|
[1]
|
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., et al. (2010) Food Security: The Challenge of Feeding 9 Billion People. Science, 327, 812-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wheeler, T. and von Braun, J. (2013) Climate Change Impacts on Global Food Security. Science, 341, 508-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zheng, W., Luo, B. and Hu, X. (2020) The Determinants of Farmers’ Fertilizers and Pesticides Use Behavior in China: An Explanation Based on Label Effect. Journal of Cleaner Production, 272, Article ID: 123054. [Google Scholar] [CrossRef]
|
|
[4]
|
王二涛. 植物-根瘤菌共生固氮[J]. 中国基础科学, 2016, 18(1): 21-27.
|
|
[5]
|
Sun, R., Wang, F., Hu, C. and Liu, B. (2021) Metagenomics Reveals Taxon-Specific Responses of the Nitrogen-Cycling Microbial Community to Long-Term Nitrogen Fertilization. Soil Biology and Biochemistry, 156, Article ID: 108214. [Google Scholar] [CrossRef]
|
|
[6]
|
Smith, L.E.D. and Siciliano, G. (2015) A Comprehensive Review of Constraints to Improved Management of Fertilizers in China and Mitigation of Diffuse Water Pollution from Agriculture. Agriculture, Ecosystems & Environment, 209, 15-25. [Google Scholar] [CrossRef]
|
|
[7]
|
Mo, F., Han, J., Wen, X., Wang, X., Li, P., Vinay, N., et al. (2020) Quantifying Regional Effects of Plastic Mulch on Soil Nitrogen Pools, Cycles, and Fluxes in Rain‐fed Agroecosystems of the Loess Plateau. Land Degradation & Development, 31, 1675-1687. [Google Scholar] [CrossRef]
|
|
[8]
|
Köhl, L., Oehl, F. and van der Heijden, M.G.A. (2014) Agricultural Practices Indirectly Influence Plant Productivity and Ecosystem Services through Effects on Soil Biota. Ecological Applications, 24, 1842-1853. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
付刚, 沈振西. 放牧改变了藏北高原高寒草甸土壤微生物群落[J]. 草业学报, 2017, 26(10): 170-178.
|
|
[10]
|
Wagg, C., Bender, S.F., Widmer, F. and van der Heijden, M.G.A. (2014) Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctionality. Proceedings of the National Academy of Sciences, 111, 5266-5270. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bender, S.F., Wagg, C. and van der Heijden, M.G.A. (2016) An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends in Ecology & Evolution, 31, 440-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007.
|
|
[13]
|
Kiers, E.T., Duhamel, M., Beesetty, Y., Mensah, J.A., Franken, O., Verbruggen, E., et al. (2011) Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science, 333, 880-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tisserant, E., Malbreil, M., Kuo, A., Kohler, A., Symeonidi, A., Balestrini, R., et al. (2013) Genome of an Arbuscular Mycorrhizal Fungus Provides Insight into the Oldest Plant Symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 110, 20117-20122. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
韦莉莉, 卢昌熠, 丁晶, 俞慎. 丛枝菌根真菌参与下植物-土壤系统的养分交流及调控[J]. 生态学报, 2016, 36(14): 4233-4243.
|
|
[16]
|
陈保冬, 于萌, 郝志鹏, 谢伟, 张莘. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3): 1035-1046.
|
|
[17]
|
Zhang, Q., Wang, S., Xie, Q., Xia, Y., Lu, L., Wang, M., et al. (2023) Control of Arbuscule Development by a Transcriptional Negative Feedback Loop in Medicago. Nature Communications, 14, Article No. 5743. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Abdalla, M., Bitterlich, M., Jansa, J., Püschel, D. and Ahmed, M.A. (2023) The Role of Arbuscular Mycorrhizal Symbiosis in Improving Plant Water Status under Drought. Journal of Experimental Botany, 74, 4808-4824. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tao, J. and Liu, X. (2024) Does Arbuscular Mycorrhizal Fungi Inoculation Influence Soil Carbon Sequestration? Biology and Fertility of Soils, 60, 213-225. [Google Scholar] [CrossRef]
|
|
[20]
|
Sui, X., Zhang, T., Tian, Y., Xue, R. and Li, A. (2018) A Neglected Alliance in Battles against Parasitic Plants: Arbuscular Mycorrhizal and Rhizobial Symbioses Alleviate Damage to a Legume Host by Root Hemiparasitic Pedicularis Species. New Phytologist, 221, 470-481. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Duan, H., Luo, C., Zhou, R., Zhao, L., Zhu, S., Chen, Y., et al. (2024) AM Fungus Promotes Wheat Grain Filling via Improving Rhizospheric Water & Nutrient Availability under Drought and Low Density. Applied Soil Ecology, 193, Article ID: 105159. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhu, S., Duan, H., Tao, H., Zhu, L., Zhou, R., Yang, Y., et al. (2023) Arbuscular Mycorrhiza Changes Plant Facilitation Patterns and Increases Resource Use Efficiency in Intercropped Annual Plants. Applied Soil Ecology, 191, Article ID: 105030. [Google Scholar] [CrossRef]
|
|
[23]
|
Nacoon, S., Ekprasert, J., Riddech, N., Mongkolthanaruk, W., Jogloy, S., Vorasoot, N., et al. (2021) Growth Enhancement of Sunchoke by Arbuscular Mycorrhizal Fungi under Drought Condition. Rhizosphere, 17, Article ID: 100308. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, W., Xia, K., Feng, Z., Qin, Y., Zhou, Y., Feng, G., et al. (2024) Tomato Plant Growth Promotion and Drought Tolerance Conferred by Three Arbuscular Mycorrhizal Fungi Is Mediated by Lipid Metabolism. Plant Physiology and Biochemistry, 208, Article ID: 108478. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Thirkell, T.J., Charters, M.D., Elliott, A.J., Sait, S.M. and Field, K.J. (2017) Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. Journal of Ecology, 105, 921-929. [Google Scholar] [CrossRef]
|
|
[26]
|
Duan, H., Luo, C., Li, J., Wang, B., Naseer, M. and Xiong, Y. (2021) Improvement of Wheat Productivity and Soil Quality by Arbuscular Mycorrhizal Fungi Is Density-and Moisture-Dependent. Agronomy for Sustainable Development, 41, Article No. 3. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, F., Zhang, L., Zhou, J., Rengel, Z., George, T.S. and Feng, G. (2022) Exploring the Secrets of Hyphosphere of Arbuscular Mycorrhizal Fungi: Processes and Ecological Functions. Plant and Soil, 481, 1-22. [Google Scholar] [CrossRef]
|
|
[28]
|
Bao, X., Wang, Y. and Olsson, P.A. (2019) Arbuscular Mycorrhiza under Water—Carbon-Phosphorus Exchange between Rice and Arbuscular Mycorrhizal Fungi under Different Flooding Regimes. Soil Biology and Biochemistry, 129, 169-177. [Google Scholar] [CrossRef]
|
|
[29]
|
Daisog, H., Sbrana, C., Cristani, C., Moonen, A., Giovannetti, M. and Bàrberi, P. (2011) Arbuscular Mycorrhizal Fungi Shift Competitive Relationships among Crop and Weed Species. Plant and Soil, 353, 395-408. [Google Scholar] [CrossRef]
|
|
[30]
|
Qiao, X., Bei, S., Li, H., Christie, P., Zhang, F. and Zhang, J. (2016) Arbuscular Mycorrhizal Fungi Contribute to Overyielding by Enhancing Crop Biomass While Suppressing Weed Biomass in Intercropping Systems. Plant and Soil, 406, 173-185. [Google Scholar] [CrossRef]
|
|
[31]
|
李娇娇, 曾明. 丛枝菌根对植物根际逆境的生态学意义[J]. 应用生态学报, 2020, 31(9): 3216-3226.
|
|
[32]
|
Diao, F., Jia, B., Wang, X., Luo, J., Hou, Y., Li, F.Y., et al. (2022) Proteomic Analysis Revealed Modulations of Carbon and Nitrogen by Arbuscular Mycorrhizal Fungi Associated with the Halophyte Suaeda salsa in a Moderately Saline Environment. Land Degradation & Development, 33, 1933-1943. [Google Scholar] [CrossRef]
|
|
[33]
|
Goswami, V., Deepika, S., Diwakar, S. and Kothamasi, D. (2023) Arbuscular Mycorrhizas Amplify the Risk of Heavy Metal Transfer to Human Food Chain from Fly Ash Ameliorated Agricultural Soils. Environmental Pollution, 329, Article ID: 121733. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jia, B., Diao, F., Ding, S., Shi, Z., Xu, J., Hao, L., et al. (2022) Differential Effects of Arbuscular Mycorrhizal Fungi on Three Salt‐Tolerant Grasses under Cadmium and Salt Stress. Land Degradation & Development, 34, 506-520. [Google Scholar] [CrossRef]
|
|
[35]
|
Binglei, W., Chong, W., Xuelian, L., Rui, X., Mengli, L., Guangxia, X., et al. (2023) Effects of Earthworm (Eisenia fetida) and Arbuscular Mycorrhizal Fungi Improving Plant Hormones and Antioxidant Enzymes under Simulated Acid Rain Stress. Applied Soil Ecology, 182, Article ID: 104729. [Google Scholar] [CrossRef]
|
|
[36]
|
Khan, S.R., Ahmad, Z., Khan, Z., Khan, U., Asad, M. and Shah, T. (2024) Synergistic Effect of Silicon and Arbuscular Mycorrhizal Fungi Reduces Cadmium Accumulation by Regulating Hormonal Transduction and Lignin Accumulation in Maize. Chemosphere, 346, Article ID: 140507. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Johnson, N.C., Angelard, C., Sanders, I.R. and Kiers, E.T. (2013) Predicting Community and Ecosystem Outcomes of Mycorrhizal Responses to Global Change. Ecology Letters, 16, 140-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. Academic Press.
|
|
[39]
|
Wang, B. and Qiu, Y. (2006) Phylogenetic Distribution and Evolution of Mycorrhizas in Land Plants. Mycorrhiza, 16, 299-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular Evidence for the Early Colonization of Land by Fungi and Plants. Science, 293, 1129-1133. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Remy, W., Taylor, T.N., Hass, H. and Kerp, H. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91, 11841-11843. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Redecker, D., Kodner, R. and Graham, L.E. (2002) Palaeoglomus Grayi from the Ordovician. Mycotaxon, 84, 33-37.
|
|
[43]
|
Dotzler, N., Krings, M., Taylor, T.N. and Agerer, R. (2006) Germination Shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 Million-Year-Old Rhynie Chert. Mycological Progress, 5, 178-184. [Google Scholar] [CrossRef]
|
|
[44]
|
Dotzler, N., Walker, C., Krings, M., Hass, H., Kerp, H., Taylor, T.N., et al. (2008) Acaulosporoid Glomeromycotan Spores with a Germination Shield from the 400-Million-Year-Old Rhynie Chert. Mycological Progress, 8, 9-18. [Google Scholar] [CrossRef]
|
|
[45]
|
Simon, L., Bousquet, J., Lévesque, R.C. and Lalonde, M. (1993) Origin and Diversification of Endomycorrhizal Fungi and Coincidence with Vascular Land Plants. Nature, 363, 67-69. [Google Scholar] [CrossRef]
|
|
[46]
|
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
|
|
[47]
|
Wang, S.Y., Wei, H., Chen, K.Y., Dong, Q., Ji, J.M. and Zhang, J. (2022) Practical Methods for Arbuscular Mycorrhizal Fungal Spore Density, Hyphal Density and Colonization Rate of AMF. Bio-Protocol Journal, 101, e2104253.
|
|
[48]
|
Smith, S. (2007) Arbuscular Mycorrhizal Fungi of Abandoned Agricultural Land and Their Implications for the Restoration of Puget Sound Prairies. Ph.D. Thesis, University of Washington.
|
|
[49]
|
Richter, F., Calonne-Salmon, M., van der Heijden, M.G.A., Declerck, S. and Stanley, C.E. (2024) AMF-SporeChip Provides New Insights into Arbuscular Mycorrhizal Fungal Asymbiotic Hyphal Growth Dynamics at the Cellular Level. Lab on a Chip, 24, 1930-1946. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
王浩, 吴爱姣, 刘保兴, 刘润进, 陈应龙. 菌根真菌多样性与植物多样性的相互作用研究进展[J]. 微生物学通报, 2020, 47(11): 3918-3932.
|
|
[51]
|
Jiang, Y., Wang, W., Xie, Q., Liu, N., Liu, L., Wang, D., et al. (2017) Plants Transfer Lipids to Sustain Colonization by Mutualistic Mycorrhizal and Parasitic Fungi. Science, 356, 1172-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000.
|
|
[53]
|
Albornoz, F.E., Dixon, K.W. and Lambers, H. (2020) Revisiting Mycorrhizal Dogmas: Are Mycorrhizas Really Functioning as They Are Widely Believed to Do? Soil Ecology Letters, 3, 73-82. [Google Scholar] [CrossRef]
|
|
[54]
|
王晓燕, 王微, 王幼珊, 严巧娣, 应欣怡, 林小靖. 基于CiteSpace软件的丛枝菌根真菌近30年研究态势分析[J]. 菌物学报, 2022, 41(5): 802-818.
|
|
[55]
|
葛诗蓓, 姜小春, 王羚羽, 喻景权, 周艳虹. 园艺植物丛枝菌根抗非生物胁迫的作用机制研究进展[J]. 园艺学报, 2020, 47(9): 1752-1776.
|
|
[56]
|
He, J., Zhang, C., Dai, H., Liu, H., Zhang, X., Yang, J., et al. (2019) A Lysm Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. Molecular Plant, 12, 1561-1576. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
宋福强, 王立, 马放. 丛枝菌根真菌-紫穗槐共生体系的研究[M]. 北京: 科学出版社, 2013.
|
|
[58]
|
Shi, J., Zhao, B., Zheng, S., Zhang, X., Wang, X., Dong, W., et al. (2021) A Phosphate Starvation Response-Centered Network Regulates Mycorrhizal Symbiosis. Cell, 184, 5527-5540.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Trépanier, M., Bécard, G., Moutoglis, P., Willemot, C., Gagné, S., Avis, T.J., et al. (2005) Dependence of Arbuscular-Mycorrhizal Fungi on Their Plant Host for Palmitic Acid Synthesis. Applied and Environmental Microbiology, 71, 5341-5347. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Jiang, Y., Xie, Q., Wang, W., Yang, J., Zhang, X., Yu, N., et al. (2018) Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. Molecular Plant, 11, 1344-1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., et al. (2010) Rooting Theories of Plant Community Ecology in Microbial Interactions. Trends in Ecology & Evolution, 25, 468-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ryan, M.H. and Kirkegaard, J.A. (2012) The Agronomic Relevance of Arbuscular Mycorrhizas in the Fertility of Australian Extensive Cropping Systems. Agriculture, Ecosystems & Environment, 163, 37-53. [Google Scholar] [CrossRef]
|
|
[63]
|
Berruti, A., Lumini, E., Balestrini, R. and Bianciotto, V. (2016) Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let's Benefit from Past Successes. Frontiers in Microbiology, 6, Article 1559. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Mortimer, P.E., Pérez-Fernández, M.A. and Valentine, A.J. (2008) The Role of Arbuscular Mycorrhizal Colonization in the Carbon and Nutrient Economy of the Tripartite Symbiosis with Nodulated Phaseolus vulgaris. Soil Biology and Biochemistry, 40, 1019-1027. [Google Scholar] [CrossRef]
|
|
[65]
|
Xavier, L.J.C. and Germida, J.J. (2003) Selective Interactions between Arbuscular Mycorrhizal Fungi and Rhizobium leguminosarum bv. Viceae Enhance Pea Yield and Nutrition. Biology and Fertility of Soils, 37, 261-267. [Google Scholar] [CrossRef]
|
|
[66]
|
Wang, Y., Zou, Y., Shu, B. and Wu, Q. (2023) Deciphering Molecular Mechanisms Regarding Enhanced Drought Tolerance in Plants by Arbuscular Mycorrhizal Fungi. Scientia Horticulturae, 308, Article ID: 111591. [Google Scholar] [CrossRef]
|
|
[67]
|
Ren, A., Zhu, Y., Chen, Y., Ren, H., Li, J., Kay Abbott, L., et al. (2019) Arbuscular Mycorrhizal Fungus Alters Root-Sourced Signal (Abscisic Acid) for Better Drought Acclimation in Zea mays L. Seedlings. Environmental and Experimental Botany, 167, Article ID: 103824. [Google Scholar] [CrossRef]
|
|
[68]
|
储薇, 郭信来, 张晨, 周柳婷, 吴则焰, 林文雄. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报: 中英文, 2022, 30(11): 1709-1721.
|
|
[69]
|
宁楚涵, 李文彬, 张晨, 刘润进. 丛枝菌根真菌与放线菌对辣椒和茄子的促生防病效应[J]. 应用生态学报, 2019, 30(9): 3195-3202.
|
|
[70]
|
Eke, P., Adamou, S., Fokom, R., Dinango Nya, V., Tsouh Fokou, P.V., Nana Wakam, L., et al. (2020) Arbuscular Mycorrhizal Fungi Alter Antifungal Potential of Lemongrass Essential Oil against Fusarium solani, Causing Root Rot in Common Bean (Phaseolus vulgaris L.). Heliyon, 6, e05737. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Wang, X., Ding, T., Li, Y., Guo, Y., Li, Y. and Duan, T. (2020) Dual Inoculation of Alfalfa (Medicago sativa L.) with Funnelliformis mosseae and Sinorhizobium medicae Can Reduce fusarium Wilt. Journal of Applied Microbiology, 129, 665-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wu, Q., Srivastava, A.K. and Zou, Y. (2013) AMF-Induced Tolerance to Drought Stress in Citrus: A Review. Scientia Horticulturae, 164, 77-87. [Google Scholar] [CrossRef]
|
|
[73]
|
Fan, X., Xie, H., Huang, X., Zhang, S., Nie, Y., Chen, H., et al. (2023) A Module Centered on the Transcription Factor Msn2 from Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Regulates Drought Stress Tolerance in the Host Plant. New Phytologist, 240, 1497-1518. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Singh, D., Mathimaran, N., Boller, T. and Kahmen, A. (2019) Bioirrigation: A Common Mycorrhizal Network Facilitates the Water Transfer from Deep-Rooted Pigeon Pea to Shallow-Rooted Finger Millet under Drought. Plant and Soil, 440, 277-292. [Google Scholar] [CrossRef]
|
|
[75]
|
Liu, Y., Lu, J., Cui, L., Tang, Z., Ci, D., Zou, X., et al. (2023) The Multifaceted Roles of Arbuscular Mycorrhizal Fungi in Peanut Responses to Salt, Drought, and Cold Stress. BMC Plant Biology, 23, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
谭英, 尹豪. 盐胁迫下根施AMF和褪黑素对紫花苜蓿生长、光合特征以及抗氧化系统的影响[J]. 草业学报, 2024, 33(6): 64-75.
|
|
[77]
|
Liang, B.B., Wang, W.J., Fan, X.X., Kurakov, A.V., Liu, Y.F., Song, F.Q., et al. (2020) Arbuscular Mycorrhizal Fungi Can Ameliorate Salt Stress in Elaeagnus angustifolia by Improving Leaf Photosynthetic Function and Ultrastructure. Plant Biology, 23, 232-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Liu, S., Guo, X., Feng, G., Maimaitiaili, B., Fan, J. and He, X. (2015) Indigenous Arbuscular Mycorrhizal Fungi Can Alleviate Salt Stress and Promote Growth of Cotton and Maize in Saline Fields. Plant and Soil, 398, 195-206. [Google Scholar] [CrossRef]
|
|
[79]
|
Cartmill, A.D., Valdez-Aguilar, L.A., Bryan, D.L. and Alarcón, A. (2008) Arbuscular Mycorrhizal Fungi Enhance Tolerance of Vinca to High Alkalinity in Irrigation Water. Scientia Horticulturae, 115, 275-284. [Google Scholar] [CrossRef]
|
|
[80]
|
Wu, Q., He, X., Zou, Y., Liu, C., Xiao, J. and Li, Y. (2012) Arbuscular Mycorrhizas Alter Root System Architecture of Citrus tangerine through Regulating Metabolism of Endogenous Polyamines. Plant Growth Regulation, 68, 27-35. [Google Scholar] [CrossRef]
|
|
[81]
|
Weber, S.E., Bascompte, J., Kahmen, A. and Niklaus, P.A. (2025) AMF Diversity Promotes Plant Community Phosphorus Acquisition and Reduces Carbon Costs per Unit of Phosphorus. New Phytologist. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., et al. (2010) Phosphate Systemically Inhibits Development of Arbuscular Mycorrhiza in Petunia hybrida and Represses Genes Involved in Mycorrhizal Functioning. The Plant Journal, 64, 1002-1017. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Gavito, M.E., Bruhn, D. and Jakobsen, I. (2002) Phosphorus Uptake by Arbuscular Mycorrhizal Hyphae Does Not Increase When the Host Plant Grows under Atmospheric CO2 Enrichment. New Phytologist, 154, 751-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Lekberg, Y., Jansa, J., Johnson, D., Milham, P., Penn, C. and Colman, B.P. (2024) Tracing Phosphorus from Soil through Mycorrhizal Fungi to Plants. New Phytologist, 245, 446-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Treseder, K.K. (2004) A Meta‐analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in Field Studies. New Phytologist, 164, 347-355. [Google Scholar] [CrossRef] [PubMed]
|