司美格鲁肽对MAFLD患者肠道菌群结构及功能的影响
Effect of Semaglutide on the Structure and Function of Intestinal Flora in Patients with MAFLD
DOI: 10.12677/acm.2025.1551604, PDF, HTML, XML,   
作者: 孙 悦*:内蒙古科技大学包头医学院,内蒙古 包头;内蒙古包钢医院消化内科,内蒙古 包头;牛昊书#:内蒙古包钢医院消化内科,内蒙古 包头
关键词: 司美格鲁肽代谢相关脂肪性肝病2型糖尿病肠道菌群脂多糖Semaglutide Metabolism-Associated Fatty Liver Disease Type 2 Diabetes Gut Flora Lipopolysaccharide
摘要: 目的:探讨司美格鲁肽对代谢相关脂肪性肝病(MAFLD)患者生化指标和肠道菌群的影响。方法:选取2023年6月至2024年6月期间于内蒙古包钢医院内科住院的MAFLD合并2型糖尿病(T2DM)患者11例作为研究对象,收集入选患者治疗前及治疗3个月后的一般资料、空腹血糖(FPG)、餐后2 h血糖(2 hPG)、糖化血红蛋白(HbAlc)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、甘油三酯(TG)等临床指标,ELISA法检测血清中LPS。16Sr DNA测序检测粪便肠道菌群,采用Alpha多样性分析、Beta多样性、物种组成分析及LEfSe分析等来评价治疗前后两组菌群群落差异。结果:(1) 入组患者治疗后的FPG、2 hPG、HbAlc、TG、TC、LDL-C、ALT、AST、LPS及BMI较治疗前均明显减低,差异具有统计学意义(均P < 0.05),而HDL-C较治疗前升高,但差异无统计学意义(P > 0.05)。(2) 16S rDNA测序结果:① 多样性分析:Alpha多样性分析结果显示,治疗前后患者群落物种多样性无显著变化,但丰富度升高;Beta多样性提示治疗前后患者肠道群落结构存在差异。② 物种组成分析:门水平上,治疗后拟杆菌门、假单胞菌门、放线菌门的丰度下降,芽孢杆菌门丰度升高。属水平上,治疗后拟杆菌属、粪杆菌属、Alistipes的丰度上升,埃希氏菌属的丰度下降。③ LEfSe分析:假单胞菌门、肠杆菌目、巨单细胞菌属、埃希氏菌属在治疗前的相对丰度均高于治疗后(均P < 0.05);芽孢杆菌门、拟杆菌属、粪杆菌属、乳酸杆菌属在治疗后的相对丰度均高于治疗前(均P < 0.05)。④ 菌群功能注释分析:治疗后肠道菌群在辅助因子和维生素代谢通路显著下调(P < 0.05);脂质代谢及氨基酸代谢通路显著上调(均P > 0.05)、其他次生代谢物的生物合成上调(P < 0.05)。结论:(1) 司美格鲁肽可以降低空腹血糖、血脂、ALT、AST,改善肝功能,调节机体内的糖脂代谢紊乱;(2) 司美格鲁肽可以降低患者血清LPS,减轻炎症反应;(3) 司美格鲁肽可以影响肠道菌群变化,调节脂质代谢及氨基酸代谢;(4) 司美格鲁肽可以通过增加粪杆菌属、Alistipes属的丰度,增加短链脂肪酸的生成,提高肠道抗炎作用,提示司美格鲁肽可改善肠道菌群结构,改变丰度,修复肠道菌群紊乱。
Abstract: Objective: To investigate the effects on biochemical indices and intestinal flora in patients with metabolic associated fatty liver disease (MAFLD) treated with semaglutide. Method: Eleven patients with MAFLD combined with type 2 diabetes mellitus (T2DM) who were admitted to the Department of Internal Medicine of Baogang Hospital in Inner Mongolia between June 2023 and June 2024 were selected as the study subjects, and the general data, fasting blood glucose (FPG), 2 h postprandial glucose (2 hPG), glycosylated hemoglobin (HbAlc), alanine aminotransferase (ALT), glutamate aminotransferase (AST), triglycerides (TG) and other clinical indexes were collected from the enrolled patients before treatment and 3 months after treatment. ELISA method to detect LPS in serum. 16Sr DNA sequencing to detect fecal intestinal flora, Alpha diversity analysis, Beta diversity, species composition analysis and LEfSe analysis were used to evaluate the differences in the bacterial flora communities between the two groups before and after treatment. Results: (1) FPG, 2 hPG, HbAlc, TG, TC, LDL-C, ALT, AST and BMI of MAFLD patients were significantly reduced after treatment compared with the pre-treatment group, and the difference was statistically significant (all P < 0.05), while HDL-C was elevated compared with the pre-treatment group, but the difference was not statistically significant (P > 0.05). (2) the results of 16S rDNA sequencing showed that: (i) Alpha diversity analysis results showed that there was no significant change in the diversity of the community in patients before and after treatment, but the richness increased; Beta diversity suggested that there was a difference in the structure of the intestinal community before and after treatment; (ii) Species composition analysis: at the phylum level, the abundance of Bacteroidota, Pseudomonadota (formerly known as Proteobacteria), and Actinobacteriota decreased and the abundance of Bacillota (formerly known as Firmicutes) increased after treatment. At the genus level, the abundance of Bacteroides, Faecalibacterium, and Alistipes increased, and the abundance of Escherichia decreased after treatment; (iii) And the results of LEfSe analysis showed that the Pseudomnadota, Enterobacterales, Megamonas, and Escherichia were more common in the pre-treatment group were higher than those in the post-treatment group (all P < 0.05); the relative abundance of Bacillota, Bacteroides, Faecalibacterium and Lactobacillus in the post-treatment group were higher than those in the pre-treatment group (all P < 0.05); (iv) Colony function annotation analysis: the post-treatment group was down-regulated in cofactor and vitamin metabolism (P < 0.05); significantly up-regulated in lipid metabolism and amino acid metabolism pathways (all P > 0.05), and up-regulated in biosynthesis of other secondary metabolites (P < 0.05). Conclusions: (1) Simeglutide can reduce fasting blood glucose, blood lipids, ALT, AST, improve liver function, and regulate the disorders of glucose and lipid metabolism in the body; (2) Simeglutide can reduce the patient’s serum LPS, and reduce the inflammatory response; (3) Simeglutide can affect the change of intestinal flora, and regulate lipid metabolism and amino acid metabolism; (4) Simeglutide can increase the abundance of Faecalibacterium and Alistipes and increase the generation of short-chain fatty acids to improve the anti-inflammatory effect of the intestine, suggesting that simeglutide can improve the structure of the intestinal flora, change the abundance, and repair the disorders of the intestinal flora.
文章引用:孙悦, 牛昊书. 司美格鲁肽对MAFLD患者肠道菌群结构及功能的影响[J]. 临床医学进展, 2025, 15(5): 2157-2169. https://doi.org/10.12677/acm.2025.1551604

1. 引言

代谢相关脂肪性肝病(metabolic dysfunction-associated fatty liver disease, MAFLD)原名非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD),其全球患病率高达32.4% [1]。MAFLD是指除过量饮酒和其他原因引起的慢性肝病外引起的肝损伤,且其病理特征为肝细胞内脂肪堆积,如果不采取治疗,就会从早期的良性脂肪样变性到脂肪性肝炎、进一步发展为肝纤维化、肝硬化、肝衰竭或肝细胞癌[2]。近年来,随着不健康的生活方式、肥胖、血脂异常、2型糖尿病的患病率增多,MAFLD的发病率也随之升高,但其缺乏有效的治疗药物,减重是目前唯一有效的措施[1] [2]。糖尿病是由多种原因引起的以糖代谢紊乱为主要表型的临床综合征,其特征为慢性血糖增高,伴胰岛素分泌不足或作用障碍,其中以2型糖尿病(Type Diabetes Mellitus 2, T2DM)最为常见[3] [4]。在最近的一项荟萃分析中,T2DM患者中MAFLD的全球患病率约为56%,其中,约有17%的患者进展为NASH,因此,T2DM成为MAFLD的独立危险因素[5]。两者并存对人类健康造成严重威胁。

胰高血糖素样肽-1受体激动剂(glucagon-like peptide-1 receptor agonist, GLP-1RA)是一种新型的用于治疗2型糖尿病的药物,其主要通过激活胰岛β细胞上的胰高血糖素样肽-1 (GLP-1)受体,促进胰岛素的合成与分泌、抑制胰高血糖素的分泌与释放,同时还可以调节下丘脑摄食中枢减少食物数摄入、增加饱腹感、抑制胃排空、从而抑制食欲,改善胰岛素抵抗(IR)等[6]。肠道菌群的作用被认为是影响宿主有机体的代谢修饰的主要因素[7]。已有研究表明属于GLP-1RA的利拉鲁肽在调节MAFLD小鼠肠道微生物群的多样性和肠道上皮炎症方面发挥重要作用。Moreira等的研究[8]表明利拉鲁肽治疗后,小鼠肠道中变形菌门(也称假单胞菌门)丰度下降和Akkermansia muciniphila丰度增加,肠道上皮炎症细胞减少,从而减轻了MAFLD。司美格鲁肽作为近年被批准的新型GLP-1 RA类药物,与原有降糖药相比,具有优效降糖、高安全性、半衰期长等优势,甚至优于GLP-1 RA类其他药物,使其广泛用于T2DM的降糖治疗。GLP-1受体表现出强大的代谢效应,GLP-1RA可以通过多种途径改善糖脂代谢异常,这提示了GLP-1受体激动剂在MAFLD中的潜在作用机制[9]

2. 资料与方法

2.1. 一般资料

选取2023年6月至2024年6月期间就诊内蒙古包钢医院内科住院的MAFLD合并T2DM患者11例作为研究对象。本实验在开展前已经获得内蒙古包钢医院医学伦理委员会批准(伦理批号:2022-MER-137),所有入组者全部自愿签署知情同意书。纳入标准:(1) 均符合2型糖尿病诊断标准根据《中国2型糖尿病防治指南》2020年版[10];同时符合MAFLD的诊断标准[11];(2) BMI > 24 kg/m2;(3) 年龄 > 18岁;(4) 采集粪便标本前4周未使用过微生态制剂、益生菌等;(5) 3个月内使用过抗菌药物者。排除标准:(1) 毒性肝炎(乙肝、丙肝)、自身免疫等其他原因导致肝病者;(2) 排除其他类型糖尿病;(3) 排除有过量饮酒史(男性饮酒折合乙醇量 > 30 g/d,女性 > 20 g/d);(4) 近三个月内注射过司美格鲁肽或其他GLP-1受体激动剂的患者;(5) 对司美格鲁肽副作用不能耐受或过敏者;(6) 近期发生过心、脑血管意外者;(7) 合并妊娠或哺乳期妇女。治疗方案所有入组患者均接受司美格鲁肽治疗3个月。

2.2. 研究方法

2.2.1. 标本采集

采集治疗前后符合纳排标准患者空腹外周静脉血,3000 rpm 10 min离心,取上层血清移入冻存管,并快速转运至−80℃冰箱冻存备用;同时收集治疗前后患者新鲜粪便标本于无菌便盒中,在超净台上用无菌勺将粪便标本移入冻存管中,液氮速冻,之后快速转运至−80℃冰箱冻存备用。

2.2.2. 检测方法

血液标本在内蒙古包钢医院检验科完成检测。采用全自动生化分析仪(日立7600-020,日本)检测FPG、HbA1c、2 hPG、ALT、AST、TG、TC等,人脂多糖试剂盒购自北京津科谱析生物科技有限公司。冻存的粪便标本送至北京华大基因科技股份有限公司进行16S rDNA V3~V4区高通量测序。

2.3. 统计学方法

采用SPSS 27.0进行统计分析,计数资料采用例数描述,服从正态分布的计量资料使用 x ¯ ±s 进行描述,不服从正态分布的计量资料则使用中位数(四分位数间距)进行描述,治疗前后组比较采用配对样本t检验,采用GraphPrism 10.0和R软件(3.1.1版)作图,构建Venn图、箱形图、物种水平的分类组成图、差异性分析图等。以P < 0.05为差异具有统计学意义。

3. 结果

3.1. 一般资料比较

与治疗前相比,治疗后BMI、FPG、2hPG、HbA1c、ALT、AST、TG、TC、LDL-C均降低,差异有统计学意义(均P < 0.05) (见表1)。

Table 1. Comparison of biochemical indexes before and after treatment

1. 治疗前后生化指标的比较

变量

治疗前

治疗后

z值/t

P

性别,男/女

6/5

年龄

57.45 ± 2.01

BMI, kg/m2

27.68 (26.64,29.22)

26.75 (25.51,27.97)

−2.934

0.003

FPG, mmol/L

9.8464 ± 1.37032

8.3627 ± 1.09762

6.002

<0.001

2 hPG, mmol/L

11.0027 ± 0.94859

9.3664 ± 1.43739

3.972

0.003

HbAlc, %

10.691 ± 1.2755

8.873 ± 0.986

5.875

<0.001

ALT, U/L

35.64 ± 11.544

29.73 ± 7.143

2.838

0.018

AST, U/L

36.73 ± 13.176

30.45 ± 6.593

2.386

0.038

TG, mmol/L

3.0555 ± 1.08753

2.5527 ± 0.70006

3.700

0.004

TC, mmol/L

5.19 (3.85, 5.26)

4.37 (3.62, 4.82)

−2.670

0.008

HDL, mmol/L

0.9991 ± 0.15293

1.0682 ± 0.14709

−1.833

0.097

LDL, mmol/L

3.6209 ± 0.92462

2.8782 ± 0.62976

3.364

0.007

3.2. 患者血清LPS比较

与治疗前相比,治疗后血清中LPS的水平下降,差异有统计学意义(P < 0.0001) (见图1)。

Figure 1. Changes in LPS before and after treatment

1. 治疗前后LPS变化

3.3. 肠道菌群分析

3.3.1. Alpha多样性

通过绘制Venn图可知,治疗前后总共得到1553个OTUs,其中治疗前后共有的OTUs数目为813个(见图2)。进一步Alpha多样性分析可知,治疗前后Shannon、Simpson指数无明显统计学差异(P > 0.05);而治疗后Chao1、Ace指数较治疗前升高,提示司美格鲁肽治疗后多样性无显著变化,群落丰富度升高,差异有统计学意义(P < 0.05,见表2) (见图3(a)~(d),SemagB组代表治疗前,SemagA组代表治疗后)。

Figure 2. Venn diagram

2. Venn图

Table 2. Alpha diversity index

2. Alpha多样性指数

Chao1

Ace

Shannon

Simpson

P

0.00002

0.00001

0.11641

0.11641

Figure 3. Alpha diversity analysis. (a) Chao1 box line diagram; (b) Ace box line diagram; (C) Shannon box diagram; (d) Simpson box line diagram

3. Alpha多样性分析。(a) Chao1箱线图;(b) Ace箱线图;(c) Shannon箱线图;(d) Simpson箱线图

3.3.2. Beta多样性分析

通过NMDS进行Beta多样性分析表明:治疗前后中标本点的距离均发生改变(见图4)。

3.3.3. 物种组成分析

治疗前后患者的肠道菌群中芽孢杆菌门、拟杆菌门、假单胞菌门和放线菌门占主要地位。其中,患者肠道中拟杆菌门丰度在治疗后丰度由33.94%下降至30.50%,假单胞菌门丰度由10.69%下降至3.59%,放线菌门丰度由6.42%下降至2.60%。治疗前后患者在属水平上拟杆菌属(Bacteroides)、粪杆菌属(Faecalibacterium)、埃希氏菌属(Escherichia)的丰度发生改变。其中拟杆菌属的丰度由治疗前的7.78%上升至9.17%,粪杆菌属的丰度由治疗前的3.47%上升至9.17%,埃希氏菌属的丰度由治疗前的6.85%下降至1.40%。还有少量的Alistipes属丰度也呈上升趋势(见图5(a)图5(b))。

Figure 4. Beta diversity analysis

4. Beta多样性分析

(a)

(b)

Figure 5. Species composition analysis. (a) Horizontal species composition of phylum; (b) Species composition at the genus level

5. 物种组成分析。(a) 门水平物种组成;(b) 属水平物种组成

3.3.4. LEfSe分析

将LDA值设>3.5,治疗前假单胞菌门、肠杆菌目、巨单细胞菌属、埃希氏菌属的相对丰度高于治疗后;治疗后芽孢杆菌门、拟杆菌属、粪杆菌属、乳酸杆菌的相对丰度高于治疗前(见图6)。

3.3.5. 菌群功能注释分析

在KEGG第1级新陈代谢在治疗前后占主要地位,在KEGG第2级共注释出32种通路,其中,碳水化合物代谢(Carbohydrate metabolism)、辅助因子和维生素代谢(Metabolism of cofactors and vitamins)、氨基酸代谢(Amino acid metabolism)、脂质代谢(Lipid metabolism)在治疗前后占主要地位。进一步对KEGG第2级丰度前20的通路进行差异性分析得出:治疗后在辅助因子和维生素代谢下调(P < 0.05);在脂质代谢及氨基酸代谢通路显著上调(均P > 0.05)、其他次生代谢物的生物合成通路上调(P < 0.05) (见图7(a)~(c))。

4. 讨论

MAFLD和T2DM是临床上常见且容易合并出现的代谢性疾病。MAFLD与T2DM相互作用、相互影响,MAFLD可通过直接或间接的方式促进T2DM及并发症的发生,同时,T2DM可促进MAFLD发生发展甚至向肝细胞癌发展[12]

在本研究中,与治疗前组相比,司美格鲁肽治疗后BMI下降(P < 0.05),FPG、2 hPG、HbAlc、TC、

(a)

(b)

Figure 6. LEfSe analysis. (a) LEfSe clustering diagram; (b) LDA bar chart

6. LEfSe分析。(a) LEfSe聚类图;(b) LDA柱状图

(a)

(b)

(c)

Figure 7. KEGG metabolic pathway diagram. (a) KEGG level 1 function annotation; (b) KEGG level 2 function annotation; (c) Analysis of species differences

7. KEGG代谢通路图。(a) KEGG 1级功能注释;(b) KEGG 2级功能注释;(c) 物种差异分析

TG、LDL-C各项糖脂代谢指标均下降(均P < 0.05),HDL-C指标无显著变化(P > 0.05),表明司美格鲁肽可以减轻体重、改善糖脂代谢,与既往研究结果一致[13]。MAFLD患者存在肝细胞受损,主要是因为IR使肝脏脂肪转化增加,导致肝脏脂肪蓄积,从而引起肝脏脂肪变性,继而损伤到患者肝功能。ALT、AST是常用的肝功能指标,研究表明血清ALT水平可能是MAFLD敏感的标志物[14]。在本研究中,与治疗前组相比,司美格鲁肽治疗后患者ALT、AST水平下降,同之前研究一致[15]β-氧化是肝脏脂质减少的主要机制。司美格鲁肽可通过促进代谢物L-异亮氨酸和乙酰甲胆碱的表达,增加脂肪酸在肝脏β-氧化,减少炎症因子花生四烯酸,从而减轻肝脏炎症,保护肝功能[16]。LPS是一种内毒素,可引起机体慢性炎症,机体LPS水平增多,引起肠道炎症,启动炎症反应,破坏肠道黏膜屏障[17]。本研究中,司美格鲁肽治疗后血清LPS水平较治疗前下降,说明司美格鲁肽可以抑制炎症反应。

进一步对司美格鲁肽治疗前后MAFLD患者的粪便标本进行肠道菌群检测,观察肠道菌群变化。既往动物研究[18]发现,司美格鲁肽治疗后小鼠肠道群落多样性增加,而我们的研究并未观察到治疗前后患者肠道菌群Alpha多样性改变,可能是由于研究对象不同或受试者样本量偏小未能检测到其变化,但治疗后物种丰富度升高,可能潜在有益菌增加。此外,基于NMDS分析发现司美格鲁会对肠道菌群结构产生影响。在门水平上治疗前后组患者主要以厚壁菌门、拟杆菌门为主、其次是变形菌门及放线菌门,治疗前后占比分别为48.29% vs 62.95%、33.94% vs 30.50%、10.69% vs 3.59%、6.42% vs 2.60%。在属水平上,治疗后拟杆菌属、粪杆菌属、Alistipes属的丰度上升,埃希氏菌属的丰度下降,由以上结果可以得出,从菌群结构上看,治疗后的肠道微生物群与治疗前有相似的分布模式,但是主要的菌门和菌属占比有所差异。此外,研究表明,变形菌门丰度的增加,破坏了原有的肠道粘膜屏障,使肠道通透性增加,继而导致LPS过度生长,从而引发肠道的慢性炎症,导致肝脏病变,同时埃希氏菌属属于变形菌门,其丰度升高,也可以增加内毒素血症、产生内源性乙醇、引发强烈炎症反应和引起胰岛素抵抗等[19]。短链脂肪酸(SCFAs)可以促进肠道细胞再生和维持肠道屏障,还可以发挥抗炎作用[20]。粪杆菌属和Alistipes属可以促进SCFAs的生成、降低肠道LPS水平、维持肠道黏膜的完整性、抑制致病菌的生长和抗炎症反应来改善MAFLD。同时进行KEGG通路分析,发现治疗后辅助因子和维生素代谢下调;在脂质代谢、氨基酸代谢、其他次生代谢物的生物合成通路显著上调,提示司美格鲁肽治疗MAFLD的相关机制可能是通过改善肠道菌群结构,从而影响代谢通路,改善MAFLD。司美格鲁肽治疗后患者变形菌门、埃希氏菌属丰度降低,粪杆菌属、Alistipes属丰度升高,均为肠道菌群优化的表现。

综上所述,司美格鲁肽可减轻体重、改善肝功能、调节糖脂代谢,减轻炎症反应,调节肠道菌群结构,修复肠道菌群失衡,来维持肠道稳定状态。其有望成为治疗MAFLD的有效药物,但是由于本研究样本量偏少,地域局限,存在一定的不足,需要继续扩大样本量进一步证实我们的结果。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861.
https://doi.org/10.1016/s2468-1253(22)00165-0
[2] Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224.
https://doi.org/10.1016/s0140-6736(20)32511-3
[3] 年福临, 鲁晓岚. 糖尿病与非酒精性脂肪性肝病[J]. 实用肝脏病杂志, 2022, 25(3): 314-317.
[4] 谢海平, 林帆, 陈彦, 等. 利拉鲁肽治疗2型糖尿病合并非酒精性脂肪性肝病的研究进展[J]. 临床肝胆病杂志, 2020, 36(9): 2111-2114.
[5] Younossi, Z.M., Golabi, P., de Avila, L., Paik, J.M., Srishord, M., Fukui, N., et al. (2019) The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Journal of Hepatology, 71, 793-801.
https://doi.org/10.1016/j.jhep.2019.06.021
[6] Htike, Z.Z., Zaccardi, F., Papamargaritis, D., Webb, D.R., Khunti, K. and Davies, M.J. (2017) Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists in Type 2 Diabetes: A Systematic Review and Mixed-treatment Comparison Analysis. Diabetes, Obesity and Metabolism, 19, 524-536.
https://doi.org/10.1111/dom.12849
[7] Tilg, H., Cani, P.D. and Mayer, E.A. (2016) Gut Microbiome and Liver Diseases. Gut, 65, 2035-2044.
https://doi.org/10.1136/gutjnl-2016-312729
[8] Moreira, G., Azevedo, F., Ribeiro, L., Santos, A., Guadagnini, D., Gama, P., et al. (2018) Liraglutide Modulates Gut Microbiota and Reduces NAFLD in Obese Mice. The Journal of Nutritional Biochemistry, 62, 143-154.
https://doi.org/10.1016/j.jnutbio.2018.07.009
[9] 梁静茹, 杨晓蕾, 杜婉笛, 等. 新型GLP-1受体激动剂司美格鲁肽的临床研究进展[J]. 中国临床药学杂志, 2022, 31(10): 790-796.
[10] Chinese Diabetes Society. 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695.
[11] Eslam, M., Newsome, P.N., Sarin, S.K., Anstee, Q.M., Targher, G., Romero-Gomez, M., et al. (2020) A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. Journal of Hepatology, 73, 202-209.
https://doi.org/10.1016/j.jhep.2020.03.039
[12] Qi, Y., Fan, L., Ran, D., Xu, J., Wang, Y., Wu, J., et al. (2021) Main Risk Factors of Type 2 Diabetes Mellitus with Nonalcoholic Fatty Liver Disease and Hepatocellular Carcinoma. Journal of Oncology, 2021, 1-10.
https://doi.org/10.1155/2021/7764817
[13] 徐瑞君, 薛一, 邵雪景, 等. 司美格鲁肽对2型糖尿病合并高脂血症患者糖脂代谢的影响[J]. 中国医药科学, 2024, 14(18): 147-150.
[14] Prati, D., Taioli, E., Zanella, A., Torre, E.D., Butelli, S., Del Vecchio, E., et al. (2002) Updated Definitions of Healthy Ranges for Serum Alanine Aminotransferase Levels. Annals of Internal Medicine, 137, 1-10.
https://doi.org/10.7326/0003-4819-137-1-200207020-00006
[15] 刘余, 段滨红, 何姗姗, 等. 司美格鲁肽对2型糖尿病合并NAFLD患者糖脂代谢、肝功能及肝纤维化的影响[J]. 转化医学杂志, 2024, 13(5): 820-824.
[16] Niu, S., Chen, S., Chen, X., Ren, Q., Yue, L., Pan, X., et al. (2022) Semaglutide Ameliorates Metabolism and Hepatic Outcomes in an NAFLD Mouse Model. Frontiers in Endocrinology, 13, Article 1046130.
https://doi.org/10.3389/fendo.2022.1046130
[17] An, L., Wirth, U., Koch, D., Schirren, M., Drefs, M., Koliogiannis, D., et al. (2022) The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases. Journal of Gastrointestinal Surgery, 26, 671-683.
https://doi.org/10.1007/s11605-021-05188-7
[18] Mao, T., Zhang, C., Yang, S., Bi, Y., Li, M. and Yu, J. (2024) Semaglutide Alters Gut Microbiota and Improves NAFLD in db/db Mice. Biochemical and Biophysical Research Communications, 710, Article 149882.
https://doi.org/10.1016/j.bbrc.2024.149882
[19] Bull-Otterson, L., Feng, W., Kirpich, I., Wang, Y., Qin, X., Liu, Y., et al. (2013) Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus Rhamnosus GG Treatment. PLOS ONE, 8, e53028.
https://doi.org/10.1371/journal.pone.0053028
[20] Salvi, P.S. and Cowles, R.A. (2021) Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells, 10, Article 1775.
https://doi.org/10.3390/cells10071775