地中海饮食治疗非酒精性脂肪性肝病研究进展
Research Progress on the Treatment of Non-Alcoholic Fatty Liver Disease with Mediterranean Diet
DOI: 10.12677/acm.2025.1551598, PDF, HTML, XML,    国家自然科学基金支持
作者: 王梓璇*, 王美娇:康复大学青岛中心医院(青岛市中心医疗集团)消化内一科,山东 青岛;青岛大学青岛医学院,山东 青岛;陈 格, 孔玲玲, 赵 红#:康复大学青岛中心医院(青岛市中心医疗集团)消化内一科,山东 青岛
关键词: 非酒精性脂肪性肝病地中海饮食饮食干预减重肠道微生物群Non-Alcoholic Fatty Liver Disease Mediterranean Diet Dietary Intervention Weight Loss Gut Microbiota
摘要: 非酒精性脂肪性肝病(NAFLD)已成为全球最普遍的慢性肝病,其不断攀升的患病率对公共卫生系统造成显著负担。NAFLD作为一种复杂的慢性代谢性疾病,其发病机制尚未阐明,许多因素例如胰岛素抵抗、脂代谢紊乱、肠道菌群失调等均与该疾病密切相关。目前尚无公认且有效的治疗方法,近年来饮食疗法被认为是NAFLD治疗的基石,其中地中海饮食被推荐为最佳饮食方案。本文重点评述了地中海饮食作为营养干预方案的重要作用,包括减重、改善胰岛素敏感性、调节脂质代谢、重塑肠道微生态等效应。现有研究虽证实地中海饮食的有效性,但对其长期疗效和剂量效应仍需深入探讨。未来研究应建立标准化干预方案,结合组学技术阐明分子互作网络,并建议将数字健康技术融入饮食管理以提升依从性。
Abstract: Non-alcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease in the world, and its increasing prevalence poses a significant burden on the public health system. NAFLD is a complex chronic metabolic disease whose pathogenesis has not yet been elucidated, and which is associated with many factors, such as insulin resistance, lipid metabolism disorders, and intestinal flora disorders. There is no recognized and effective treatment, and in recent years, dietary therapy has been considered the cornerstone of NAFLD treatment, with the Mediterranean diet (MD) recommended as the optimal dietary regimen. This article focuses on the important role of the Mediterranean diet as a nutritional intervention program, including effects such as weight loss, improvement of insulin sensitivity, modulation of lipid metabolism, and remodeling of intestinal microecology. Although existing studies confirm the effectiveness of the Mediterranean diet, its long-term efficacy and dose effects still need to be explored in depth. Future studies should establish standardized intervention protocols, elucidate the molecular interactions network with histological techniques, and suggest the integration of digital health technologies into dietary management to improve compliance.
文章引用:王梓璇, 陈格, 孔玲玲, 王美娇, 赵红. 地中海饮食治疗非酒精性脂肪性肝病研究进展[J]. 临床医学进展, 2025, 15(5): 2110-2118. https://doi.org/10.12677/acm.2025.1551598

1. 引言

非酒精性脂肪性肝病(NAFLD)是一种除过量摄入酒精以及其他可诱导肝脏脂肪变性的因素(如药物、毒物等)以外,影像学或组织学上出现脂肪浸润≥5%的肝脏脂肪变性。约1/4的世界人口患有NAFLD,亚洲发病率为27.4%,我国成年人的患病率可达32.9% [1],并且发病率逐年迅速增加。随着乙肝和丙肝得到良好控制和预防,NAFLD目前已超越慢性乙型病毒性肝炎成为我国第一大慢性肝病。

NAFLD的发病机制尚未得到明确阐述,目前广为接受的是“多重平行打击”学说——包括胰岛素抵抗(IR)、氧化应激、脂毒性、炎症因子、遗传多态性和基因改变、线粒体障碍、免疫功能失调、饮食因素以及肠道微生物失调等[2]。NAFLD与代谢综合征(MS)和2型糖尿病之间存在着复杂的相互作用关系,这三者互为风险因素,共同促进了动脉硬化性心、脑、肾血管疾病及肝内外多种恶性肿瘤的发生[3]。NAFLD的治疗药物在不断地创新与试验中,研究[4]指出中医药具有显著疗效,但是目前尚未有明确批准的药物治疗方案[5]。通过合理饮食和运动干预,优化生活方式无疑是NAFLD治疗的基础和重要环节。

随着研究的不断深入,针对NAFLD的多种饮食模式干预效果进行了分析,揭示了饮食干预在治疗NAFLD上的独特且显著的优势。地中海饮食是目前较为推荐的饮食模式,其含有丰富的营养素、抗炎、抗氧化剂等成分,在预防和改善多种慢性疾病方面展现出了显著的潜力,多数研究显示地中海饮食对NAFLD患者具有积极的影响。然而MD改善NAFLD的途径及效果仍存在争议[6]。本文将对地中海饮食以及地中海饮食治疗NAFLD的机制及效果进行综述。

2. 地中海饮食

地中海饮食(Mediterranean diet, MD)的概念是由Keys等人在上个世纪50年代进行的七国研究(the Seven Countries Study)中首次提出的。它是主要以植物为基础的饮食,在用餐时大量食用全谷物、水果、豆类、蔬菜和坚果,适量食用乳制品,适量食用鱼和海鲜,少量食用肉类和家禽,适量饮用红酒[7],草药和香料是主要的调味品。七国研究描述了这些人口在二战后全球化尚未到来时期的日常饮食习惯。在七国研究中观察到,与西方国家相比,地中海国家遵循MD,人口寿命特别长,冠心病和癌症的发病率最低[8]

MD中的脂肪含量约为30%~40% [9],橄榄油是主要的脂肪来源,其富含单不饱和脂肪酸(MUFAs),特别是特级初榨橄榄油(EVOO),EVOO含有丰富的酚类及抗氧化剂,这些成分可直接或间接调节免疫系统紊乱及氧化应激、炎症反应等[10]。另外,谷物、豆类、深色蔬菜、坚果、高脂鱼类、牛羊肉及其奶制品等含有丰富的ω-3 PUFAs。

MD的另一个特点是其高膳食纤维含量。摄入富含膳食纤维的食物一方面可以增加饱腹感,减少总能量的摄入,从而有助于减肥;另一方面摄入膳食纤维可丰富胃肠道微生物多样性,并被其利用,产生抗炎、预防肥胖、改善血糖以及预防结直肠癌等作用[11]。全谷物和蔬菜是膳食纤维的主要来源[12],水果、豆类和坚果也是其重要来源,这些食物同时也包含一系列公认对健康大有裨益的成分,诸如维生素、矿物质元素、微量营养素,以及一系列具备抗氧化与抗炎特性的植物化学复合物[13],对NAFLD具有不同的有益影响。

一项荟萃分析提示MD可能对机体产生减重、抗炎、抗氧化、抗癌、降脂、改善IR、调节免疫紊乱、保护生殖健康、抗神经退行性变等有益作用[14]。总的来说MD被认为是一种健康的饮食模式,有助于预防和管理多种慢性疾病[15]。同时MD是欧洲EASL-EASD-EASO临床实践指南中NAFLD患者推荐饮食模式[16]。此外,联合国教科文组织(UNESCO)于2010年11月17日,将MD纳入西班牙、希腊、意大利和摩洛哥共同拥有的非物质文化遗产名录,彰显了其重要性和影响力。

3. MD改善NAFLD

3.1. 减肥

肥胖是NAFLD的独立预测因子,中国NAFLD患病率与肥胖流行趋势平行。肥胖与NAFLD的发病机制尚未明确阐明,但据多项研究表明两者具有高度一致性,当脂质在体内的蓄积量超过一定阈值时,脂肪组织和肝脏等代谢组织将失代偿,引起细胞缺氧、脂肪因子释放、炎症浸润等一系列反应[17],进而导致NASH、肝纤维化等。

减肥是大多数NAFLD患者的主要治疗方法。目前已有研究表明,减重 ≥ 总体重的5%时可以改善NAFLD患者症状及肝脏脂肪变性,减重 ≥ 7%~10%时可能会改善肝脏生化指标、炎症及纤维化[18] [19],因此肥胖型NAFLD患者可以通过限制能量摄入、运动等方式减肥而获益。

现有多种饮食模式可以达到减肥效果。Danijela Ristic-Medic等人[20]的一项临床随机对照试验结果显示,低脂饮食与MD均可使体重减轻超过9%,并改善肝脏脂质代谢,但相比之下,MD降低ALT、TG、TG/HDL-C比值、脂肪肝指数(FLI)、总饱和脂肪酸(SFAs)含量以及升高HDL-C、DHA、MUFA含量的效果更显著。这表明地中海饮食可能比低脂饮食更有助于改善NAFLD的脂质代谢紊乱。Christopher D Gardner等人[21]发现,良好配方的生酮饮食在减重、改善HbA1c、降低TG的同时,导致了LDL-C的升高。另外,Neal D. Barnard等人[22]的一项关于纯素饮食与MD的随机交叉实验研究发现,两种饮食均可降低体重、降低血压、调节血脂和改善胰岛素敏感性,但MD的降压效果更好。因此,目前MD是NAFLD患者首选的膳食结构。

令人鼓舞的是MD具有降低中心性肥胖和内脏脂肪的潜力[23] [24],这可能与MD饮食结构中包含的多种生物活性物质的作用有关。柚皮苷等多酚类物质可以促进能量代谢,有助于减少内脏脂肪;膳食纤维包括可溶性纤维和不溶性纤维,可溶性纤维可增加腔内粘度,减缓胃排空和大量营养素的吸收,不溶性纤维可增加咀嚼时间并减少结肠转运时间,激活迷走神经并促进饱腹感[25]。这些作用会降低食物摄入量和营养吸收,有助于减少肥胖和内脏脂肪[26]。另外MD达到减肥效果还可能与其改善白色脂肪组织功能障碍、减轻脂肪组织的慢性炎症及氧化应激、调节肠道微生物及增加短链脂肪酸产生等有关[8]。而且,MD因包含多样化且美味的食物而更容易被人们长期遵循以获取长期效果。坚持MD时间越长,改善效果更佳,此观点也在Keyhan Lotfi等[27]人的一项前瞻性队列研究的系统回顾和剂量反应元分析中得到证实。

3.2. 改善IR

IR被认为是NAFLD和2型糖尿病发病机制的关键[28],是NAFLD严重程度的独立危险因素[29]。胰岛素受体底物(IRS)-1/2的激活会触发三种主要途径:PI3K/AKT,TSC1/2-mTOR和RAS-MAPK通路,参与到调节代谢和维持机体功能中[30]。胰岛素作用的级联反应中任一单位发生改变,就可能会导致IR。其发生时脂肪组织、骨骼肌、肝脏组织等靶器官或整个机体水平对胰岛素的相应反应能力减弱[31],使得机体出现高血糖和代偿性高胰岛素,多个靶器官的IR可共同导致NAFLD的发生和进展。

MD作为一种以植物性食物为主的饮食方式,通过限制能量摄入可以改善IR。在Lukas Schwingshackl等人[32]进行的一项荟萃分析中重点比较了九种不同饮食方式即MD、低脂饮食、素食饮食、高蛋白饮食、适量碳水化合物饮食、低碳水化合物饮食、低血糖指数饮食、旧石器饮食和对照饮食对2型糖尿病患者血糖控制的效果。结果表明与其他8种饮食方案相比,MD降低HbA1c和空腹血糖的效果更显著,是改善餐后高血糖和IR的更有效的饮食方法。

另一方面,MD强调摄入多种营养素,这些营养素可能通过多种代谢途径改善IR。Maria Mirabelli [33]的回顾性分析中提到即使体重减轻小于5%,MD与其他低能量饮食方案相比仍可更显著地改善肥胖个体IR、胰岛素水平等。这也就表明MD改善IR不仅仅归功于限制能量摄入和减重,摄入大量的营养素改善代谢也功不可没。首先,MD摄入橄榄油和坚果中大量的MUFAs或PUFAs,代替饱和脂肪酸的摄入,可以降低血清炎症生物标志物(TNF-α、IL-6等)和脂肪组织产生的脂毒性因子(促炎抵抗素、瘦素等),从而间接改善葡萄糖稳态;且ω-3 PUFAs可通过调节细胞膜流动性及调节细胞内信号传导,从而增加胰岛素敏感性[34]。但需要注意的是只有在总脂肪摄入量低于能量的37%时才能看到其对胰岛素敏感性的有利影响,而较高的脂肪摄入量会增加IR的风险[33]。在Linda Sundström等人[35]的研究中表明PUFAs也可以通过结合并刺激G蛋白偶联受体(GPCR),如GPR120,从而导致GLP-1的分泌增加。后者刺激胰腺β细胞的胰岛素释放,使得骨骼肌摄取葡萄糖增加,限制餐后高血糖。GLP-1可能在中枢神经系统水平上产生饱腹感[36],延缓胃的排空,减弱食欲,进一步减少能量摄入。根据现有研究结果,我们认为补充MUFAs或PUFAs要根据个体具体情况调整,最安全摄入量仍需大量临床试验确定。其次,MD中摄入的葡萄酒、新鲜水果、坚果等富含的多酚类物质可以通过改善线粒体氧化应激、刺激胰岛素分泌等机制来改善IR。其中黄酮类化合物可以抑制肠道α-葡萄糖苷酶,从而延缓葡萄糖的吸收,并限制餐后高胰岛素或高血糖的发作。槲皮素可以通过AMPK依赖型通路上调葡萄糖转运蛋白GLUT-4来增强骨骼肌细胞对葡萄糖的摄取[33]。最后,MD强调在烹饪时使用草药和香料,其中肉桂在体内、外研究中显示出胰岛素样作用。许多研究报告了肉桂对餐后、空腹高血糖和昼夜血糖波动的总体产生有利影响,饮食中添加肉桂(作为提取物或补充剂)后胰岛素和HbA1c水平可得到额外改善[37]。综上所述,MD可显著改善空腹血糖、餐后血糖、HbA1c、HOMA-IR等。

3.3. 改善肝脏脂代谢紊乱及脂肪变性

NAFLD患者的脂代谢紊乱涉及多个方面,主要包括脂肪合成、脂肪氧化、脂质激酶和肝胆酸代谢。已有报道[38]指出,AT肥大扩张可使促炎巨噬细胞激活导致TNF-α的上调,并在NASH患者的肝脏和AT中发现TNF-α mRNA过表达,提示AT中TNF-α的上调可能通过增加全身性IR参与NAFLD的进展,并促进各组织的炎症。针对肝脏脂代谢紊乱和脂质沉积的治疗可能成为NAFLD治疗的有效策略。

在一项随机对照试验[39]中,考虑了体重减轻的影响,与对照饮食相比,富含绿色植物和减少红肉摄入量的MD能够增加肝内脂肪(IHF)地损失,证明了MD对减少肝脏脂肪变性的有益作用。此外多项研究[40] [41]表明MD比低脂饮食能更显著地减少IHF、胰腺和心包脂肪等,并降低甘油三酯含量。MD的这种优势可能归因于其饮食结构中的营养元素。另外[42] MD中摄入的EVOO可减轻肝脏超微结构的损伤和脂质沉积,同时抑制肝脏中脂肪生成相关基因的表达,其中包含一种多酚类物质——羟基酪醇,还可通过减轻AT和肝脏中的内质网应激来改善IR。Rodrigo Valenzuela等人[43]的研究表明ω-3 PUFAs中的EPA和DHA发挥抗脂肪变性和抗氧化反应,预防和解决肝脏炎症,并建议使用DHA和羟基酪醇等联合补充剂来预防肝脏脂肪变性,从而避免病情发展到更难以控制的阶段。另外,新鲜的蔬菜和水果富含维生素C,能够有效抵御肝细胞内脂肪堆积,并有助于降低血清胆固醇水平,从而降低NAFLD的发病率。茶叶中的茶多酚成分可抑制血脂升高,同时黄酮类物质促进脂质代谢,防止脂肪在肝细胞中的堆积[44]。综上,MD在减少肝脏脂肪沉积以及调节肝脏代谢紊乱方面起到重要作用,未来需进一步探讨如何优化MD,使得更符合NAFLD患者的需求。

3.4. 减轻肝脏炎症、氧化应激及肝纤维化

NAFLD的严重程度与氧化应激和促炎状态的增加有关[45],肝脏炎症与氧化应激之间相互影响和促进。肝细胞炎症及氧化应激将损害肝脏结构和功能,若不及时干预,NASH、肝细胞坏死、肝纤维化、肝硬化、肝癌可能将进行性或同时发生。

MD保护肝脏的优势在于其包含富有抗氧化和抗炎物质的食物,而且不是一种或几种特定的食物或营养素,而是各种有益食物或营养素均衡组合,例如多酚类[46]、MUFAs、PUFAs [43]、维生素C、维生素E等生物活性成分[47]和膳食纤维[13],通过各种协同作用和相互作用保护肝脏。另外依从地中海饮食的程度越高,其抗炎和抗氧化作用越显著[48]。在Maria Magdalena Quetglas-Llabrés等人[49]的研究中显示,经过2年的MD干预,与低依从性的参与者相比,高依从性的参与者表现出抗氧化防御机制的增强、氧化应激的减轻以及炎症的消退,体现在CAT、SOD表达增加和ROS、细菌内毒素、NF-κB表达降低。在NAFLD的组织学特征中,肝纤维化的严重程度与NAFLD的死亡率及HCC的发病率相关性最强[50]。氧化应激和炎症得以改善后,肝脏纤维化程度也将有一定程度的下降。荟萃分析[51]表明MD干预可改善ALT等肝脏参数,减少肝纤维化,显著降低肝脏硬度。各种营养素发挥作用固然重要,但营养素不能脱离食物而被推荐,应向NAFLD患者推荐具体的食物种类,更有临床意义。

3.5. 调节肠–肝轴紊乱

肠–肝轴是肠道与肝脏间的重要相互作用机制,涉及肠道屏障、肠道微生物群、代谢产物及免疫调节等多方面。肠–肝轴紊乱可诱发肝脏炎症和损伤,是NAFLD的关键诱因。例如,肠道革兰阴性菌的脂多糖(LPS)可通过肠道紧密连接的损伤处进入门脉系统,到达肝脏,LPS可激活肝脏星状细胞和库普弗细胞上的TLR4,刺激促炎信号通路,促进NAFLD的进展[52]。这种屏障的破坏被称为“肠漏”。肝硬化患者表现出与肝病严重程度平行的肠屏障的显著损害[53]。另外,肠道微生物作为重要的环境因素,全面影响宿主的代谢功能状态,它们在营养感知、能量摄入、糖脂代谢、系统性炎症等多个方面参与了NAFLD发生及进展至NASH、肝纤维化[54]。肠道微生物衍生的代谢物对信号传导途径的下游影响在NAFLD中发挥重要作用[55],例如,胆汁酸代谢紊乱将导致胆汁酸受体FXR和TGR5激活不足,进而能量消耗减少,脂肪生成、胆汁酸合成增加,巨噬细胞活性也随之升高;短链脂肪酸(SCFAs) (主要包括丁酸盐、丙酸盐等)生成减少导致肠道炎症增加、肠通透性增加、内毒素血症、肝脏脂质代谢失调及全身性炎症。肠道微生物群自然生成的乙醇,是加剧NAFLD患者肝脏炎症的另一关键因素。

近年来,营养和膳食成分被认为是调节哺乳动物肠道上皮屏障完整性和胃肠道微生物群结构和功能的关键因素之一。对于NAFLD患者来说MD是维持肠–肝轴平衡一个很好的选择。MD能改善肠道免疫功能,减少肠道渗漏和内毒素血症[56]。Cristian Del Bo’等人[57]的一项随机对照交叉临床试验结果符合上述观点,以绿茶、血橙、苹果、蓝莓和石榴汁为基础的富含多酚的饮食(每天摄入724毫克酚类化合物)能够改善老年人的肠道通透性和肠道结构。另外研究报道指出,MD产生有利的微生物群组成和促进短链脂肪酸产生[58]。其中高含量的ω-3 PUFAs可平衡厚壁菌门与拟杆菌门的比例,增加毛螺杆菌科和双歧杆菌科等有益菌,同时抑制产LPS的肠杆菌的生长,从而产生积极的抗炎效果[59];多酚可促进乳杆菌等有益菌的生长,抑制肠球菌等条件致病菌,并且一些种类的多酚还可增加肠道紧密连接的表达[58];膳食纤维在小肠中会抵抗消化,并在到达结肠时参与微生物群发酵,产生SCFAs作为发酵代谢物[60],SCFAs除了是宿主结肠细胞的主要能量来源外,还具有独特的药理和生理功能,如促进结肠运动、保护肠道屏障、改变碳水化合物和脂质代谢、参与免疫调节、改善肠道免疫功能等电解质和营养素的吸收以及抗炎和抗肿瘤活性。一项研究将23名超重参与者的MD与素食饮食进行了比较,结果显示,只有在遵循MD的参与者中,丙酸产量显著增加,而丙酸产量与各种炎症细胞因子呈负相关[61]

4. 小结与展望

鉴于NAFLD发病率逐年攀升,并伴随全因死亡风险增加,其已成为不容忽视的公共健康挑战,亟需社会各界共同关注并采取行动。尽管MD对NAFLD的积极影响已得到广泛认可,但其在实际应用中仍面临一些挑战。首先,MD干预NAFLD产生的影响在改善肝酶、调整肠道微生物群、减重等方面仍存在争议。其次,由于地域、文化和个人口味的差异,MD的推广和普及存在一定难度。此外,对于MD中的某些成分(如橄榄油、酒精)可能需进一步探讨其最佳摄入量。

未来研究应进一步探讨地中海饮食对NAFLD的具体作用机制,并探索个性化饮食干预方案。同时,应充分利用互联网技术,加强对患者教育和支持系统的建设,提高患者对MD的认知度和依从性。此外,随着基因组学和代谢组学等新技术的发展,未来研究应从分子水平深入探讨地中海饮食对NAFLD的保护作用及其与个体遗传背景之间的相互作用。

利益冲突声明

本文所有作者均声明不存在利益冲突。

基金项目

国家自然科学基金项目(项目编号:31800660);青岛市医药卫生科研计划项目(项目编号:2024-WJKY058)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] 蔺宁, 孔明, 段钟平. 非酒精性脂肪性肝病营养干预研究进展[J]. 实用肝脏病杂志, 2024, 27(1): 151-154.
[2] Tilg, H., Adolph, T.E. and Moschen, A.R. (2021) Multiple Parallel Hits Hypothesis in Nonalcoholic Fatty Liver Disease: Revisited after a Decade. Hepatology, 73, 833-842.
https://doi.org/10.1002/hep.31518
[3] 刘英, 崔姗姗, 暴素青, 等. 代谢相关性脂肪性肝病与代谢综合征的研究[J]. 医学信息, 2022, 35(1): 1-5.
[4] 宋佳, 邵昌明, 曾斌芳. 中医药治疗非酒精性脂肪性肝病的研究进展[J]. 黑龙江医学, 2024, 48(5): 638-640.
[5] Rong, L., Zou, J., Ran, W., Qi, X., Chen, Y., Cui, H., et al. (2023) Advancements in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD). Frontiers in Endocrinology, 13, Article 1087260.
https://doi.org/10.3389/fendo.2022.1087260
[6] George, E.S., Reddy, A., Nicoll, A.J., Ryan, M.C., Itsiopoulos, C., Abbott, G., et al. (2022) Impact of a Mediterranean Diet on Hepatic and Metabolic Outcomes in non‐alcoholic Fatty Liver Disease: The medina Randomised Controlled Trial. Liver International, 42, 1308-1322.
https://doi.org/10.1111/liv.15264
[7] Otero-Luis, I., Saz-Lara, A., Moreno-Herráiz, N., Lever-Megina, C.G., Bizzozero-Peroni, B., Martínez-Ortega, I.A., et al. (2024) Exploring the Association between Mediterranean Diet Adherence and Arterial Stiffness in Healthy Adults: Findings from the Evascu Study. Nutrients, 16, Article 2158.
https://doi.org/10.3390/nu16132158
[8] Dominguez, L.J., Veronese, N., Di Bella, G., Cusumano, C., Parisi, A., Tagliaferri, F., et al. (2023) Mediterranean Diet in the Management and Prevention of Obesity. Experimental Gerontology, 174, Article 112121.
https://doi.org/10.1016/j.exger.2023.112121
[9] Plaz Torres, M.C., Aghemo, A., Lleo, A., Bodini, G., Furnari, M., Marabotto, E., et al. (2019) Mediterranean Diet and NAFLD: What We Know and Questions That Still Need to Be Answered. Nutrients, 11, Article 2971.
https://doi.org/10.3390/nu11122971
[10] Mazzocchi, A., Leone, L., Agostoni, C. and Pali-Schöll, I. (2019) The Secrets of the Mediterranean Diet. Does [Only] Olive Oil Matter? Nutrients, 11, Article 2941.
https://doi.org/10.3390/nu11122941
[11] Waddell, I.S. and Orfila, C. (2022) Dietary Fiber in the Prevention of Obesity and Obesity-Related Chronic Diseases: From Epidemiological Evidence to Potential Molecular Mechanisms. Critical Reviews in Food Science and Nutrition, 63, 8752-8767.
https://doi.org/10.1080/10408398.2022.2061909
[12] Gressier, M. and Frost, G. (2021) Minor Changes in Fibre Intake in the UK Population between 2008/2009 and 2016/2017. European Journal of Clinical Nutrition, 76, 322-327.
https://doi.org/10.1038/s41430-021-00933-2
[13] Schwingshackl, L., Morze, J. and Hoffmann, G. (2019) Mediterranean Diet and Health Status: Active Ingredients and Pharmacological Mechanisms. British Journal of Pharmacology, 177, 1241-1257.
https://doi.org/10.1111/bph.14778
[14] Gantenbein, K.V. and Kanaka-Gantenbein, C. (2021) Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and Overall Wellbeing. Nutrients, 13, Article 1951.
https://doi.org/10.3390/nu13061951
[15] Gómez-Sánchez, L., González-Falcon, D., Llamas-Ramos, R., Rodríguez, M.C., Rodríguez-Sánchez, E., García-Ortiz, L., et al. (2024) The Relationship between Healthy Vascular Aging with the Mediterranean Diet and Other Lifestyles in the Spanish Population: The EVA Study. Nutrients, 16, Article 2565.
https://doi.org/10.3390/nu16152565
[16] Tacke, F., Horn, P., Wai-Sun Wong, V., Ratziu, V., Bugianesi, E., Francque, S., et al. (2024) EASL-EASD-EASO Clinical Practice Guidelines on the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Journal of Hepatology, 81, 492-542.
https://doi.org/10.1016/j.jhep.2024.04.031
[17] Lee, E., Korf, H. and Vidal-Puig, A. (2023) An Adipocentric Perspective on the Development and Progression of Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 78, 1048-1062.
https://doi.org/10.1016/j.jhep.2023.01.024
[18] Pouwels, S., Sakran, N., Graham, Y., Leal, A., Pintar, T., Yang, W., et al. (2022) Non-Alcoholic Fatty Liver Disease (NAFLD): A Review of Pathophysiology, Clinical Management and Effects of Weight Loss. BMC Endocrine Disorders, 22, Article No. 63.
https://doi.org/10.1186/s12902-022-00980-1
[19] Paternostro, R. and Trauner, M. (2022) Current Treatment of Non‐Alcoholic Fatty Liver Disease. Journal of Internal Medicine, 292, 190-204.
https://doi.org/10.1111/joim.13531
[20] Ristic-Medic, D., Kovacic, M., Takic, M., Arsic, A., Petrovic, S., Paunovic, M., et al. (2020) Calorie-Restricted Mediterranean and Low-Fat Diets Affect Fatty Acid Status in Individuals with Nonalcoholic Fatty Liver Disease. Nutrients, 13, Article 15.
https://doi.org/10.3390/nu13010015
[21] Gardner, C.D., Landry, M.J., Perelman, D., Petlura, C., Durand, L.R., Aronica, L., et al. (2022) Effect of a Ketogenic Diet versus Mediterranean Diet on Glycated Hemoglobin in Individuals with Prediabetes and Type 2 Diabetes Mellitus: The Interventional Keto-Med Randomized Crossover Trial. The American Journal of Clinical Nutrition, 116, 640-652.
https://doi.org/10.1093/ajcn/nqac154
[22] Barnard, N.D., Alwarith, J., Rembert, E., Brandon, L., Nguyen, M., Goergen, A., et al. (2021) A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-Over Trial. Journal of the American Nutrition Association, 41, 127-139.
https://doi.org/10.1080/07315724.2020.1869625
[23] Chen, H., Liu, K., Cao, B., Zhong, Q., Zhou, R., Li, L., et al. (2024) Combined Associations of Visceral Adipose Tissue and Adherence to a Mediterranean Lifestyle with T2D and Diabetic Microvascular Complications among Individuals with Prediabetes. Cardiovascular Diabetology, 23, Article No. 201.
https://doi.org/10.1186/s12933-024-02284-1
[24] Bertoli, S., Leone, A., Vignati, L., Bedogni, G., Martínez-González, M.Á., Bes-Rastrollo, M., et al. (2015) Adherence to the Mediterranean Diet Is Inversely Associated with Visceral Abdominal Tissue in Caucasian Subjects. Clinical Nutrition, 34, 1266-1272.
https://doi.org/10.1016/j.clnu.2015.10.003
[25] Massaro, M., Scoditti, E., Carluccio, M.A., Calabriso, N., Santarpino, G., Verri, T., et al. (2020) Effects of Olive Oil on Blood Pressure: Epidemiological, Clinical, and Mechanistic Evidence. Nutrients, 12, Article 1548.
https://doi.org/10.3390/nu12061548
[26] Scaglione, S., Di Chiara, T., Daidone, M. and Tuttolomondo, A. (2025) Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk. Nutrients, 17, Article 358.
https://doi.org/10.3390/nu17020358
[27] Lotfi, K., Saneei, P., Hajhashemy, Z. and Esmaillzadeh, A. (2022) Adherence to the Mediterranean Diet, Five-Year Weight Change, and Risk of Overweight and Obesity: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Advances in Nutrition, 13, 152-166.
https://doi.org/10.1093/advances/nmab092
[28] Armandi, A., Rosso, C., Caviglia, G.P. and Bugianesi, E. (2021) Insulin Resistance across the Spectrum of Nonalcoholic Fatty Liver Disease. Metabolites, 11, Article 155.
https://doi.org/10.3390/metabo11030155
[29] Eguchi, Y., Eguchi, T., Mizuta, T., Ide, Y., Yasutake, T., Iwakiri, R., et al. (2006) Visceral Fat Accumulation and Insulin Resistance Are Important Factors in Nonalcoholic Fatty Liver Disease. Journal of Gastroenterology, 41, 462-469.
https://doi.org/10.1007/s00535-006-1790-5
[30] Haeusler, R.A., McGraw, T.E. and Accili, D. (2017) Biochemical and Cellular Properties of Insulin Receptor Signalling. Nature Reviews Molecular Cell Biology, 19, 31-44.
https://doi.org/10.1038/nrm.2017.89
[31] Fang, Y., Chen, H., Wang, C. and Liang, L. (2018) Pathogenesis of Non-Alcoholic Fatty Liver Disease in Children and Adolescence: From “Two Hit Theory” to “Multiple Hit Model”. World Journal of Gastroenterology, 24, 2974-2983.
https://doi.org/10.3748/wjg.v24.i27.2974
[32] Schwingshackl, L., Chaimani, A., Hoffmann, G., Schwedhelm, C. and Boeing, H. (2018) A Network Meta-Analysis on the Comparative Efficacy of Different Dietary Approaches on Glycaemic Control in Patients with Type 2 Diabetes Mellitus. European Journal of Epidemiology, 33, 157-170.
https://doi.org/10.1007/s10654-017-0352-x
[33] Mirabelli, M., Chiefari, E., Arcidiacono, B., Corigliano, D.M., Brunetti, F.S., Maggisano, V., et al. (2020) Mediterranean Diet Nutrients to Turn the Tide against Insulin Resistance and Related Diseases. Nutrients, 12, Article 1066.
https://doi.org/10.3390/nu12041066
[34] Khalili, L., Valdes-Ramos, R. and Harbige, L.S. (2021) Effect of N-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites, 11, Article 742.
https://doi.org/10.3390/metabo11110742
[35] Sundström, L., Myhre, S., Sundqvist, M., Ahnmark, A., McCoull, W., Raubo, P., et al. (2017) The Acute Glucose Lowering Effect of Specific GPR120 Activation in Mice Is Mainly Driven by Glucagon-Like Peptide 1. PLOS ONE, 12, e0189060.
https://doi.org/10.1371/journal.pone.0189060
[36] Kaneto, H., Obata, A., Shimoda, M., Kimura, T., Hirukawa, H., Okauchi, S., et al. (2016) Promising Diabetes Therapy Based on the Molecular Mechanism for Glucose Toxicity: Usefulness of SGLT2 Inhibitors as Well as Incretin-Related Drugs. Current Medicinal Chemistry, 23, 3044-3051.
https://doi.org/10.2174/0929867323666160627102516
[37] Zare, R., Nadjarzadeh, A., Zarshenas, M.M., Shams, M. and Heydari, M. (2019) Efficacy of Cinnamon in Patients with Type II Diabetes Mellitus: A Randomized Controlled Clinical Trial. Clinical Nutrition, 38, 549-556.
https://doi.org/10.1016/j.clnu.2018.03.003
[38] Sakurai, Y., Kubota, N., Yamauchi, T. and Kadowaki, T. (2021) Role of Insulin Resistance in MAFLD. International Journal of Molecular Sciences, 22, Article 4156.
https://doi.org/10.3390/ijms22084156
[39] Yaskolka Meir, A., Rinott, E., Tsaban, G., Zelicha, H., Kaplan, A., Rosen, P., et al. (2021) Effect of Green-Mediterranean Diet on Intrahepatic Fat: The DIRECT PLUS Randomised Controlled Trial. Gut, 70, 2085-2095.
https://doi.org/10.1136/gutjnl-2020-323106
[40] Gepner, Y., Shelef, I., Komy, O., Cohen, N., Schwarzfuchs, D., Bril, N., et al. (2019) The Beneficial Effects of Mediterranean Diet over Low-Fat Diet May Be Mediated by Decreasing Hepatic Fat Content. Journal of Hepatology, 71, 379-388.
https://doi.org/10.1016/j.jhep.2019.04.013
[41] Gepner, Y., Shelef, I., Schwarzfuchs, D., Zelicha, H., Tene, L., Yaskolka Meir, A., et al. (2018) Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools. Circulation, 137, 1143-1157.
https://doi.org/10.1161/circulationaha.117.030501
[42] Jiménez-Sánchez, A., Martínez-Ortega, A.J., Remón-Ruiz, P.J., Piñar-Gutiérrez, A., Pereira-Cunill, J.L. and García-Luna, P.P. (2022) Therapeutic Properties and Use of Extra Virgin Olive Oil in Clinical Nutrition: A Narrative Review and Literature Update. Nutrients, 14, Article 1440.
https://doi.org/10.3390/nu14071440
[43] Valenzuela, R. and Videla, L.A. (2020) Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients, 12, Article 499.
https://doi.org/10.3390/nu12020499
[44] Liu, Y., Yuan, M., Zhang, C., Liu, H., Liu, J., Wei, A., et al. (2021) Puerariae Lobatae Radix Flavonoids and Puerarin Alleviate Alcoholic Liver Injury in Zebrafish by Regulating Alcohol and Lipid Metabolism. Biomedicine & Pharmacotherapy, 134, Article 111121.
https://doi.org/10.1016/j.biopha.2020.111121
[45] Monserrat-Mesquida, M., Quetglas-Llabrés, M., Abbate, M., Montemayor, S., Mascaró, C.M., Casares, M., et al. (2020) Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants, 9, Article 759.
https://doi.org/10.3390/antiox9080759
[46] Barrea, L., Muscogiuri, G., Frias-Toral, E., Laudisio, D., Pugliese, G., Castellucci, B., et al. (2020) Nutrition and Immune System: From the Mediterranean Diet to Dietary Supplementary through the Microbiota. Critical Reviews in Food Science and Nutrition, 61, 3066-3090.
https://doi.org/10.1080/10408398.2020.1792826
[47] Xiao, Y., Zhang, X., Yi, D., Qiu, F., Wu, L., Tang, Y., et al. (2023) Mediterranean Diet Affects the Metabolic Outcome of Metabolic Dysfunction-Associated Fatty Liver Disease. Frontiers in Nutrition, 10, Article 1225946.
https://doi.org/10.3389/fnut.2023.1225946
[48] Monserrat-Mesquida, M., Quetglas-Llabrés, M., Bouzas, C., García, S., Mateos, D., Gómez, C., et al. (2022) Effects of 2-Year Nutritional and Lifestyle Intervention on Oxidative and Inflammatory Statuses in Individuals of 55 Years of Age and over at High Cardiovascular Risk. Antioxidants, 11, Article 1326.
https://doi.org/10.3390/antiox11071326
[49] Quetglas-Llabrés, M.M., Monserrat-Mesquida, M., Bouzas, C., García, S., Argelich, E., Casares, M., et al. (2024) Impact of Adherence to the Mediterranean Diet on Antioxidant Status and Metabolic Parameters in NAFLD Patients: A 24-Month Lifestyle Intervention Study. Antioxidants, 13, Article 480.
https://doi.org/10.3390/antiox13040480
[50] Taylor, R.S., Taylor, R.J., Bayliss, S., Hagström, H., Nasr, P., Schattenberg, J.M., et al. (2020) Association between Fibrosis Stage and Outcomes of Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Gastroenterology, 158, 1611-1625.e12.
https://doi.org/10.1053/j.gastro.2020.01.043
[51] Del Bo’, C., Perna, S., Allehdan, S., Rafique, A., Saad, S., AlGhareeb, F., et al. (2023) Does the Mediterranean Diet Have Any Effect on Lipid Profile, Central Obesity and Liver Enzymes in Non-Alcoholic Fatty Liver Disease (NAFLD) Subjects? A Systematic Review and Meta-Analysis of Randomized Control Trials. Nutrients, 15, Article 2250.
https://doi.org/10.3390/nu15102250
[52] Li, H., Wang, Q., Chen, P., Zhou, C., Zhang, X. and Chen, L. (2021) Ursodeoxycholic Acid Treatment Restores Gut Microbiota and Alleviates Liver Inflammation in Non-Alcoholic Steatohepatitic Mouse Model. Frontiers in Pharmacology, 12, Article 788558.
https://doi.org/10.3389/fphar.2021.788558
[53] Mandato, C., Delli Bovi, A.P. and Vajro, P. (2021) The Gut-Liver Axis as a Target of Liver Disease Management. Hepatobiliary Surgery and Nutrition, 10, 100-102.
https://doi.org/10.21037/hbsn.2020.03.27
[54] Chen, B., Sun, L., Zeng, G., Shen, Z., Wang, K., Yin, L., et al. (2022) Gut Bacteria Alleviate Smoking-Related NASH by Degrading Gut Nicotine. Nature, 610, 562-568.
https://doi.org/10.1038/s41586-022-05299-4
[55] Chen, J. and Vitetta, L. (2020) Gut Microbiota Metabolites in NAFLD Pathogenesis and Therapeutic Implications. International Journal of Molecular Sciences, 21, Article 5214.
https://doi.org/10.3390/ijms21155214
[56] Nagpal, R., Shively, C.A., Register, T.C., Craft, S. and Yadav, H. (2019) Gut Microbiome-Mediterranean Diet Interactions in Improving Host Health. F1000Research, 8, Article 699.
https://doi.org/10.12688/f1000research.18992.1
[57] Del Bo’, C., Bernardi, S., Cherubini, A., Porrini, M., Gargari, G., Hidalgo-Liberona, N., et al. (2021) A Polyphenol-Rich Dietary Pattern Improves Intestinal Permeability, Evaluated as Serum Zonulin Levels, in Older Subjects: The Maple Randomised Controlled Trial. Clinical Nutrition, 40, 3006-3018.
https://doi.org/10.1016/j.clnu.2020.12.014
[58] García-Montero, C., Fraile-Martínez, O., Gómez-Lahoz, A.M., Pekarek, L., Castellanos, A.J., Noguerales-Fraguas, F., et al. (2021) Nutritional Components in Western Diet versus Mediterranean Diet at the Gut Microbiota-Immune System Interplay. Implications for Health and Disease. Nutrients, 13, Article 699.
https://doi.org/10.3390/nu13020699
[59] Costantini, L., Molinari, R., Farinon, B. and Merendino, N. (2017) Impact of Omega-3 Fatty Acids on the Gut Microbiota. International Journal of Molecular Sciences, 18, Article 2645.
https://doi.org/10.3390/ijms18122645
[60] Tang, C., Ding, R., Sun, J., Liu, J., Kan, J. and Jin, C. (2019) The Impacts of Natural Polysaccharides on Intestinal Microbiota and Immune Responses—A Review. Food & Function, 10, 2290-2312.
https://doi.org/10.1039/c8fo01946k
[61] Pagliai, G., Russo, E., Niccolai, E., Dinu, M., Di Pilato, V., Magrini, A., et al. (2019) Influence of a 3-Month Low-Calorie Mediterranean Diet Compared to the Vegetarian Diet on Human Gut Microbiota and SCFA: The CARDIVEG Study. European Journal of Nutrition, 59, 2011-2024.
https://doi.org/10.1007/s00394-019-02050-0