赖单一肿瘤标志物进行预后预测存在局限性,其准确性难以保障。鉴于此,整合多种肿瘤标志物,并运用适宜的算法模型开展深入研究,或可成为精准评估肿瘤患者预后的有效路径。但不得不说,对于肿瘤而言,ACSL4的表现是明显的,而且脂肪酸作为提供能量的重要来源物质,此酶能参与脂肪酸(特别是不饱和脂肪酸)的相关运输过程,重要性不言而喻[23]

2.3. 肿瘤铁死亡调控的代谢通路

2.3.1. p53介导铁死亡

最近研究发现肿瘤抑制因子p53诱导铁死亡可能抑制肿瘤的发展[24]。在存在基础脂质过氧化损伤的情况下,诱导p53可能是通过铁死亡消除某些应激细胞的自然手段。在多种实验过程证明,仅高水平的铁就能引发铁死亡,这表明在某些情况下,释放铁蛋白储存的铁或增加铁进口可能是通过铁死亡消除细胞的一种手段。低至中等剂量的电离辐射已被证明可诱发铁死亡[25]

2.3.2. 谷氨酰胺介导铁死亡

最近的研究表明,谷氨酰胺水解在小鼠胚胎成纤维细胞(MEFs)的铁死亡起始中起着不可或缺的作用[26] [27],谷氨酰胺通过谷氨酰胺水解和三羧酸(TCA)循环降解。谷氨酸脱氢酶1 (GLUD1)通过谷氨酸脱胺将谷氨酸转化为AKG。然而,RNAi介导的GLUD1敲低未能抑制细胞凋亡的发生,谷氨酰胺酶1 (GLS1)和谷氨酰胺酶2 (GLS2)都能催化谷氨酰胺转化为谷氨酸。研究表明,只有GLS2参与铁死亡的调控。进一步的研究表明,GLS2是p53的转录靶点,在p53依赖性铁死亡过程中被上调[28]。那么是否可以通过基因敲除来破坏GLS2这一通路,GLS2最初被认为是肝脏特异性的,但这种蛋白质也在其他组织中被发现。可变剪接导致编码不同亚型的多个转录变体。这一发现也为肝癌方面的提供了新的思路。同时也需要进行动物实验来观察若GLS2基因被靶向敲除后是否对其他健康组织产生影响。

众所周知谷氨酰胺酶催化谷氨酰胺转化为谷氨酸,是与糖酵解、三羧酸(TCA)循环、氧化还原稳态以及脂质和氨基酸稳态等代谢途径交叉的重要途径[29]-[31]。谷氨酰胺酶有两种:谷氨酰胺酶1 (GLS1)和谷氨酰胺酶2 (GLS2)。GLS1目前作为转录起始子得到了大量的验证,但对肿瘤方面具体分子机制尚不明确,GLS2目前已经发现在肝脏肿瘤的表达降低,并且异位表达GLS2会降低肿瘤细胞的生长和集落形成能力[32]。不仅如此,p53肿瘤抑制蛋白激活GLS2的转录,从而积极调节线粒体中有氧能量的产生并抑制同时产生的氧化。

2.3.3. GPX4介导铁死亡

总的来说,大多数肿瘤的铁死亡相关作用通路都是依赖于GPX4的,例如近期研究发现Wnt/β-catenin信号的激活可以减弱细胞脂质ROS的产生,从而抑制胃癌细胞中的铁死亡。β-catenin/TCF4转录复合体直接结合GPX4的启动子区域,诱导其表达,从而抑制铁致细胞死亡。此外,TCF4抑制或敲除通过触发铁死亡显著增强肿瘤对顺铂的体外和体内敏感性[33]。不仅如此,敲除GPX也可明显降低胃癌细胞的增殖速度和细胞活力,并且降低了胃癌的侵袭以及迁移能力[34]。由于Wnt/β-catenin信号不仅是胃癌的重要发病机制,也是体内许多肿瘤的共用通路,因此研究此通路对于肿瘤的治疗以及预后的评估同样具有积极的意义。尽管已有许多此通路抑制剂已经研发,但临床实验仍在进展中,但这并不影响此方面研究对于肿瘤的治疗方式提供了许多思路。

2.3.4. FSP1-CoQ和GCH1-BH4介导铁死亡

对于不依赖GPX4的肿瘤而言,最近的研究表明,FSP1-CoQ是一个与GPX4途径平行的抗氧化系统,仅作用于GPX4缺失的细胞。铁死亡抑制蛋白1 (FSP1),以前称为凋亡诱导因子线粒体相关2 (AIFM2),被确定为铁死亡抑制剂。FSP1作为氧化还原酶通过N端肉豆肉酰化被募集到质膜上,将甲羟戊酸代谢的另一种产物泛醌(CoQ10)还原为亲脂性自由基清除剂泛醇(CoQ10H2),从而限制了脂质ROS在没有GPX4的膜上的积累[35] [36]。除了这一途径外,最近的一项研究发现了另一种不依赖gpx4的铁凋亡阻断途径,涉及GTP环水解酶1 (GCH1),这是四氢生物蝶呤(BH4)产生的限速步骤。BH4通过促进辅酶q10的形成和阻断特定脂质的过氧化作用来抑制铁死亡[37]

2.3.5. 胱氨酸介导铁死亡

目前有新的研究表明,胱氨酸摄取可以独立于GPX4抑制铁死亡,胱氨酸是合成谷胱甘肽(GSH)的重要来源,而GSH反过来允许GPX4来减少脂质过氧化,于是胱氨酸-谷胱甘肽-GPX4这条合成通路也就成为近期研究热点,这对于研究不依赖GPX4的肿瘤相关研究提供了重要的理论基础,不仅如此,依赖于胱氨酸的过氧化硫生物合成可能是对亲铁性条件的重要适应性细胞反应[38]

2.4. 铁死亡与能量代谢

2.4.1. AMPK-ACC-PUFA通路

近年来的研究表明,能量代谢途径参与了铁死亡的调节。由于Warburg效应,癌细胞需要消耗大量葡萄糖,生产力低下。细胞内能量代谢不足导致ATP含量下降,激活AMPK,AMPK是调节细胞能量代谢平衡的重要枢纽。ACC1和ACC2是催化乙酰辅酶a合成丙二酰辅酶a的两种酶,促进脂肪酸合成,抑制脂肪酸氧化。AMPK抑制ACC减少PUFAs的合成,最终抑制铁死亡。以上结果表明,能量代谢激活的AMPK-ACC-PUFA通路可减少多不饱和脂肪酸PUFAs的合成,从而抑制铁死亡[39] [40]。这表明肿瘤细胞通过代谢重编程在一定程度上避免了铁死亡的发生。抑制AMPK-ACC-PUFA信号通路可能通过靶向不同细胞类型的肿瘤及其作用靶点,增强免疫治疗的疗效和加强化疗治疗来产生抗肿瘤作用。需要警惕的是,干扰此条信号通路也可能会带来意想不到的反应,使用此种方式需要谨慎。

2.4.2. HCAR1/MCT1-SREBP1-SCD1通路

肿瘤代谢产生的乳酸除了形成易发生肿瘤转移的微环境外,还可能通过HCAR1/MCT1-SREBP1-SCD1通路抑制肿瘤细胞的铁凋亡,为其转移发展提供了可能[41]。肿瘤产生的乳酸通过抑制糖酵解促进脂质合成,并且乳酸诱导HCAR1 (乳酸受体)和MCT1 (乳酸转运蛋白)的表达[42]。对于生命而言,脂质合成为基础,脂质过氧化为铁死亡发生的前提,故对于影响脂质合成以及分解的途径都可导致生命不同的结局。目前需要对于肿瘤组织中的乳酸的清除机制以及如何才能更高效地清除对于改善肿瘤患者的预后具有重要的意义。

2.5. 外泌体、纳米药物协同治疗新策

结合外泌体技术和纳米药物开发来增加细胞中的游离铁或氧化物是实现铁死亡治疗的有效方法之一。治疗乳腺癌的新方案包括移植肝素(NLC/H)、DOX、β-CD、铁二聚体和TGF-β受体抑制剂(SB431542)共载修饰纳米颗粒,这些方案可以有效地增加细胞内ROS水平,激活铁凋亡途径[42]。此外,外泌体可能能够优化药物递送。通过包覆聚乙烯亚胺和聚乙二醇,构建了多种无氧化铁纳米颗粒。它们在癌症的酸性环境中通过吸收和降解通过外泌体通道运输,随后释放细胞内铁,增强Fenton反应和ROS的产生,导致肿瘤细胞铁凋亡[43]

近年来,已知纳米药物载体可以有效地在体内运输基于核酸的药物以及靶向肿瘤的小分子药物[44],纳米载体被认为是一种体外和体内诱导癌细胞铁死亡的有效方法[45]。纳米材料赋予有效载荷更高的肿瘤特异性、靶向效率、血液循环半衰期和肿瘤部位蓄积率,可降低化疗药物对正常细胞和组织的毒副作用,保证药物的疗效,促进非凋亡细胞死亡的临床应用[46]。例如阿霉素加入在介孔碳纳米颗粒中,在乳腺癌(MCF7)细胞、A549细胞和人宫颈癌(HeLa)细胞中诱导铁凋亡。铁基纳米颗粒可以在酸性溶酶体中释放Fe2+和Fe3+,诱导铁死亡,最终抑制肿瘤生长。并且有相关研究(C’ dots)治疗表明外源性铁超载不能在所有细胞中诱发铁死亡,因此具有特异性,对于未来的治疗具有积极的意义。同时对于纳米载体而言,控制MicroRNAs (miRNA/miR)是一种小的非编码RNA,通过结合靶基因的3’-非翻译区(3’ UTRs)直接控制许多基因的蛋白质表达。此外,已经证明一些microRNAs (miRNAs)是靶向细胞铁死亡的调节因子。因此,通过探索潜在的抑制肿瘤增殖的miRNA,可以获得更好的治疗效果[47]。目前已知miR-101-3p在卵巢癌[48]、宫颈癌[49]和肝细胞癌[50]等几种癌症类型中表达降低,并且在在LC (肺癌)中,miR-101-3p通常被研究为长链非编码RNA MALAT1 [51]或SNHG6 [52]的常见靶向位点,这意味着它可能具有重要的治疗作用。但其在肿瘤的表达水平以及通过何种作用机制尚未见相关报道。TBLR1是一种致癌基因,在宫颈癌和肝癌等肿瘤中起重要作用。我们需要进一步探索TBLR1是否是LC中miR-101-3p的直接靶点。然而,生物信息学预测并不一定与临床基因表达相对应。前人已经通过可靠的纳米转染剂来恢复肿瘤细胞中miR-101-3p的表达以起到抑制肿瘤的作用,这也是各种肿瘤的潜在候选治疗技术[53]。一般来说,检测铁死亡标志物GPX4和PTGS2的表达水平,可以证实细胞ROS和GSH的变化与铁死亡有直接关系。但在目前来看,由于缺乏铁死亡的特异性标志物并且由于具体分子机制的不清,对此尚存在疑问。

目前已经得到证明抗坏血酸(Asc)在药理学浓度下可以选择性地通过在肿瘤细胞外液中积累过氧化氢(H2O2)来杀死癌细胞,并且没有杀死正常细胞[54]。已有研究者使Asc诱导的肿瘤中选择性富集H2O2,结合Fe3+共递送可以通过提高肿瘤部位的羟基自由基和氧水平,分别缓解过氧化起始和增殖。这项实验的目的是协同Asc与脂质包被磷酸钙(CaP)混合纳米载体的作用,该纳米载体可以同时装载极性Fe3+和非极性RSL3,RSL3是一种具有抑制脂质过氧化修复酶(GPX4)机制的铁凋亡诱导剂[45]。由于羟基自由基和氧在脂质过氧化中都起着关键作用[55],不足的是,仅在缺氧组织中得出此结论,对于其余氧供充足的肿瘤而言,氧供充足的肿瘤呢?还需要研究靶向铁死亡在有氧以及缺氧条件下的作用机制以及疗效有无明显区别,此外,在靶向铁死亡时如何避免临近健康细胞免受破坏(细胞器膜以及细胞膜、相关蛋白质)这也是临床化应用中的必须解决的一个问题。并且由于纳米载体不同于普通临床治疗方式(口服或者静脉输入),并且由于常规的载体(病毒)在治疗过程中有巨大的感染风险并且有其他不良反应,故应该考虑何种载体对于临床治疗是安全、有效、以及成本相对可控是很有意义的。对此而言,临床化还有很长的路要走。但不得不说,这种新型治疗方式可以从遗传方面起作用,可以避免相当多的传统治疗方式的副作用,并且具有广阔的研究空间,不仅对于肿瘤而言具有重大意义,对于一些高度依赖遗传性疾病提供了新的治疗思路如纳米药物递送载体在提高基因编辑效率方面也有重要意义[56]

3. 自噬对于铁死亡的协同作用

自噬是一种自然的、受调节的、破坏性的生物过程,它会分解细胞中不必要的或功能失调的成分[57]。已有研究证明自噬通过调节细胞铁稳态和细胞ROS生成来调节铁死亡[58]。自噬在决定细胞在各种应激下的存活中起着至关重要的作用,它通过铁蛋白降解和转铁蛋白受体诱导调节细胞内铁水平。目前有相关研究发现自噬与铁死亡有着紧密的联系,有研究者研究了存在自噬缺陷的细胞进行加入铁死亡诱导剂(erastin)等,有结论证明在此种条件下,细胞铁死亡受到抑制,同时这也说明了铁死亡也有可能是一种自噬性细胞死亡。此外,细胞内亚铁和脂质过氧化水平在Atg5 (自噬相关5)和Atg7被敲除后降低,从而限制了erastin诱导的铁死亡[59]。另一方面来说,铁凋亡和自噬通常协同作用诱导肿瘤细胞死亡,因为自噬可以促进铁蛋白降解,导致铁蛋白中螯合铁的释放,促进铁离子介导的芬顿反应,引起氧化应激。此外,多种天然产物如姜黄素、雷公藤甲素、砷等,可通过抑制PI3K通路、Akt通路或其他途径诱导肿瘤细胞过度自噬,增强抗肿瘤作用[60] [61]。例如,姜黄素下调胃癌细胞中PI3K、p-Akt和p-mTOR的表达,抑制PI3K通路诱导自噬[61],砷通过线粒体ROS-自噬–溶酶体途径诱导胰腺细胞铁死亡[62]

自噬不仅与铁死亡具有协同作用,前人发现延长铁介导的ROS生成可以诱导自噬。然而,ROS抑制剂NAC和mitoTEMPO可以降低erastin诱导的自噬,尽管铁螯合剂DFO或脂质过氧化抑制剂铁他汀-1不能。这表明不依赖铁的ROS参与了诱导erastin介导的自噬。然而令人遗憾的是,自噬诱导的介质尚不清楚。

4. 铁死亡相关生物标志物的研究进展

铁死亡最初是在RAS突变的癌细胞中定义的。许多不同类型的RAS突变的癌细胞对铁死亡诱导表现出敏感性[63]。例如,乳腺癌细胞系似乎依赖于SLC3A2,它编码胱氨酸–谷氨酸逆向转运蛋白(xCT系统)的重链亚基以及SLC7A11。这些数据与表明SLC3A2预测乳腺癌预后不良xCT表达决定乳腺癌细胞铁死亡敏感性的研究一致[64]。RAS信号传导与铁死亡之间密切关系的一种解释可能是RAS的激活可以通过激活转铁蛋白受体1 (TFR1)和抑制铁储存蛋白来增加细胞内铁,因此突变的RAS基因对于铁死亡的发生似乎是不可缺少的[65]。对此而言,针对性诱导靶向肿瘤组织的铁死亡中铁是否都是充足的或者说在其他铁敏感程度不高的组织(例如非上皮组织)中诱导铁死亡是否会存在依赖的铁含量不足而导致失败的情况存在呢,这是一个未知事件。并且,由于铁死亡是发生在全身组织细胞中,有大量的实验表明,对于不同组织细胞铁死亡依赖铁的程度有较大差异[66] [67],对此而言,研究机体每一种组织对于铁死亡的铁依赖程度是一项有助于推动肿瘤专科方向发展的必要措施。目前有研究表明,通过大规模的分析实验,从不同组织的癌细胞中筛选了四种铁致凋亡试剂(erastin,RSL3,ML210和ML162),对大量癌细胞具有不同的铁致凋亡敏感性[68]-[70]。研究人员得出结论,来自造血和淋巴系统、中枢神经系统、自主神经节、卵巢、软组织、肾脏死亡的敏感性有着较明显的差异,并且作用机制也有不同,故此单独研究每一种肿瘤对于铁死亡诱导剂的敏感程度以及效果是很有必要的。研究表明,过氧化物(例如脂质过氧化物[71]、过氧化硫[38])等不仅是重要的自由基清除剂,更是一种重要的铁死亡调节剂。主要机制如下:1、铁死亡的发生可以受硫转移途径和其他途径的调节。在氧化应激下,蛋氨酸可通过硫转移途径转化为胱氨酸,然后合成GSH以进一步发挥其抗氧化作用[72]。细胞对胱氨酸的摄取增加通过向过氧化硫生物合成途径提供硫而独立于GPX4保护铁死亡。2、过氧化物水平的升高使细胞对LPO和铁死亡的抗性增强,而过氧化硫水平的降低使细胞对LPO和铁死亡变得敏感。3、外源性供应或内源性产生的过硫化物有助于快速去除内源性产生的自由基从而抑制脂质过氧化和铁死亡。

5. 结语

自从2012年定义了铁死亡,在这十年间,铁死亡相关研究越来越火热,相关研究成果也如雨后春笋般冒出,但是也有许多目前尚且没有研究清楚的潜在分子机制以及信号通路等。目前而言,由于现有的研究大多都是针对铁死亡信号通路的诱导剂或者是抑制剂,对于铁死亡的信号通路并无明确的特异性生物标志物,无法区别正常组织还是肿瘤组织中相关信号通路的诱导或者抑制情况,由此,临床化的进程将会受到影响,如何寻找以及确定良好的靶点或者生物标志物来使其能准确作用于肿瘤组织或者其他靶向组织是很重要的。目前而言,前列腺素过氧化物酶合成酶PTGS2 [73],NADPH丰度[74],以及由缺氧诱导因子HIF2α激活的脂滴相关蛋白HILPDA是预测肿瘤细胞铁死亡的生物标志物[13]。待生物标志物确定,这对于临床肿瘤治疗而言是一种巨大的突破,以及对于将来相关靶向药物的研发起到至关重要的作用。同时,铁死亡与自噬的协同相关机制的研究也是需要的。最后对于纳米技术以及外泌体技术的研究应用是决定临床化进展速度的重要因素。总的来说,目前的重点应该是确定特异生物标志物以及发展外泌体以及纳米技术的协同技术,同时应该研究潜在的分子机制。目前来看铁死亡相关研究成果对于肿瘤的治疗以及预后有着极其重要的影响。这将是未来一个很有潜力的研究方向,同样也是有着广阔研究前景的。

基金项目

水飞蓟宾靶向GSK3β及肿瘤相关成纤维细胞STAT3逆转膀胱癌顺铂耐药的机制研究(2021LJ-10)。

NOTES

*通讯作者。

参考文献

[1] Dan Dunn, J., Alvarez, L.A., Zhang, X. and Soldati, T. (2015) Reactive Oxygen Species and Mitochondria: A Nexus of Cellular Homeostasis. Redox Biology, 6, 472-485.
https://doi.org/10.1016/j.redox.2015.09.005
[2] Jhurry, N.D., Chakrabarti, M., McCormick, S.P., Holmes-Hampton, G.P. and Lindahl, P.A. (2012) Biophysical Investigation of the Ironome of Human Jurkat Cells and Mitochondria. Biochemistry, 51, 5276-5284.
https://doi.org/10.1021/bi300382d
[3] Rauen, U., Springer, A., Weisheit, D., Petrat, F., Korth, H., de Groot, H., et al. (2007) Assessment of Chelatable Mitochondrial Iron by Using Mitochondrion‐Selective Fluorescent Iron Indicators with Different Iron‐Binding Affinities. ChemBioChem, 8, 341-352.
https://doi.org/10.1002/cbic.200600311
[4] Battaglia, A.M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F. and Biamonte, F. (2020) Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells, 9, Article No. 1505.
https://doi.org/10.3390/cells9061505
[5] Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4
[6] Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The Molecular Machinery of Regulated Cell Death. Cell Research, 29, 347-364.
https://doi.org/10.1038/s41422-019-0164-5
[7] Liu, M., Kong, X., Yao, Y., Wang, X., Yang, W., Wu, H., et al. (2022) The Critical Role and Molecular Mechanisms of Ferroptosis in Antioxidant Systems: A Narrative Review. Annals of Translational Medicine, 10, 368-368.
https://doi.org/10.21037/atm-21-6942
[8] Sabharwal, S.S. and Schumacker, P.T. (2014) Mitochondrial ROS in Cancer: Initiators, Amplifiers or an Achilles’ Heel? Nature Reviews Cancer, 14, 709-721.
https://doi.org/10.1038/nrc3803
[9] Barrera, G., Gentile, F., Pizzimenti, S., Canuto, R., Daga, M., Arcaro, A., et al. (2016) Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants, 5, Article No. 7.
https://doi.org/10.3390/antiox5010007
[10] Hou, J., Jiang, C., Wen, X., Li, C., Xiong, S., Yue, T., et al. (2022) ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics. Frontiers in Pharmacology, 13, Article ID: 949863.
https://doi.org/10.3389/fphar.2022.949863
[11] Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98.
https://doi.org/10.1038/nchembio.2239
[12] Dixon, S.J., Winter, G.E., Musavi, L.S., Lee, E.D., Snijder, B., Rebsamen, M., et al. (2015) Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology, 10, 1604-1609.
https://doi.org/10.1021/acschembio.5b00245
[13] Zou, Y., Palte, M.J., Deik, A.A., Li, H., Eaton, J.K., Wang, W., et al. (2019) A GPX4-Dependent Cancer Cell State Underlies the Clear-Cell Morphology and Confers Sensitivity to Ferroptosis. Nature Communications, 10, Article No. 1617.
https://doi.org/10.1038/s41467-019-09277-9
[14] Liao, P., Wang, W., Wang, W., Kryczek, I., Li, X., Bian, Y., et al. (2022) CD8+ T Cells and Fatty Acids Orchestrate Tumor Ferroptosis and Immunity via ACSL4. Cancer Cell, 40, 365-378.e6.
https://doi.org/10.1016/j.ccell.2022.02.003
[15] Yang, Y., Zhu, T., Wang, X., Xiong, F., Hu, Z., Qiao, X., et al. (2022) ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers. Cancers, 14, Article No. 5896.
https://doi.org/10.3390/cancers14235896
[16] Brown, C.W., Amante, J.J., Goel, H.L. and Mercurio, A.M. (2017) The Α6β4 Integrin Promotes Resistance to Ferroptosis. Journal of Cell Biology, 216, 4287-4297.
https://doi.org/10.1083/jcb.201701136
[17] Wu, J., Minikes, A.M., Gao, M., Bian, H., Li, Y., Stockwell, B.R., et al. (2019) Intercellular Interaction Dictates Cancer Cell Ferroptosis via NF2-YAP Signalling. Nature, 572, 402-406.
https://doi.org/10.1038/s41586-019-1426-6
[18] Li, Y., Feng, D., Wang, Z., Zhao, Y., Sun, R., Tian, D., et al. (2019) Ischemia-Induced ACSL4 Activation Contributes to Ferroptosis-Mediated Tissue Injury in Intestinal Ischemia/Reperfusion. Cell Death & Differentiation, 26, 2284-2299.
https://doi.org/10.1038/s41418-019-0299-4
[19] Lei, G., Zhang, Y., Koppula, P., Liu, X., Zhang, J., Lin, S.H., et al. (2020) The Role of Ferroptosis in Ionizing Radiation-Induced Cell Death and Tumor Suppression. Cell Research, 30, 146-162.
https://doi.org/10.1038/s41422-019-0263-3
[20] Reeves, A.R., Sansbury, B.E., Pan, M., Han, X., Spite, M. and Greenberg, A.S. (2021) Myeloid-Specific Deficiency of Long-Chain Acyl Coa Synthetase 4 Reduces Inflammation by Remodeling Phospholipids and Reducing Production of Arachidonic Acid-Derived Proinflammatory Lipid Mediators. The Journal of Immunology, 207, 2744-2753.
https://doi.org/10.4049/jimmunol.2100393
[21] Zhang, J., Liu, Y., Li, Q., Zuo, L., Zhang, B., Zhao, F., et al. (2023) ACSL4: A Double-Edged Sword Target in Multiple Myeloma, Promotes Cell Proliferation and Sensitizes Cell to Ferroptosis. Carcinogenesis, 44, 242-251.
https://doi.org/10.1093/carcin/bgad015
[22] Miao, Z., Tian, W., Ye, Y., Gu, W., Bao, Z., Xu, L., et al. (2022) Hsp90 Induces Acsl4-Dependent Glioma Ferroptosis via Dephosphorylating Ser637 at Drp1. Cell Death & Disease, 13, Article No. 548.
https://doi.org/10.1038/s41419-022-04997-1
[23] Liu, H., Xue, H., Guo, Q., Xue, X., Yang, L., Zhao, K., et al. (2025) Ferroptosis Meets Inflammation: A New Frontier in Cancer Therapy. Cancer Letters, 620, Article ID: 217696.
https://doi.org/10.1016/j.canlet.2025.217696
[24] Liu, J., Zhang, C., Wang, J., Hu, W. and Feng, Z. (2020) The Regulation of Ferroptosis by Tumor Suppressor p53 and Its Pathway. International Journal of Molecular Sciences, 21, Article No. 8387.
https://doi.org/10.3390/ijms21218387
[25] Jiang, X., Stockwell, B.R. and Conrad, M. (2021) Ferroptosis: Mechanisms, Biology and Role in Disease. Nature Reviews Molecular Cell Biology, 22, 266-282.
https://doi.org/10.1038/s41580-020-00324-8
[26] Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[27] Yang, C., Ko, B., Hensley, C.T., Jiang, L., Wasti, A.T., Kim, J., et al. (2014) Glutamine Oxidation Maintains the TCA Cycle and Cell Survival during Impaired Mitochondrial Pyruvate Transport. Molecular Cell, 56, 414-424.
https://doi.org/10.1016/j.molcel.2014.09.025
[28] Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A. and Feng, Z. (2010) Glutaminase 2, a Novel P53 Target Gene Regulating Energy Metabolism and Antioxidant Function. Proceedings of the National Academy of Sciences, 107, 7455-7460.
https://doi.org/10.1073/pnas.1001006107
[29] Araujo, L., Khim, P., Mkhikian, H., Mortales, C. and Demetriou, M. (2017) Glycolysis and Glutaminolysis Cooperatively Control T Cell Function by Limiting Metabolite Supply to N-Glycosylation. eLife, 6, e21330.
https://doi.org/10.7554/elife.21330
[30] LaMonte, G., Tang, X., Chen, J.L., Wu, J., Ding, C.C., Keenan, M.M., et al. (2013) Acidosis Induces Reprogramming of Cellular Metabolism to Mitigate Oxidative Stress. Cancer & Metabolism, 1, Article No. 23.
https://doi.org/10.1186/2049-3002-1-23
[31] Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annual Review of Biomedical Engineering, 19, 163-194.
https://doi.org/10.1146/annurev-bioeng-071516-044546
[32] Suzuki, S., Venkatesh, D., Kanda, H., Nakayama, A., Hosokawa, H., Lee, E., et al. (2022) GLS2 Is a Tumor Suppressor and a Regulator of Ferroptosis in Hepatocellular Carcinoma. Cancer Research, 82, 3209-3222.
https://doi.org/10.1158/0008-5472.can-21-3914
[33] Wang, Y., Zheng, L., Shang, W., Yang, Z., Li, T., Liu, F., et al. (2022) Wnt/Beta-Catenin Signaling Confers Ferroptosis Resistance by Targeting GPX4 in Gastric Cancer. Cell Death & Differentiation, 29, 2190-2202.
https://doi.org/10.1038/s41418-022-01008-w
[34] He, Q., Chen, N., Wang, X., Li, P., Liu, L., Rong, Z., et al. (2023) Prognostic Value and Immunological Roles of GPX3 in Gastric Cancer. International Journal of Medical Sciences, 20, 1399-1416.
https://doi.org/10.7150/ijms.85253
[35] Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[36] Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692.
https://doi.org/10.1038/s41586-019-1705-2
[37] Soula, M., Weber, R.A., Zilka, O., Alwaseem, H., La, K., Yen, F., et al. (2020) Metabolic Determinants of Cancer Cell Sensitivity to Canonical Ferroptosis Inducers. Nature Chemical Biology, 16, 1351-1360.
https://doi.org/10.1038/s41589-020-0613-y
[38] Barayeu, U., Schilling, D., Eid, M., Xavier da Silva, T.N., Schlicker, L., Mitreska, N., et al. (2022) Hydropersulfides Inhibit Lipid Peroxidation and Ferroptosis by Scavenging Radicals. Nature Chemical Biology, 19, 28-37.
https://doi.org/10.1038/s41589-022-01145-w
[39] Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., et al. (2020) Energy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234.
https://doi.org/10.1038/s41556-020-0461-8
[40] Li, C., Dong, X., Du, W., Shi, X., Chen, K., Zhang, W., et al. (2020) LKB1-AMPK Axis Negatively Regulates Ferroptosis by Inhibiting Fatty Acid Synthesis. Signal Transduction and Targeted Therapy, 5, Article No. 187.
https://doi.org/10.1038/s41392-020-00297-2
[41] Zhao, Y., Li, M., Yao, X., Fei, Y., Lin, Z., Li, Z., et al. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487.
https://doi.org/10.1016/j.celrep.2020.108487
[42] Zhao, L., Zhou, X., Xie, F., Zhang, L., Yan, H., Huang, J., et al. (2022) Ferroptosis in Cancer and Cancer Immunotherapy. Cancer Communications, 42, 88-116.
https://doi.org/10.1002/cac2.12250
[43] Ma, P., Xiao, H., Yu, C., Liu, J., Cheng, Z., Song, H., et al. (2017) Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 17, 928-937.
https://doi.org/10.1021/acs.nanolett.6b04269
[44] Chow, E.K. and Ho, D. (2013) Cancer Nanomedicine: From Drug Delivery to Imaging. Science Translational Medicine, 5, 216rv214.
https://doi.org/10.1126/scitranslmed.3005872
[45] An, Y., Zhu, J., Liu, F., Deng, J., Meng, X., Liu, G., et al. (2019) Boosting the Ferroptotic Antitumor Efficacy via Site-Specific Amplification of Tailored Lipid Peroxidation. ACS Applied Materials & Interfaces, 11, 29655-29666.
https://doi.org/10.1021/acsami.9b10954
[46] Wang, X., Hua, P., He, C. and Chen, M. (2022) Non-Apoptotic Cell Death-Based Cancer Therapy: Molecular Mechanism, Pharmacological Modulators, and Nanomedicine. Acta Pharmaceutica Sinica B, 12, 3567-3593.
https://doi.org/10.1016/j.apsb.2022.03.020
[47] Gasparri, M.L., Besharat, Z.M., Farooqi, A.A., Khalid, S., Taghavi, K., Besharat, R.A., et al. (2018) MiRNAs and Their Interplay with PI3K/AKT/mTOR Pathway in Ovarian Cancer Cells: A Potential Role in Platinum Resistance. Journal of Cancer Research and Clinical Oncology, 144, 2313-2318.
https://doi.org/10.1007/s00432-018-2737-y
[48] Wiczling, P., Daghir-Wojtkowiak, E., Kaliszan, R., Markuszewski, M.J., Limon, J., Koczkowska, M., et al. (2019) Bayesian Multilevel Model of MicroRNA Levels in Ovarian-Cancer and Healthy Subjects. PLOS ONE, 14, e0221764.
https://doi.org/10.1371/journal.pone.0221764
[49] Mei, Y., Jiang, P., Shen, N., Fu, S. and Zhang, J. (2020) Identification of miRNA-mRNA Regulatory Network and Construction of Prognostic Signature in Cervical Cancer. DNA and Cell Biology, 39, 1023-1040.
https://doi.org/10.1089/dna.2020.5452
[50] Chen, X. and Zhang, N. (2018) Downregulation of lncRNA NEAT12 Radiosensitizes Hepatocellular Carcinoma Cells through Regulation of miR-101-3p/WEE1 Axis. Cell Biology International, 43, 44-55.
https://doi.org/10.1002/cbin.11077
[51] Luan, C., Li, Y., Liu, Z. and Zhao, C. (2020) Long Noncoding RNA MALAT1 Promotes the Development of Colon Cancer by Regulating miR-101-3p/STC1 Axis. OncoTargets and Therapy, 13, 3653-3665.
https://doi.org/10.2147/ott.s242300
[52] Li, K., Jiang, Y., Xiang, X., Gong, Q., Zhou, C., Zhang, L., et al. (2020) Long Non‐Coding RNA SNHG6 Promotes the Growth and Invasion of Non‐Small Cell Lung Cancer by Downregulating miR-101-3p. Thoracic Cancer, 11, 1180-1190.
https://doi.org/10.1111/1759-7714.13371
[53] Luo, Y., Niu, G., Yi, H., Li, Q., Wu, Z., Wang, J., et al. (2021) Nanomedicine Promotes Ferroptosis to Inhibit Tumour Proliferation in Vivo. Redox Biology, 42, Article ID: 101908.
https://doi.org/10.1016/j.redox.2021.101908
[54] Chen, Q., Espey, M.G., Krishna, M.C., Mitchell, J.B., Corpe, C.P., Buettner, G.R., et al. (2005) Pharmacologic Ascorbic Acid Concentrations Selectively Kill Cancer Cells: Action as a Pro-Drug to Deliver Hydrogen Peroxide to Tissues. Proceedings of the National Academy of Sciences, 102, 13604-13609.
https://doi.org/10.1073/pnas.0506390102
[55] Xiao, H., Du, M., Sun, X., Xu, R., Li, D., Yue, S., et al. (2024) A Highly Biocompatible Polyoxotungstate with Fenton‐Like Reaction Activity for Potent Chemodynamic Therapy of Tumors. Angewandte Chemie International Edition, 64, e202422949.
https://doi.org/10.1002/anie.202422949
[56] Xi, S., Yang, Y., Suo, J. and Sun, T. (2022) Research Progress on Gene Editing Based on Nano-Drug Delivery Vectors for Tumor Therapy. Frontiers in Bioengineering and Biotechnology, 10, Article ID: 873369.
https://doi.org/10.3389/fbioe.2022.873369
[57] Park, E. and Chung, S.W. (2019) ROS-Mediated Autophagy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death & Disease, 10, Article No. 822.
https://doi.org/10.1038/s41419-019-2064-5
[58] Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J. and Jiang, X. (2016) Ferroptosis Is an Autophagic Cell Death Process. Cell Research, 26, 1021-1032.
https://doi.org/10.1038/cr.2016.95
[59] Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428.
https://doi.org/10.1080/15548627.2016.1187366
[60] Liu, X., Zhao, P., Wang, X., Wang, L., Zhu, Y., Song, Y., et al. (2019) Celastrol Mediates Autophagy and Apoptosis via the ROS/JNK and Akt/mTOR Signaling Pathways in Glioma Cells. Journal of Experimental & Clinical Cancer Research, 38, Article No. 184.
https://doi.org/10.1186/s13046-019-1173-4
[61] Fu, H., Wang, C., Yang, D., Wei, Z., Xu, J., Hu, Z., et al. (2018) Curcumin Regulates Proliferation, Autophagy, and Apoptosis in Gastric Cancer Cells by Affecting PI3K and P53 Signaling. Journal of Cellular Physiology, 233, 4634-4642.
https://doi.org/10.1002/jcp.26190
[62] Wei, S., Qiu, T., Yao, X., Wang, N., Jiang, L., Jia, X., et al. (2020) Arsenic Induces Pancreatic Dysfunction and Ferroptosis via Mitochondrial ROS-Autophagy-Lysosomal Pathway. Journal of Hazardous Materials, 384, Article ID: 121390.
https://doi.org/10.1016/j.jhazmat.2019.121390
[63] Andreani, C., Bartolacci, C. and Scaglioni, P.P. (2022) Ferroptosis: A Specific Vulnerability of RAS-Driven Cancers? Frontiers in Oncology, 12, Article ID: 923915.
https://doi.org/10.3389/fonc.2022.923915
[64] Lee, N., Carlisle, A.E., Peppers, A., Park, S.J., Doshi, M.B., Spears, M.E., et al. (2021) xCT-Driven Expression of GPX4 Determines Sensitivity of Breast Cancer Cells to Ferroptosis Inducers. Antioxidants, 10, Article No. 317.
https://doi.org/10.3390/antiox10020317
[65] Ye, F., Chai, W., Xie, M., Yang, M., Yu, Y., Cao, L., et al. (2019) HMGB1 Regulates Erastin-Induced Ferroptosis via RAS-JNK/p38 Signaling in HL-60/NRAS (Q61L) Cells. American Journal of Cancer Research, 9, 730-739.
[66] Chen, X., Kang, R., Kroemer, G. and Tang, D. (2021) Organelle-Specific Regulation of Ferroptosis. Cell Death & Differentiation, 28, 2843-2856.
https://doi.org/10.1038/s41418-021-00859-z
[67] Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024) 7-Dehydrocholesterol Dictates Ferroptosis Sensitivity. Nature, 626, 411-418.
https://doi.org/10.1038/s41586-023-06983-9
[68] Wang, H., Wang, C., Li, B., Zheng, C., Liu, G., Liu, Z., et al. (2023) Discovery of Ml210-Based Glutathione Peroxidase 4 (GPX4) Degrader Inducing Ferroptosis of Human Cancer Cells. European Journal of Medicinal Chemistry, 254, Article ID: 115343.
https://doi.org/10.1016/j.ejmech.2023.115343
[69] Cheff, D.M., Huang, C., Scholzen, K.C., Gencheva, R., Ronzetti, M.H., Cheng, Q., et al. (2023) The Ferroptosis Inducing Compounds RSL3 and ML162 Are Not Direct Inhibitors of GPX4 but of TXNRD1. Redox Biology, 62, Article ID: 102703.
https://doi.org/10.1016/j.redox.2023.102703
[70] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[71] Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285.
https://doi.org/10.1016/j.cell.2017.09.021
[72] McBean, G.J. (2011) The Transsulfuration Pathway: A Source of Cysteine for Glutathione in Astrocytes. Amino Acids, 42, 199-205.
https://doi.org/10.1007/s00726-011-0864-8
[73] Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331.
https://doi.org/10.1016/j.cell.2013.12.010
[74] Shimada, K., Hayano, M., Pagano, N.C. and Stockwell, B.R. (2016) Cell-Line Selectivity Improves the Predictive Power of Pharmacogenomic Analyses and Helps Identify NADPH as Biomarker for Ferroptosis Sensitivity. Cell Chemical Biology, 23, 225-235.
https://doi.org/10.1016/j.chembiol.2015.11.016