求解二维Allen-Cahn方程的保正隐式差分格式
Positive-Preserving Implicit Difference Scheme for Solving Two-Dimensional Allen-Cahn Equation
摘要: 本文研究求解二维Allen-Cahn方程的保正隐式差分格式。通过证明得到当网格比满足 1+τ2 R x 2 R y 0 时,差分解具有保正性,且在无穷范数意义下有 O( τ+ h x 2 + h y 2 ) 的收敛阶,最后数值实验表明数值结果与理论结果相吻合。
Abstract: In this paper, we study the positive-preserving implicit difference scheme for solving two-dimensional Allen-Cahn equation. It is proved that when the grid ratio satisfies 1+τ2 R x 2 R y 0 , the difference solution is positive-preserving and has the convergence order of O( τ+ h x 2 + h y 2 ) in the sense of infinite norm. Finally, numerical experiments show that the numerical results are consistent with the theoretical results.
文章引用:赵紫琳. 求解二维Allen-Cahn方程的保正隐式差分格式[J]. 应用数学进展, 2025, 14(5): 328-338. https://doi.org/10.12677/aam.2025.145262

1. 引言

Allen和Cahn [1]在描述晶体中反相边界运动时,首次提出Allen-Cahn方程。该方程广泛应用于各种领域[1]-[7],例如二元合金在固定温度下的相分离过程、图像分割、囊泡膜、固体的成核、材料科学中的相变和界面动力学等。

本文将研究如下二维Allen-Cahn方程的初边值问题(IBVP)

u t αΔu+ u 3 u=0 , ( x,y )Ω , 0<tT , (1)

u( x,y,0 )= u 0 ( x,y ) , ( x,y ) Ω ¯ , (2)

u( x,y,t )=0 , ( x,y )Γ , 0tT . (3)

其中,参数 α0 代表界面宽度, u( x,y,t ) 表示二元合金中金属部分的浓度, Ω ¯ =[ X l , X r ]×[ Y l , Y r ] Ω Ω ¯ 的内部点, Γ Ω ¯ 的边界点。

Allen-Cahn方程具有重要的理论意义和实际意义,因此对其理论和数值方面的研究显得尤为重要。一方面,文献[8]-[12]已经得到了许多的理论结果,例如,精确解的存在性和极大值原理、精确解的动力学行为、平衡解的性质,以及亚稳态模式的生成、持续和湮灭等。此外,文献[13] [14]分别通过tanh-coth法和首次积分法得到了部分特殊的精确解。另一方面,Allen-Cahn方程数值方法的研究受到了广泛关注。例如,差分法[15] [16]、有限元法[17] [18]。Tang等[19]提出了一种显–隐式差分方法,该方法在时空方向均有一阶精度。随后,一维和高维Allen-Cahn方程[20]-[26]的各种高阶差分方法被建立。上述保结构算法都是全离散的隐式格式,因此计算相对复杂。

本文将构造保正隐式差分格式,应用Vieta’s定理改造为显式差分方法,巧妙地避免了使用迭代法求解,提高了计算效率,此外该方法满足保正性的数学性质。

2. 记号与引理

首先,令时间步长 τ=T/N ( N Z + ) t k =kτ( 0kN ) ,将时间区域 [ 0,T ] 分割成 Ω ¯ τ ={ t k |kτ,0kN } 。在 Ω ¯ τ 中,引入记号 δ t V k = ( V k+1 V k )/τ

对于空间方向,记空间区域 Ω=( X l , X r )×( Y l , Y r ) ,令 h x = ( X r X l )/ M x h y = ( Y r Y l )/ M y 分别为 x y 方向的空间步长,其中 M x M y 为正整数。记 x i = X l +i h x ( 0i M x ) y j = Y l +j h y ( 0j M y )

定义离散网格 Ω h ={ ( i,j )|1i M x 1,1j M y 1 } Ω h ={ ( i,j )|i,j=0 i= M x ,j= M y } Ω ¯ h = Ω h Ω h 。设 Π h ={ V i,j |( i,j ) Ω ¯ h } Π h 0 ={ V i,j |( i,j ) Ω ¯ h ( i,j ) Ω h V i,j =0 } Ω ¯ h 上的网格函数。引入如下差分算子:

δ x 2 V i,j = ( V i1,j 2 V i,j + V i+1,j )/ h x 2 , δ y 2 V i,j = ( V i,j1 2 V i,j + V i,j+1 )/ h y 2 , Δ h V i,j = δ x 2 V i,j + δ y 2 V i,j

以及对任意的 V k Π h 0 ( k=0,1,,N ) ,定义如下范数

V k = max ( i,j ) Ω ¯ h ,0kN ( V i,j k ) , V k = h x h y i=1 M x 1 j=1 M y 1 ( V i,j k ) 2 ,

δ x V k = h x h y i=0 M x 1 j=1 M y 1 ( δ x V i+ 1 2 ,j k ) 2 , δ y V k = h x h y i=1 M x 1 j=0 M y 1 ( δ y V i,j+ 1 2 k ) 2 ,

V k H 1 = V k 2 + δ x V k 2 + δ y V k 2 .

引理1 (Gronwall不等式) { F k+1 |k0 } 为非负序列,且满足

F k+1 ( 1+cτ ) F k +τg k=0,1,2,,

其中, c g 为非负常数,则有

F k e ckτ ( F 0 + g c ), k=0,1,2,

3. 差分格式的建立

U i,j k u i,j k 分别表示方程(1)~(3)在 ( x i , y j , t k ) 点处的精确解和数值解。在结点 ( x i , y j , t k ) 处离散方程(1),并注意到初边值条件(2)~(3),可得

δ t U i,j k α Δ h U i,j k + ( U i,j k+1 ) 2 U i,j k U i,j k = R i,j k , ( i,j ) Ω h , 1kN , (4)

U i,j 0 = u 0 ( x i , y j ) , ( i,j ) Ω ¯ h , (5)

U i,j k =0 , ( i,j ) Ω h , 0kN , (6)

设初边值问题(2)~(3)的精确解 u( x,y,t ) C 4,4,2 ( Ω×[ 0,T ] ) ,则存在常数 C 1 使得

| R i,j k | C 1 ( τ+ h x 2 + h y 2 ) , ( i,j ) Ω ¯ h , 0kN , (7)

成立。

在方程(4)中略去误差项 R i,j k ,用数值解 u i,j k 代替精确解 U i,j k ,得到如下保正隐式差分格式:

δ t u i,j k α Δ h u i,j k + ( u i,j k+1 ) 2 u i,j k u i,j k =0 , ( i,j ) Ω h , 1kN , (8)

u i,j 0 = u 0 ( x i , y j ) , ( i,j ) Ω ¯ h , (9)

u i,j k =0 , ( i,j ) Ω h , 0kN . (10)

4. 差分格式的保正性

本节讨论差分格式(8)~(10)的解的保正性。

R x = ατ h x 2 R y = ατ h y 2 。定理4.1表明当初值 u 0 ( x i , y j ) 非负时,差分格式(8)~(10)的解是非负的。

定理4.1 { u i,j k |( i,j ) Ω ¯ h ,0kN } 是差分格式(8)~(10)的解。假设初值条件满足 u 0 ( x i , y j )0 ,当 1+τ2 R x 2 R y 0 ,其解 u i,j k 仍然满足 u i,j k 0 ( i,j ) Ω ¯ h 0kN

证明 下面证明差分格式(8)~(10)的保正性,首先将利用差分格式(8)~(10)进行整理得:

τ u i,j k ( u i,j k+1 ) 2 + u i,j k+1 R x u i1,j k R x u i+1,j k ( 1+τ2 R x 2 R y ) u i,j k R y u i,j1 k R x u i,j+1 k =0

利用韦达定理等价写成如下形式:

u i,j k+1 = 2 H i,j k 1+ 1+4τ u i,j k H i,j k , ( i,j ) Ω h , 1kN . (11)

其中, H i,j k = R x u i1,j k + R x u i+1,j k +( 1+τ2 R x 2 R y ) u i,j k + R y u i,j1 k + R x u i,j+1 k

k=0 时, u i,j k = u 0 ( x i , y j )0 ( i,j ) Ω ¯ h 显然成立。假设 k=1,2,,K1 时,有 u i,j k 0 ( i,j ) Ω h 成立。根据边界条件 u i,j k =0 ( i,j ) Ω h 0kN ,可知 u i,j k 0 ( i,j ) Ω ¯ h k=1,2,,K1 成立。

下面由归纳假设证明当 k=1,2,,K1,K 时,有 u i,j k 0 ( i,j ) Ω h 成立。首先令 u i,j k+1 =f( x ) x= H i,j k ,定义函数

f( x )= 2x 1+ 1+4τ u i,j k x , (12)

其中,当 1+τ2 R x 2 R y 0 时, x0 ,对 f( x ) 求导得

f ( x )= 2[ 1+2τ u i,j k x+ 1+4τ u i,j k x ] [ 1+ 1+4τ u i,j k x ] 2 1+4τ u i,j k x 0 (13)

因此, f( x ) 是单调递增函数,从而可得

f( x )f( 0 )=0 (14)

因此,有 u i,j k 0 ( i,j ) Ω h ,又因为 u i,j K =0 ( i,j ) Ω h ,所以有 u i,j k 0 ( i,j ) Ω ¯ h 成立。由归纳假设可证定理4.1成立。 □

5. 差分格式的收敛性

定理4.2 { u i,j k |( i,j ) Ω ¯ h ,0kN } 是差分格式(8)~(10)的数值解, { U i,j k |( i,j ) Ω ¯ h ,0kN } 是(1)~(3)的精确解。令 e i,j k = U i,j k u i,j k ( i,j ) Ω ¯ h 0kN ,当 u 0 ( x i , y j )0 1+τ2 R x 2 R y 0 时,则有如下

e k C 2 ( τ+ h x 2 + h y 2 ) , 0kN , (15)

成立,其中 C 2 = e T

证明 下面证明差分格式(8)~(10)的最大模估计,将方程(4)~(6)和(8)~(10)相减,得到如下误差方程:

δ t e i,j k α Δ h e i,j k + ( U i,j k+1 ) 2 U i,j k ( u i,j k+1 ) 2 u i,j k e i,j k = R i,j k , ( i,j ) Ω h , 1kN , (16)

e i,j 0 =0 , ( i,j ) Ω ¯ h , (17)

e i,j k =0 , ( i,j ) Ω h , 0kN , (18)

其中, ( U i,j k+1 ) 2 U i,j k ( u i,j k+1 ) 2 u i,j k = ( U i,j k+1 ) 2 e i,j k ( U i,j k+1 + u i,j k+1 ) 2 u i,j k e i,j k+1

将(16)等价地写成如下形式:

[ 1+τ u i,j k ( U i,j k+1 + u i,j k+1 ) ] e i,j k+1 = R x e i1,j k + R x e i+1,j k +[ ( 1+τ2 R x 2 R y )τ ( U i,j k+1 ) 2 ] e i,j k + R y e i,j1 k + R y e i,j+1 k +τ R i,j k ( i,j ) Ω h , 1kN, (19)

对(19)两端分别取绝对值,并运用三角不等式,不难得到

| e i,j k+1 |[ 1+τ u i,j k ( U i,j k+1 + u i,j k+1 ) ]| e i,j k+1 | R x e k + R x e k +{ 12 R x 2 R y +[ 1 ( U i,j k ) 2 ]τ } e k + R y e k + R y e k +τ R k ( 1+τ ) e k +τ R k (20)

e k+1 ( 1+τ ) e k +τ R k , (21)

再运用引理1可得

e k+1 e T R k . (22)

定理3.2证毕。 □

6. 数值算例

本节将给出求解一维和二维Allen-Cahn方程的两个数值算例。算例1和算例2表明保正隐式差分格式(8)~(10)在时空方向分别具有一阶和二阶精度,具有保正的数学性质。这些数值结果和理论结果是吻合的。

算例1 首先考虑如下一维Allen-Cahn方程的IBVP

u t α u xx + u 3 u=0 , L<x<L , 0<tT , (23)

u( x,0 )= 1 2 tanh( 1 2 2 x )+ 1 2 , LxL , (24)

u( L,t )= 1 2 tanh[ 1 2 2 ( L 3 2 t ) ]+ 1 2 , 0tT (25)

u( L,t )= 1 2 tanh[ 1 2 2 ( L 3 2 t ) ]+ 1 2 , 0tT (26)

α=1 时,该方程的精确解为:

u( x,t )= 1 2 tanh[ 1 2 2 ( x 3 2 t ) ]+ 1 2

Ω=[ 5,5 ] [ 0,T ]=[ 0,1 ] ,由差分格式(8)~(10)获得的数值解,在 t=1 处的 L - 范数、 L 2 - 范数和 H 1 - 范数误差及相应的收敛阶分别记为 ME LE HE r r L 2 r H .

表1给出了差分格式(8)~(10)在取不同网格步长时所得数值解 u i k 的误差和收敛阶。它表明差分格式(8)~(10)在不同范数意义下在时空方向上分别具有一阶和二阶收敛阶。

为了验证数值解的保正性,记 RT=1+τ2 R x ,接下来在 Ω=[ 10,10 ] [ 0,T ]=[ 0,100 ] 上求解带任意参数 α 的IBVP (23)~(26)。此时该问题没有精确解。

图1给出了当网格步长 h x =1/ 16 τ= 0.5 h x 2 /α 以及参数 α 0.01,0,10 时运用差分法(8)~(10)所得数值解的曲面图。从该图可观察到当 α=0.01,1,10 时, RT0 ,数值解具有保正性。而表2给出了当 RT<0 时,数值解不满足保正性,例如 α=1,10,  h x =1/ 16 , τ= h x 2

Table 1. Error and convergence order ( τ= 1 2 h x 2 ) of u i k when the difference scheme takes different step sizes

1. 差分格式取不同步长时 u i k 的误差和收敛阶 ( τ= 1 2 h x 2 )

h x

ME

r

LE

r L 2

HE

r H

CPU

1/2

2.2262e−02

*

4.5074e−02

*

4.8544e−02

*

0.000181 s

1/4

5.9182e−03

1.9113

1.1954e−02

1.9148

1.2878e−02

1.9144

0.000424 s

1/8

1.5035e−03

1.9769

3.0347e−03

1.9778

3.2696e−03

1.9777

0.001239 s

1/16

3.7745e−04

1.9939

7.6162e−04

1.9944

8.2060e−04

1.9944

0.005073 s

(a) (b)

(c)

Figure 1. Surface diagrams of numerical solution when taking α=0.01,1,10 , h x =1/ 16 , and τ= 0.5 h x 2 /α

1. α=0.01,1,10 h x =1/ 16 τ= 0.5 h x 2 /α 时数值解的曲面图

Table 2. Numerical solution at x=0, t=50 when taking α=1,10 , h x =1/ 16 , and τ= h x 2

2. α=1,10 h x =1/ 16 τ= h x 2 x=0, t=50 处的数值解

α

h x

τ

网格点

数值解

1

1/16

1/256

x=0,t=50

−1.2468e−60 − 22.6053i

10

1/16

1/256

x=0,t=50

−2.1950e−27 − 95.8794i

2 考虑如下二维Allen-Cahn方程的IBVP

u t αΔu+ u 3 u=0 , ( x,y )Ω , 0<tT , (27)

u( x,y,0 )= 1 2 tanh[ 1 2 2 ( xsinφ+ycosφ )+C ]+ 1 2 , ( x,y ) Ω ¯ , (28)

u( x,y,t )= 1 2 tanh[ 1 2 2 ( xsinφ+ycosφ )+ 3 4 t+C ]+ 1 2 , ( x,y )Γ , 0tT (29)

α=1 时,该方程的精确解为:

u( x,y,t )= 1 2 tanh[ 1 2 2 ( xsinφ+ycosφ )+ 3 4 t+C ]+ 1 2

Ω ¯ =[ 0,1 ]×[ 0,1 ] [ 0,T ]=[ 0,1 ] ,由差分格式(8)~(10)获得的数值解,在 t=1 处的 L - 范数、 L 2 - 范数和 H 1 范数误差及相应的收敛阶分别记为 M E * L E * H E * r ¯ r ¯ L 2 r ¯ H

表3给出了差分格式(8)~(10)在取不同网格步长时所得数值解 u i,j k 的误差和收敛阶。它表明差分格式(8)~(10)在不同范数意义下在时空方向上分别具有一阶和二阶收敛阶。

Table 3. Error and convergence order ( h x 2 = h y 2 ,τ= 1 4 h x 2 ) of u i,j k when the difference scheme takes different step sizes

3. 差分格式取不同步长时 u i,j k 的误差和收敛阶 ( h x 2 = h y 2 ,τ= 1 4 h x 2 )

h x

M E *

r ¯

L E *

r ¯ L 2

H E *

r ¯ H

CPU

1/4

1.2419e−04

*

6.8822e−05

*

3.0778e−04

*

0.001641 s

1/8

3.2041e−05

1.9545

1.7924e−05

1.9410

8.2523e−05

1.8990

0.006714 s

1/16

8.0771e−06

1.9880

4.5230e−06

1.9866

2.0998e−05

1.9745

0.036086 s

1/32

2.0269e−06

1.9945

1.1333e−06

1.9967

5.2730e−06

1.9936

0.295275 s

为了验证差分格式(8)~(10)的保正性,记 RRT=1+τ2 R x 2 R y ,下面在 Ω=[ 0,10 ]×[ 0,10 ] [ 0,T ]=[ 0,100 ] 上求解带任意参数 α 的IBVP (23)~(26)。此时该问题没有精确解。

图2图3分别展示了当网格步长 h x = h y =1/8 τ= 0.25 h x 2 /α 以及参数 α 0.01,0,10 时运用差分格

(a) (b)

(c)

Figure 2. Surface diagrams of numerical solution of x=5 when taking α=0.01,1,10 , h x = h y =1/8 , and τ= 0.25 h x 2 /α

2. α=0.01,1,10 h x = h y =1/8 τ= 0.25 h x 2 /α x=5 数值解的曲面图

(a) (b)

(c)

Figure 3. Surface diagrams of numerical solution of y=5 when taking α=0.01,1,10 , h x = h y =1/8 , and τ= 0.25 h x 2 /α

3. α=0.01,1,10 h x = h y =1/8 τ= 0.25 h x 2 /α y=5 数值解的曲面图

式(8)~(10)所得 x=5 y=5 时数值解的曲面图。图4展示了当网格步长 h x = h y =1/8 τ= 0.25 h x 2 /α 以及参数 α 0.01,0,10 时运用差分格式(8)~(10)所得不同 ( x,y ) 处数值解的曲面图。从这些图可观察到,当 α=0.01,1,10 时, RRT0 ,数值解具有保正性。而表4给出了当 RRT<0 时,数值解不满足保正性,例如 α=1,10,  h x = h y =1/4 , τ= h x 2

(a) (b)

(c)

Figure 4. Curves of numerical solutions at different points ( x,y ) when taking α=0.01,1,10 , h x = h y =1/8 , and τ= 0.25 h x 2 /α

4. α=0.01,1,10 h x = h y =1/8 τ= 0.25 h x 2 /α 时不同 ( x,y ) 处数值解的曲线图

Table 4. Numerical solution at x=5, y=5, t=50 when taking α=1,10 , h x = h y =1/4 , and τ= h x 2

4. α=1,10 h x = h y =1/4 τ= h x 2 x=5, y=5, t=50 处的数值解

α

h x

τ

网格点

数值解

1

1/4

1/16

x=5, y=5, t=50

−0.0000004 + 9.7468i

10

1/4

1/16

x=5, y=5, t=50

−0.00000000001 − 35.2156i

7. 结论

本文对二维Allen-Cahn方程的初边值问题建立了一个保正隐式差分格式,证明了该格式具有保正的数学性质,且在 L - 范数意义下有 O( τ+ h x 2 + h y 2 ) 的收敛阶。此外,利用韦达定理将隐式格式改造成显式格式,极大地提高了计算效率。数值结果验证了只要网格步长以及参数 α 满足 1+τ2 R x 2 R y 0 ,则数值解就满足收敛阶为 O( τ+ h x 2 + h y 2 ) 和保正性。

参考文献

[1] Allen, S.M. and Cahn, J.W. (1979) A Microscopic Theory for Antiphase Boundary Motion and Its Application to Antiphase Domain Coarsening. Acta Metallurgica, 27, 1085-1095.
https://doi.org/10.1016/0001-6160(79)90196-2
[2] Wheeler, A.A., Boettinger, W.J. and McFadden, G.B. (1992) Phase-Field Model for Isothermal Phase Transitions in Binary Alloys. Physical Review A, 45, 7424-7439.
https://doi.org/10.1103/physreva.45.7424
[3] Feng, X. and Prohl, A. (2003) Numerical Analysis of the Allen-Cahn Equation and Approximation for Mean Curvature Flows. Numerische Mathematik, 94, 33-65.
https://doi.org/10.1007/s00211-002-0413-1
[4] Beneš, M., Chalupecký, V. and Mikula, K. (2004) Geometrical Image Segmentation by the Allen-Cahn Equation. Applied Numerical Mathematics, 51, 187-205.
https://doi.org/10.1016/j.apnum.2004.05.001
[5] Golubović, L., Levandovsky, A. and Moldovan, D. (2011) Interface Dynamics and Far-from-Equilibrium Phase Transitions in Multilayer Epitaxial Growth and Erosion on Crystal Surfaces: Continuum Theory Insights. East Asian Journal on Applied Mathematics, 1, 297-371.
https://doi.org/10.4208/eajam.040411.030611a
[6] Kim, J. (2012) Phase-Field Models for Multi-Component Fluid Flows. Communications in Computational Physics, 12, 613-661.
https://doi.org/10.4208/cicp.301110.040811a
[7] He, D. and Pan, K. (2018) Maximum Norm Error Analysis of an Unconditionally Stable Semi-Implicit Scheme for Multi-Dimensional Allen-Cahn Equations. Numerical Methods for Partial Differential Equations, 35, 955-975.
https://doi.org/10.1002/num.22333
[8] Hale, J. (2010) Asymptotic Behavior of Dissipative Systems. American Mathematical Society.
https://doi.org/10.1090/surv/025
[9] Temam, R. (2012) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Science and Business Media.
[10] Chafee, N. and Infante, E.F. (1974) A Bifurcation Problem for a Nonlinear Partial Differential Equation of Parabolic Type. Applicable Analysis, 4, 17-37.
https://doi.org/10.1080/00036817408839081
[11] Chen, X. (2004) Generation, Propagation, and Annihilation of Metastable Patterns. Journal of Differential Equations, 206, 399-437.
https://doi.org/10.1016/j.jde.2004.05.017
[12] Elliott, C.M. and Stuart, A.M. (1993) The Global Dynamics of Discrete Semilinear Parabolic Equations. SIAM Journal on Numerical Analysis, 30, 1622-1663.
https://doi.org/10.1137/0730084
[13] Wazwaz, A. (2007) The Tanh-Coth Method for Solitons and Kink Solutions for Nonlinear Parabolic Equations. Applied Mathematics and Computation, 188, 1467-1475.
https://doi.org/10.1016/j.amc.2006.11.013
[14] Taşcan, F. and Bekir, A. (2009) Travelling Wave Solutions of the Cahn-Allen Equation by Using First Integral Method. Applied Mathematics and Computation, 207, 279-282.
https://doi.org/10.1016/j.amc.2008.10.031
[15] Feng, X., Song, H., Tang, T. and Yang, J. (2013) Nonlinear Stability of the Implicit-Explicit Methods for the Allen-Cahn Equation. Inverse Problems & Imaging, 7, 679-695.
https://doi.org/10.3934/ipi.2013.7.679
[16] Long, J., Luo, C., Yu, Q. and Li, Y. (2019) An Unconditional Stable Compact Fourth-Order Finite Difference Scheme for Three Dimensional Allen-Cahn Equation. Computers & Mathematics with Applications, 77, 1042-1054.
https://doi.org/10.1016/j.camwa.2018.10.028
[17] Chen, Y., Huang, Y. and Yi, N. (2019) A SCR-Based Error Estimation and Adaptive Finite Element Method for the Allen-Cahn Equation. Computers & Mathematics with Applications, 78, 204-223.
https://doi.org/10.1016/j.camwa.2019.02.022
[18] Xiao, X., He, R. and Feng, X. (2019) Unconditionally Maximum Principle Preserving Finite Element Schemes for the Surface Allen-Cahn Type Equations. Numerical Methods for Partial Differential Equations, 36, 418-438.
https://doi.org/10.1002/num.22435
[19] Tao Tang, T.T. and Jiang Yang, J.Y. (2016) Implicit-Explicit Scheme for the Allen-Cahn Equation Preserves the Maximum Principle. Journal of Computational Mathematics, 34, 451-461.
https://doi.org/10.4208/jcm.1603-m2014-0017
[20] Hou, T., Wang, K., Xiong, Y., Xiao, X. and Zhang, S. (2017) Discrete Maximum-Norm Stability of a Linearized Second-Order Finite Difference Scheme for Allen-Cahn Equation. Numerical Analysis and Applications, 10, 177-183.
https://doi.org/10.1134/s1995423917020082
[21] Hou, T. and Leng, H. (2020) Numerical Analysis of a Stabilized Crank-Nicolson/Adams-Bashforth Finite Difference Scheme for Allen-Cahn Equations. Applied Mathematics Letters, 102, Article ID: 106150.
https://doi.org/10.1016/j.aml.2019.106150
[22] Hou, T., Xiu, D. and Jiang, W. (2020) A New Second-Order Maximum-Principle Preserving Finite Difference Scheme for Allen-Cahn Equations with Periodic Boundary Conditions. Applied Mathematics Letters, 104, Article ID: 106265.
https://doi.org/10.1016/j.aml.2020.106265
[23] Feng, J., Zhou, Y. and Hou, T. (2021) A Maximum-Principle Preserving and Unconditionally Energy-Stable Linear Second-Order Finite Difference Scheme for Allen-Cahn Equations. Applied Mathematics Letters, 118, Article ID: 107179.
https://doi.org/10.1016/j.aml.2021.107179
[24] Tan, Z. and Zhang, C. (2021) The Discrete Maximum Principle and Energy Stability of a New Second-Order Difference Scheme for Allen-Cahn Equations. Applied Numerical Mathematics, 166, 227-237.
https://doi.org/10.1016/j.apnum.2021.04.010
[25] Wang, X., Kou, J. and Gao, H. (2021) Linear Energy Stable and Maximum Principle Preserving Semi-Implicit Scheme for Allen-Cahn Equation with Double Well Potential. Communications in Nonlinear Science and Numerical Simulation, 98, Article ID: 105766.
https://doi.org/10.1016/j.cnsns.2021.105766
[26] 乔寒月, 张鑫, 刘晓, 等. 一维Allen-Cahn方程紧差分格式的离散最大化原则和能量稳定性研究[J]. 应用数学学报, 2021, 44(1): 79-92.