黄喉拟水龟幼龟对温度驯化的热生理生化响应
Thermal Physiological and Biochemical Responses of Juvenile Mauremys mutica to Temperature Acclimation
DOI: 10.12677/ije.2025.142017, PDF, HTML, XML,    科研立项经费支持
作者: 林婷婷, 干佳音, 张程明, 陈 翔, 张永普*:温州大学生命与环境科学学院,浙江 温州
关键词: 爬行动物温度驯化生长耐受温度抗氧化酶Reptiles Temperature Acclimation Growth Thermal Tolerance Antioxidant Enzyme
摘要: 温度是自然界中重要的生态因子,对生物的行为表现、生理生化反应等生命活动都会产生重要的影响。动物可通过温度驯化调整自身行为表现和生理生化反应以应对外界环境温度的影响,然而目前关于温度驯化对外温动物的影响还存在争议。黄喉拟水龟(Mauremys mutica)是中国重要的淡水养殖龟类,本研究以黄喉拟水龟为实验对象,将二龄幼龟置于24℃、28℃和32℃中驯化30天,测定温度驯化对其生长、热耐受性、超氧化物歧化酶(SOD)活力和丙二醛(MDA)含量的影响。结果显示:驯化温度显著影响幼龟生长率、耐受低温(CTMin)和耐受高温(CTMax),幼龟体重、背甲长、背甲宽、CTMin和CTMax随着驯化温度的升高而增大;耐受温度范围随着驯化温度升高呈现下降趋势,但驯化温度不影响耐受温度范围。驯化温度显著影响心肌组织的SOD活力,对骨骼肌和肝脏无显著影响;驯化温度显著影响骨骼肌中MDA含量,对心肌和肝脏组织无显著影响。温度驯化会影响黄喉拟水龟幼龟的生长和耐受温度,在一定的温度范围内符合热有益假说(Warmer is Better Hypothesis),同时会影响机体的抗氧化能力。
Abstract: Temperature is a key ecological factor in nature, significantly influencing an organism’s behavior, physiological processes, and biochemical activities. Animals adjust their behaviors and physiological responses through thermal acclimation to cope with environmental temperature variations. However, the effects of thermal acclimation on ectotherms remain contentious. In this study, two-year-old juvenile Mauremys mutica were used as experimental subjects. They were acclimated to temperatures of 24˚C, 28˚C, and 32˚C for 30 days to systematically evaluate the effects of thermal acclimation on growth, thermal tolerance, and antioxidative parameters. The results demonstrated that acclimation temperature significantly influenced growth rate, critical thermal minimum (CTMin), and critical thermal maximum (CTMax). Body mass, carapace length, carapace width, CTMin, and CTMax increased with rising acclimation temperatures. Although the thermal tolerance range narrowed at higher temperatures, no significant differences were observed in the range itself. Acclimation temperature markedly affected SOD activity in cardiac tissue, while no significant changes were noted in skeletal muscle or liver. Similarly, MDA content was significantly altered in skeletal muscle but remained unaffected in cardiac and liver tissues. Thermal acclimation affects the growth and thermal tolerance of juvenile M. mutica, aligning with the “Warmer is Better Hypothesis” within a specific temperature range. It also alters the organism’s antioxidative capacity, highlighting the physiological trade-offs associated with temperature adaptation.
文章引用:林婷婷, 干佳音, 张程明, 陈翔, 张永普. 黄喉拟水龟幼龟对温度驯化的热生理生化响应[J]. 世界生态学, 2025, 14(2): 137-146. https://doi.org/10.12677/ije.2025.142017

1. 引言

全球气候变化对几乎所有生物群系和生态系统中的动植物构成威胁[1]。生物应对气候变化的其中一种方式就是生物可以通过表型可塑性或适应性进化调整自身以适应新的局部环境[2]。表型可塑性是生物在新环境中生存的关键,行为、生理和形态表型的可塑性可以通过提高个体的生存率,缓解环境压力带来的负面影响,从而帮助生物更好地适应压力条件和变化环境[3]。爬行动物是一类典型的外温动物,主要依赖环境温度进行体温调节,体温的变化会影响多种生理功能,包括运动能力、繁殖、生长、求偶行为和活动模式等,这些功能通常在一个较窄的体温范围内才能达到最佳状态[4]。能否在温度变化多样的环境中维持相对稳定的体温,对个体的生存和适应能力具有至关重要的影响[5]。驯化是表型可塑性的一种表现形式,指个体在数周或数月的时间尺度上通过性状的可逆性变化来适应环境的变化[6]。爬行动物温度驯化的相关研究几乎涉及蜥蜴类、龟鳖类和蛇类[7]-[9]

驯化对动物适合度的影响研究,人们提出了多个假说。如驯化有益假说(beneficial acclimation hypothesis)指在特定环境中完成驯化的动物比未经过驯化的动物在该环境中具有更明显的表现优势[10]。最适发育温度假说(optimal developmental temperature hypothesis)指在最佳环境温度下发育的动物,无论在何种测试温度下,其生理功能和行为表现都优于其他温度条件下发育的动物[11]。热有益假说(Warmer is better hypothesis)与冷有益假说(Cooler is better hypothesis)相似,指在高温或低温条件下驯化的动物,无论在何种测试温度下,其生理功能和行为表现都优于其他温度条件下驯养的动物[6]。无益假说(No-advantage hypothesis)指动物在其正常活动的温度范围内,驯化温度对动物的生理功能和行为表现无影响[12]

变温动物对外界环境温度的耐受能力有限。较长时间在过高或过低的热环境中暴露会使外温动物机体出现损伤甚至死亡,使动物无法逃离致其死亡状态的极端温度上限和下限被分别定义为临界高温(critical thermal maximum, CTMax)和临界低温(critical thermal minimum, CTMin),热耐受范围(thermal resistance range, TRR)就是指生物能够存活并维持生理功能的温度范围[13]。通过驯化生物能够降低生理过程对温度的热敏感性,同时提高自己的热耐受范围[3]。变温动物的生理与行为表现随体温变化的趋势遵循典型的热功能曲线(thermal performance curve, TPC),其形状呈倒“U”形,曲线两端之间的差值就代表物种的热耐受范围[14]。研究表明变温动物的热耐受性和功能表现的热敏感性是存在显著的种内和种间差异的[13]。个体处于不同的发育阶段[15],机体生理状态[14],测试方法[16]都会影响生物的热耐受性。

抗氧化酶可以通过降低体内活性氧(ROS)来维持活性氧的动态平衡。超氧化物歧化酶(SOD)是细胞的第一道防线,也是最强大的抗氧化酶,在维持氧化与抗氧化平衡中起重要作用,是氧化应激的精准指示剂[17]。而丙二醛(MDA)作为脂质过氧化的终产物,是评估氧化应激的重要指标,其含量变化可以间接反映细胞膜系统的损伤程度[18]。温度变化是引发外温动物氧化应激的主要环境因素之一。在全球气候变暖的背景下,研究高温胁迫对外温动物氧化应激的影响显得尤为必要。

黄喉拟水龟(Mauremys mutica)是一种广泛分布于东亚的半水栖淡水龟类,主要生活在中国中南部、越南和日本等地的山地和丘陵地区的池塘、溪流及缓慢流动的浅水中[19]。曾因食用、传统药用和观赏价值而面临灭绝威胁,此外栖息地破坏、水体污染和外来物种入侵也对其生存造成压力[20]。研究显示其生活史特征存在显著地理差异,但对其生理适应性反应的研究较少[21] [22]。为探究生存环境的温度上升以及极端天气是否会对黄喉拟水龟的生存造成影响,本实验中设定了24℃、28℃和32℃三个驯化组别,接着针对CTMax、CTMin和TRR以及SOD活力和MDA含量是否受到温度驯化的影响这个问题进行研究。通过探讨黄喉拟水龟幼龟在不同温度驯化条件下的热生理生态和热生理生化响应研究,有助于检验驯化有益假说的普遍意义。还能深入理解黄喉拟水龟在野外环境中的生理适应机制及行为表现。

2. 材料与方法

2.1. 材料

实验动物为二龄黄喉拟水龟(N = 45),2017年6月底购买于浙江嘉兴海宁(30˚30′51.2ʺ N, 120˚40′33.5ʺ E)。将黄喉拟水龟幼龟带回实验室,自然条件下静养一周后在空腹条件下对其体质量、背甲长、背甲宽、背甲高进行测量。将45只幼龟随机分为3组,每组15只,用于温度驯化实验。各实验组幼龟的体重(F2,40 = 0.278, P = 0.759)、背甲长(F2,40 = 0.658, P = 0.523)、背甲宽(F2,40 = 0.555, P = 0.579)均无显著差异。实验所需仪器如表1所示。

Table 1. Laboratory equipment

1. 实验器材

仪器

型号

精密电子天平

瑞士Mettler Toledo

数显游标卡尺

德国MASTERPROOF

数显点温计

美国OAKTON

低温培养箱

德国BINDER

数显恒温水浴锅

中国 保利科研器械有限公司

2.2. 方法

2.2.1. 温度驯化

将提前分好组的幼龟分别放入24、28和32三个温度下驯化30 d。驯化期间每天固定时间换水及喂食,定期对幼龟的健康状况进行观察,培养箱光照周期设为12L:12D。驯化结束,对每只龟的体质量、背甲长、背甲宽、背甲高进行测量。各处理组中的6只幼龟用于SOD活力和MDA含量测定,9只幼龟用于热耐受性测定。

2.2.2. 热耐受性测定

CTMin和CTMax测定在低温培养箱和数显恒温水浴锅中进行,测定时间为11:00~17:00。以三个驯化温度为实验初始温度,然后以0.5℃/min的速率降温或升温,当温度低于13℃或高于34℃后温度变化速率减慢为0.3℃/min,当温度低于8℃或高于40℃时,温度变化速率减慢为0.1℃/min。两次实验之间需要对龟进行1周的重驯化。实验中,当实验龟表现出长时间闭眼、不能翻身或行动,并且四肢伸直僵硬触碰不能缩回时,立即将其移出控温容器,等待幼龟身体任一部位开始伸动时,用电子点温计测其泄殖腔温度,此数值即为CTMin或CTMax。若实验结束3 d内出现实验龟死亡或不能正常活动,则该龟的实验数据不能用于统计分析。

2.2.3. SOD活力和MDA含量测定

驯化结束后,将黄喉拟水龟采用断颈法处死,分别摘除心肌、肝脏、骨骼肌三种组织于1.5 ml冻存管中,液氮速冻后保存于−60℃低温冰箱中。实验前,使用0.86%的生理盐水清洗组织后用无尘纸吸干多余水分并进行称重,最后按照南京建成生物工程研究所生产的总蛋白试剂盒,SOD试剂盒和MDA试剂盒的说明书要求对各个组织总蛋白含量、SOD活力和MDA含量进行测定。

2.2.4. 数据处理

采用SPSS Statistics 21.0统计软件包分析数据。用Kolmogorov-Smirnov与Bartlett分别检验数据的正态性与方差均质性。采用单因子方差分析(One-way ANOVA)和LSD多重比较分析幼龟的形态参数、CTMin、CTMax、TRR、SOD活力和MDA含量。描述性统计值用平均值 ± 标准误(范围)表示,显著性水平设置为α = 0.05。

3. 结果

3.1. 形态参数及热耐受性

注:图中不同字母表示差异显著,a > b。

Figure 1. Effects of acclimation temperature on daily growth rates of body mass, carapace length, and carapace width in juvenile Mauremys mutica

1. 驯化温度对黄喉拟水龟幼龟体质量、背甲长、背甲宽日增长率的影响

黄喉拟水龟幼龟经30 d不同温度驯化显示,驯化温度显著影响幼龟的形态参数。28℃及32℃驯化下的黄喉拟水龟幼龟体重(F2,39 = 7.250, P = 0.002)、背甲长(F2,39 = 5.579, P = 0.007)、背甲宽(F2,39 = 5.218, P = 0.010)均显著大于24℃驯化的幼龟,28℃与32℃驯化下的各形态参数无显著差异。从图1可知,28℃与32℃驯化下的幼龟体重日增长率(F2,39 = 7.249, P = 0.002)、背甲长日增长率(F2,39 = 11.259, P = 0.000)和背甲宽日增长率(F2,39 = 6.920, P = 0.003)均显著高于在24℃,28℃与32℃驯化均无显著差异。

图2所示,驯化温度显著影响黄喉拟水龟幼龟的CTMin和CTMax。28℃与32℃驯化下的CTMin (F2,19 = 7.701, P = 0.004)显著高于24℃,32℃和28℃无显著差异。CTMax随着驯化温度升高而显著增高(F2,19 = 24.087, P = 0.000),32℃驯化的CTMax > 28℃ > 24℃。虽然幼龟的TRR随着驯化温度的升高呈逐渐下降趋势,但驯化温度对TRR无显著影响(F2,19 = 1.751 , P = 0.200)。

注:图中不同字母表示差异显著,a > b。

Figure 2. Effect of acclimation temperature on critical thermal minimum (CTMin), critical thermal maximum (CTMax), and thermal resistance range (TRR) in juvenile Mauremys mutica

2. 驯化温度对黄喉拟水龟幼龟临界低温、临界高温、热耐受范围的影响

3.2. 超氧化物歧化酶(SOD)活力

图3所示,32℃驯化下的心肌组织SOD活力显著高于24℃和28℃ (F2,15 = 8.825, P = 0.003),但24℃和28℃无显著差异。驯化温度不影响肝脏(F2,15 = 0.605, P = 0.559)和骨骼肌(F2,15 = 2.552, P = 0.111)中的SOD活力。

注:图中不同字母表示差异显著,a > b。

Figure 3. Effect of acclimation temperature on SOD activity in different tissues of juvenile Mauremys mutica

3. 驯化温度对黄喉拟水龟幼龟不同组织SOD活力的影响

3.3. 丙二醛(MDA)含量

图4所示,24℃驯化下的骨骼肌MDA含量显著高于28℃和32℃ (F2,15 = 5.193, P = 0.019),28℃和32℃无显著差异。驯化温度不影响心肌(F2,14 = 3.006, P = 0.082)和肝脏(F2,11 = 0.567, P = 0.583)中的MDA含量。

注:图中不同字母表示差异显著,a > b。

Figure 4. Effect of acclimation temperature on MDA content in different tissues of juvenile Mauremys mutica

4. 驯化温度对黄喉拟水龟幼龟不同组织MDA含量的影响

4. 讨论

本研究发现,不同驯化温度对黄喉拟水龟幼龟的生长、热耐受性和抗氧化酶活性具有显著影响。高温驯化(32℃)显著促进体重及背甲增长,而低温驯化(24℃)则抑制生长。动物生长受多因素影响,如营养摄入[23]、环境温度[24]、健康状态[25]、能量消耗[26]等会不同程度影响动物的生长速率。高温驯化加快生长速率可能与其代谢率提升有关。黄喉拟水龟作为变温动物,其代谢活性受环境温度的直接调控。在高温条件下,代谢加快从而促进营养吸收和生长;低温条件下代谢减缓导致能量分配更多用于维持生存而非生长[27]。这一现象与红耳滑龟(Trachemys scripta elegans) [28]和玉米蛇(Pantherophis guttatus) [29]的研究结果相似。但不同物种间并未呈现出一致规律,短吻鳄(Alligator mississippiensis)在20℃和30℃驯化6周后,其生长速率未表现出显著差异[30]

在24℃~32℃范围内,驯化温度会影响动物的临界温度,CTMax和CTMin随着温度的升高而增大。这与动物在不同驯化温度下的生理适应机制有关。高温环境可能通过调节细胞膜流动性和热休克蛋白的表达,增强机体对高温的耐受能力[31]。CTMin的升高可能与低温条件下的代谢调整有关,高温驯化可能导致机体低温保护机制的减弱,从而增加临界低温阈值[4]。在低温驯化下黄喉拟水龟幼龟的低温耐受性较强,在高温驯化下黄喉拟水龟幼龟的高温耐受性较强,这一现象广泛存在于两栖类和爬行类中。乌龟(Mauremys reevesii)在17℃、25℃和33℃下驯化4周后,CTMin和CTMax均随着驯化温度的增大而增大[32]。中华鳖(Pelodiscus sinensis)幼体在10℃、20℃和30℃下驯化4周后,CTMin与CTMax趋势在三个温度中呈现上升的趋势[33]

驯化温度对黄喉拟水龟幼龟的TRR未表现出显著差异,但呈现出随驯化温度升高而逐渐缩小的趋势。这一结果可能是因为高温驯化导致生物体对温度波动的敏感性增加,可能在高温环境中生物体更专注于高温适应,而对低温适应能力有所牺牲[34]。这一现象也存在于其他爬行动物,如密点麻蜥(Eremias multiocellata)、山地麻蜥(E. brenchleyi)和丽斑麻蜥(E. argus)经28、33和38三个温度驯化后,TRR随驯化温度的升高逐渐变小[35]。然而,目前驯化温度对动物TRR的影响尚无统一规律,在不同物种之间存在差异[36],如北草蜥(Takydromus septentrionalis)的TRR在中间温度25℃最大,35℃最小,20℃居中[37];中华蟾蜍(Bufo gargarizans)幼体在10、15、20、25、30五个温度中驯化3周后,TRR在10℃最大,在25℃最低[38]

热耐受性与线粒体呼吸密切相关,ROS是有氧呼吸的副产物,随着驯化温度的升高代谢率及呼吸速率跟着升高,因其而产生的SOD和MDA可以直接或间接评价机体受氧化损伤程度[39]。本研究探讨了不同驯化温度对黄喉拟水龟幼龟SOD活力及MDA含量的影响,结果显示温度对不同组织的影响存在显著差异性。在心肌组织中,高温驯化(32℃)显著提高了SOD活力,而24℃和28℃组间无显著差异。这一结果可能是由于高温驯化通过增强代谢率和线粒体呼吸速率,增加了ROS的生成,从而激发了心肌组织的抗氧化防御系统以清除过量的ROS [36]。已有研究表明,高温能够通过调控Nrf2-ARE信号通路上调抗氧化酶基因(如SOD1、SOD2)的表达,从而提升抗氧化酶的活性[40]。此外,心肌作为代谢活跃的组织,其对氧化应激更为敏感,因此在高温环境中,抗氧化酶系统的激活程度可能高于肝脏和骨骼肌。然而肝脏和骨骼肌的SOD活性未表现出显著变化,可能与其抗氧化系统的稳定性和较强的适应能力有关。肝脏作为主要的代谢和解毒器官,其内源性抗氧化机制可能更为完善,即使在高温驯化条件下也能维持氧化平衡[41]。骨骼肌中抗氧化酶活性可能受其他因素(如肌肉活动水平)影响更大,因温度变化产生的直接效应可能相对较弱[42]。与本研究结果不同的是,成年雄性倭蛙(Nanorana pleskei)在经历为期一个月的温度驯化后,心肌中的SOD活力在20℃和4℃两组之间未显示存在差异,但骨骼肌和肝脏中却表现出显著的变化[43]

MDA含量的高低可以代表机体或组织的氧化水平的高低[38]。本研究结果显示,在骨骼肌中的MDA含量随着驯化温度升高显著下降,可能是因为高温刺激增强了抗氧化酶的活性,有效清除ROS,减少脂质过氧化,导致MDA含量下降[44]。在肝脏中,尽管不同驯化温度间MDA含量无显著差异,但整体趋势与骨骼肌类似,分析可能因为肝脏具备强大的代谢和氧化平衡能力,对ROS积累的敏感性较低[41]。在心肌中,MDA含量随着温度的升高呈现V形趋势,即28℃驯化的MDA含量最低,而24℃和32℃的含量较高的情况。研究表明心肌作为代谢活跃的组织之一,在非机体最适温度(24℃, 32℃)下可能经历了更高水平的ROS积累,从而导致氧化应激增强和MDA含量升高;而28℃为黄喉拟水龟较为适宜生存的温度,机体可能未发生氧化损伤或氧化损伤程度较轻[45],故MDA含量最低。类似的,红耳滑龟经历20、26、32三个温度驯化后,肝脏组织的MDA含量也呈现V形趋势[38];倭蛙在适宜温度下的MDA含量低于极端温度刺激下的MDA含量[43]

5. 结论

驯化温度升高会加快幼龟生长速率,提高CTMin与CTMax;驯化温度通过激活抗氧化系统能提高其氧化应激应对能力。幼龟生长在一定温度范围内符合热有益假说。

基金项目

浙江省自然科学基金项目(LY16C030001)。

NOTES

*通讯作者。

参考文献

[1] Garcia, R.A., Cabeza, M., Rahbek, C. and Araújo, M.B. (2014) Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 344, Article ID: 1247579.
https://doi.org/10.1126/science.1247579
[2] Sinervo, B., Lara Reséndiz, R.A., Miles, D.B., Lovich, J.E., Rosen, P.C., Gadsden, H., et al. (2024) Climate Change and Collapsing Thermal Niches of Desert Reptiles and Amphibians: Assisted Migration and Acclimation Rescue from Extirpation. Science of the Total Environment, 908, Article ID: 168431.
https://doi.org/10.1016/j.scitotenv.2023.168431
[3] Seebacher, F., White, C.R. and Franklin, C.E. (2014) Physiological Plasticity Increases Resilience of Ectothermic Animals to Climate Change. Nature Climate Change, 5, 61-66.
https://doi.org/10.1038/nclimate2457
[4] Angilletta Jr., M.J. (2009) Thermal Adaptation: A Theoretical and Empirical Synthesis. Oxford University Press.
https://doi.org/10.1093/acprof:oso/9780198570875.001.1
[5] Black, I.R.G., Berman, J.M., Cadena, V. and Tattersall, G.J. (2019) Behavioral Thermoregulation in Lizards. In: Bels, V. and Russell, A., Eds., Behavior of Lizards, CRC Press, 13-46.
https://doi.org/10.1201/9781498782739-2
[6] Wilson, R.S. and Franklin, C.E. (2002) Testing the Beneficial Acclimation Hypothesis. Trends in Ecology & Evolution, 17, 66-70.
https://doi.org/10.1016/s0169-5347(01)02384-9
[7] White, E., Kim, S., Wegh, G. and Chiari, Y. (2024) Thermal Tolerance Plasticity and Dynamics of Thermal Tolerance in Eublepharis macularius: Implications for Future Climate-Driven Heat Stress. Journal of Thermal Biology, 123, Article ID: 103912.
https://doi.org/10.1016/j.jtherbio.2024.103912
[8] Lu, H., Hu, Y., Li, S., Dang, W. and Zhang, Y. (2020) Acclimatory Responses of Thermal Physiological Performances in Hatchling Yellow Pond Turtles (Mauremys mutica). Animal Biology, 70, 55-65.
https://doi.org/10.1163/15707563-20191106
[9] Bury, S., Bury, A., Sadowska, E.T., Cichoń, M. and Bauchinger, U. (2019) More than Just the Numbers—Contrasting Response of Snake Erythrocytes to Thermal Acclimation. The Science of Nature, 106, Article No. 24.
https://doi.org/10.1007/s00114-019-1617-x
[10] Woods, H.A. and Harrison, J.F. (2002) Interpreting Rejections of the Beneficial Acclimation Hypothesis: When is Physiological Plasticity Adaptive? Evolution, 56, 1863-1866.
https://doi.org/10.1111/j.0014-3820.2002.tb00201.x
[11] Huey, R.B., Berrigan, D., Gilchrist, G.W. and Herron, J.C. (1999) Testing the Adaptive Significance of Acclimation: A Strong Inference Approach. American Zoologist, 39, 323-336.
https://doi.org/10.1093/icb/39.2.323
[12] 黄艳, 彭敏锐, 夏继刚. 温度对中华倒刺鲃不同生理生态性能的影响:驯化有益假说的验证[J]. 生态学报, 2021, 41(6): 2496-2504.
[13] 陆洪良, 耿军, 徐卫, 等. 东方蝾螈幼体热耐受性和游泳表现的热驯化响应[J]. 生态学报, 2017, 37(5): 1603-1610.
[14] Dallas, J.W. (2023) Physiological, Ecological, and Microbial Factors Shaping Thermal Tolerance and Performance in Ectothermic Vertebrates. Ph.D. Thesis, Southern Illinois University Carbondale.
[15] Carilo Filho, L.M., Gomes, L., Katzenberger, M., Solé, M. and Orrico, V.G.D. (2022) There and Back Again: A Meta-Analytical Approach on the Influence of Acclimation and Altitude in the Upper Thermal Tolerance of Amphibians and Reptiles. Frontiers in Ecology and Evolution, 10, Article 1017255.
https://doi.org/10.3389/fevo.2022.1017255
[16] 夏继刚, 黄艳, 付世建, 等. 斑马鱼热耐受性对温度驯化的响应及其性别差异[J]. 生态学杂志, 2019, 38(8): 2477-2481.
[17] Odetti, L.M., Paravani, E.V., Simoniello, M.F. and Poletta, G.L. (2022) The Role of Superoxide Dismutase in Reptiles under Toxicity Contexts. Nova Science Publishers.
[18] Tsikas, D. (2017) Assessment of Lipid Peroxidation by Measuring Malondialdehyde (MDA) and Relatives in Biological Samples: Analytical and Biological Challenges. Analytical Biochemistry, 524, 13-30.
https://doi.org/10.1016/j.ab.2016.10.021
[19] Ye, C., Bo, Z., Baojun, S., Yong, W. and Weiguo, D. (2011) Between-Population Variation in Body Size and Growth Rate of Hatchling Asian Yellow Pond Turtles, Mauremys mutica. The Herpetological Journal, 21, 113-116.
[20] Gong, S., Chow, A.T., Fong, J.J. and Shi, H. (2009) The Chelonian Trade in the Largest Pet Market in China: Scale, Scope and Impact on Turtle Conservation. Oryx, 43, 213-216.
https://doi.org/10.1017/s0030605308000902
[21] Zhao, B., Chen, Y., Lu, H., Zeng, Z. and Du, W. (2014) Latitudinal Differences in Temperature Effects on the Embryonic Development and Hatchling Phenotypes of the Asian Yellow Pond Turtle, Mauremys mutica. Biological Journal of the Linnean Society, 114, 35-43.
https://doi.org/10.1111/bij.12400
[22] Du, W., Wang, L. and Shen, J. (2010) Optimal Temperatures for Egg Incubation in Two Geoemydid Turtles: Ocadia sinensis and Mauremys mutica. Aquaculture, 305, 138-142.
https://doi.org/10.1016/j.aquaculture.2010.03.032
[23] Saro, C., Mateo, J., Caro, I., Carballo, D.E., Fernández, M., Valdés, C., et al. (2020) Effect of Dietary Crude Protein on Animal Performance, Blood Biochemistry Profile, Ruminal Fermentation Parameters and Carcass and Meat Quality of Heavy Fattening Assaf Lambs. Animals, 10, Article 2177.
https://doi.org/10.3390/ani10112177
[24] Kingsolver, J.G. and Huey, R.B. (2008) Size, Temperature, and Fitness: Three Rules. Evolutionary Ecology Research, 10, 251-268.
[25] Niu, X., Ding, Y., Chen, S., Gooneratne, R. and Ju, X. (2022) Effect of Immune Stress on Growth Performance and Immune Functions of Livestock: Mechanisms and Prevention. Animals, 12, Article 909.
https://doi.org/10.3390/ani12070909
[26] Ibarrola, I., Arranz, K., Markaide, P. and Navarro, E. (2022) Metabolic Size Scaling Reflects Growth Performance Effects on Age-Size Relationships in Mussels (Mytilus galloprovincialis). PLOS ONE, 17, e0268053.
https://doi.org/10.1371/journal.pone.0268053
[27] Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. and Charnov, E.L. (2001) Effects of Size and Temperature on Metabolic Rate. Science, 293, 2248-2251.
https://doi.org/10.1126/science.1061967
[28] Ligon, D.B., Peterson, C.C. and Lovern, M.B. (2012) Acute and Persistent Effects of Pre‐ and Posthatching Thermal Environments on Growth and Metabolism in the Red‐Eared Slider Turtle, Trachemys scripta elegans. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317, 227-235.
https://doi.org/10.1002/jez.1716
[29] Stahlschmidt, Z.R., Jodrey, A.D. and Luoma, R.L. (2015) Consequences of Complex Environments: Temperature and Energy Intake Interact to Influence Growth and Metabolic Rate. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 187, 1-7.
https://doi.org/10.1016/j.cbpa.2015.04.007
[30] Guderley, H. and Seebacher, F. (2010) Thermal Acclimation, Mitochondrial Capacities and Organ Metabolic Profiles in a Reptile (Alligator mississippiensis). Journal of Comparative Physiology B, 181, 53-64.
https://doi.org/10.1007/s00360-010-0499-1
[31] Feder, M.E. and Hofmann, G.E. (1999) Heat-Shock Proteins, Molecular Chaperones, and the STRESS response: Evolutionary and Ecological Physiology. Annual Review of Physiology, 61, 243-282.
https://doi.org/10.1146/annurev.physiol.61.1.243
[32] Xu, W., Dang, W., Geng, J. and Lu, H. (2015) Thermal Preference, Thermal Resistance, and Metabolic Rate of Juvenile Chinese Pond Turtles Mauremys reevesii Acclimated to Different Temperatures. Journal of Thermal Biology, 53, 119-124.
https://doi.org/10.1016/j.jtherbio.2015.09.003
[33] Wu, M., Hu, L., Dang, W., Lu, H. and Du, W. (2013) Effect of Thermal Acclimation on Thermal Preference, Resistance and Locomotor Performance of Hatchling Soft-Shelled Turtle. Current Zoology, 59, 718-724.
https://doi.org/10.1093/czoolo/59.6.718
[34] Gunderson, A.R. and Stillman, J.H. (2015) Plasticity in Thermal Tolerance Has Limited Potential to Buffer Ectotherms from Global Warming. Proceedings of the Royal Society B: Biological Sciences, 282, Article ID: 20150401.
https://doi.org/10.1098/rspb.2015.0401
[35] Li, H., Wang, Z., Mei, W. and Ji, X. (2009) Temperature Acclimation Affects Thermal Preference and Tolerance in Three Eremias Lizards (Lacertidae). Current Zoology, 55, 258-265.
https://doi.org/10.1093/czoolo/55.4.258
[36] 顾重建, 金建钰, 上官福根, 等. 温度驯化对红耳滑龟幼龟选择体温、热耐受性和抗氧化酶活性的影响[J]. 生态学报, 2016, 36(6): 1737-1745.
[37] Yang, J., Sun, Y., An, H. and Ji, X. (2007) Northern Grass Lizards (Takydromus septentrionalis) from Different Populations Do Not Differ in Thermal Preference and Thermal Tolerance When Acclimated under Identical Thermal Conditions. Journal of Comparative Physiology B, 178, 343-349.
https://doi.org/10.1007/s00360-007-0227-7
[38] Fan, X.L., Lin, Z.H. and Scheffers, B.R. (2021) Physiological, Developmental, and Behavioral Plasticity in Response to Thermal Acclimation. Journal of Thermal Biology, 97, Article ID: 102866.
https://doi.org/10.1016/j.jtherbio.2021.102866
[39] Jiménez, A.G. and Nash-Braun, E. (2023) Enzymatic Responses Reveal Different Physiological Strategies Employed by Eurytolerant Fish during Extreme Hot and Cold Cycling Acclimation Temperatures. Journal of Thermal Biology, 114, 103578.
https://doi.org/10.1016/j.jtherbio.2023.103578
[40] Ma, Q. (2013) Role of NRF2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53, 401-426.
https://doi.org/10.1146/annurev-pharmtox-011112-140320
[41] Hurtado-Carneiro, V., Dongil, P., Pérez-García, A., Álvarez, E. and Sanz, C. (2021) Preventing Oxidative Stress in the Liver: An Opportunity for GLP-1 and/or Pask. Antioxidants, 10, Article 2028.
https://doi.org/10.3390/antiox10122028
[42] Powers, S.K. and Jackson, M.J. (2008) Exercise-induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiological Reviews, 88, 1243-1276.
https://doi.org/10.1152/physrev.00031.2007
[43] Zhang, X., Niu, Y., Zhang, H., Xu, T., Zeng, Q., Storey, K.B., et al. (2021) The Effect of Long-Term Cold Acclimation on Redox State and Antioxidant Defense in the High-Altitude Frog, Nanorana pleskei. Journal of Thermal Biology, 99, Article ID: 103008.
https://doi.org/10.1016/j.jtherbio.2021.103008
[44] Ritchie, D.J. and Friesen, C.R. (2022) Invited Review: Thermal Effects on Oxidative Stress in Vertebrate Ectotherms. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 263, Article ID: 111082.
https://doi.org/10.1016/j.cbpa.2021.111082
[45] Li, S., Li, J., Chen, W., Xu, Z., Xie, L. and Zhang, Y. (2021) Effects of Simulated Heat Wave on Oxidative Physiology and Immunity in Asian Yellow Pond Turtle (Mauremys mutica). Frontiers in Ecology and Evolution, 9, Article 704105.
https://doi.org/10.3389/fevo.2021.704105