尿素/肌酐比值与ICU幸存患者预后的关系——基于MIMIC-IV数据库的回顾性研究
The Relationship between the Blood Urea Nitrogen/Creatinine Ratio and Prognosis in Intensive Care Unit Survivors—A Retrospective Study Based on the MIMIC-IV Database
DOI: 10.12677/md.2025.153030, PDF, HTML, XML,   
作者: 李紫薇, 陈星华, 赵晶晶, 姚 莉*:安徽医科大学,安徽 合肥;合肥市第二人民医院重症医学科,安徽 合肥
关键词: 重症监护病房尿素/肌酐比值预后MIMIC-IV数据库Intensive Care Unit Urea-Creatinine Ratio Prognosis MIMIC-IV Database
摘要: 背景:重症监护病房(ICU)幸存者死亡风险升高已成为临床研究的一个重要焦点。尿素与肌酐比值(UCR)是评估危重患者分解代谢状态的潜在生物标志物,与各种病理条件下的不良结果有关。然而,UCR水平与ICU幸存者预后之间的关系仍未得到充分的了解。方法:基于MIMIC-IV数据库开展回顾性队列分析,纳入ICU住院时间超过48小时且存活至转出医院的患者。主要结局为出院后30天及1年全因死亡率。采用单因素及多因素Cox回归模型分析UCR与ICU幸存者死亡风险关系的独立性。通过限制性立方样条(RCS)检验非线性趋势并计算拐点,最后进行亚组分析检验UCR水平在不同患者人群中预后价值的稳健性。结果:共有16,613例患者入组研究,30天和1年全因死亡率分别为7.5%和20.8%。ICU幸存者UCR水平与患者30天全因死亡率之间存在显著的线性正相关,UCR越高,30天死亡风险越高;而UCR水平与患者1年全因死亡率之间呈J型关系,阈值效应分析表明拐点为UCR = 11,在拐点左侧,UCR越高,1年死亡风险越低(HR [95% CI], 0.956 [0.918~0.995], p = 0.027),拐点右侧则相反(HR 95% CI, 1.023 [1.02~1.026], p < 0.001)。亚组分析的结果表明,在不同的人群中存在类似的关系。结论:在重症监护室幸存者中,UCR水平与30天全因死亡率呈显著的线性正相关,与1年全因死亡率呈J型关系。UCR水平异常能识别较高死亡风险的ICU幸存者,有助于优化对ICU患者的出院前评估,并制定个体化的随访干预策略。
Abstract: Background: The elevated mortality risk among survivors of the intensive care unit (ICU) has emerged as a significant focus of clinical investigation. The urea-to-creatinine ratio (UCR) serves as a potential biomarker for evaluating the catabolic state of critically ill patients and has been linked to adverse outcomes across various pathological conditions. Nevertheless, the association between UCR levels and the prognostic outcomes of ICU survivors remains inadequately understood. Method: Patients who were admitted to the intensive care unit (ICU) for more than 48 hours and survived to discharge were retrospectively collected from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database. The primary outcomes evaluated were all-cause mortality at 30 days and 1 year. The association between the UCR and these outcomes was examined using multivariate Cox proportional hazards regression models. To explore potential non-linear relationships, restricted cubic spline (RCS) curves were plotted based on the adjusted models. Subgroup analyses were conducted to assess the heterogeneity of this association across different patient populations. Results: A total of 16,613 patients were enrolled in the study, with 30-day and 1-year all-cause mortality rates of 7.5% and 20.8%, respectively. After adjusting for confounders, there was a significant positive linear relationship between UCR levels and patients’ 30-day mortality (HR [95% CI], 1.031 [1.027~1.036], p < 0.001). For the 1-year all-cause mortality risk, a J-shaped relationship was observed between the two, with the inflection point located at the UCR = 11 level. On the left side of the inflection point, the risk of death was lower with a higher UCR (HR [95% CI], 0.956 [0.918~0.995], p = 0.027), and the opposite was true on the right side of the inflection point (HR 95% CI, 1.023 [1.02~1.026], p < 0.001). The results of the subgroup analyses suggest a similar relationship in different populations. Conclusion: Among intensive care unit survivors, a significant positive linear association was observed between UCR levels and 30-day all-cause mortality, while a J-shaped relationship was identified for 1-year all-cause mortality. Elevated UCR levels may serve as a valuable indicator for identifying patients at an increased risk of mortality, thereby informing discharge planning and enabling the implementation of targeted therapeutic interventions.
文章引用:李紫薇, 陈星华, 赵晶晶, 姚莉. 尿素/肌酐比值与ICU幸存患者预后的关系——基于MIMIC-IV数据库的回顾性研究[J]. 医学诊断, 2025, 15(3): 223-238. https://doi.org/10.12677/md.2025.153030

1. 引言

由于社会人口老龄化的人口结构转变及重症监护技术如机械通气、血管活性药物支持及连续性肾脏替代治疗(Continuous Renal Replacement Therapy, CRRT)等先进技术不断进步[1],危重症患者的短期死亡率已显著降低,使得更多重症患者在ICU存活并出院。不幸的是,许多ICU幸存者尽管在重症监护室成功地度过了疾病危险期,但受到持续性炎症、神经体液调节改变和长期制动的综合影响,ICU幸存者长期处于一种分解代谢状态[2] [3],他们的死亡率明显高于一般人群[4] [5]。早在2010年,美国卫生学会首席研究员Iwashyna TJ就呼吁将ICU幸存者的生存视为21世纪重症监护室的决定性挑战[6],直到近年,专业组织通过发布的“拯救脓毒症”运动:脓毒症和脓毒性休克管理的国际指南,又一次强调了改善ICU幸存者长期预后的必要性[7],进一步寻找影响长期预后的可靠独立危险因素迫在眉睫。

先前的研究表明,血尿素氮与肌酐的比值(UCR),是临床评估肾功能的重要指标[8],血尿素氮和肌酐均为人体氮代谢的终末产物,肌酐来源于肌肉的代谢[9],而血尿素氮来源于内源性蛋白质代谢分解[10],通过肾脏排出,反映蛋白质摄入、代谢以及肝肾功能,不受肌肉质量的影响。UCR水平升高已被证明与各种疾病的预后不良和死亡率增加密切相关,这类疾病包括急慢性肾损伤[11] [12]、脓毒性休克[13]、缺血性脑卒中[14]、急性心力衰竭[15] [16]和COVID-19 [17]。然而,UCR水平与ICU幸存者预后之间的相关性仍然知之甚少。在危重患者中,疾病早期分解代谢活性升高可导致尿素生成增加,而肌肉量的逐渐减少可导致肌酐生成减少,血尿素氮与肌酐的变化趋势将呈现反向发展。因此,Haines等人提出UCR可以作为评估危重患者分解代谢状态的潜在生物标志物[18]。以前的研究更多地关注UCR与特定疾病的预后关系,并且主要针对住院患者,而UCR水平与ICU幸存者预后之间的相关性仍然知之甚少。考虑到ICU幸存者出院后的高死亡风险缺乏有效的风险评估工具,我们利用重症监护医疗信息-IV (Medical Information Mart for Intensive Care IV, MIMIC-IV)数据库[19]进行了回顾性队列研究分析,旨在探究ICU幸存者UCR水平与其预后不良之间的关系。

2. 材料与方法

2.1. 数据来源

该回顾性队列研究所收集的患者临床资料均来源于MIMIC-IV(2.2),该数据库是全球著名的开放型重症监护医疗信息数据库,收录了2008~2019年间于美国马萨诸塞州贝斯以色列女执事医疗中心(Beth Israel Deaconess Medical Center)收治的逾50,000例成年ICU病例的诊疗数据,其数据高度全面,包括基本人口统计数据、生理参数、实验室数据、用药记录、治疗过程和疾病诊断。此外,该数据库提供患者从ICU出院后长达一年的患者随访信息,使得研究人员能够对疾病进展和治疗效果进行长期分析。所有患者信息均通过去标识化编号实现了匿名管理,符合医学伦理学要求。根据数据库管理规定,研究人员必须通过美国国立卫生研究院的在线培训课程和考核后方可在线访问原始数据,研究者已按要求完成相关授权流程,并通过了波士顿哈佛医学院伦理审查委员会的审核。

2.2. 研究对象及结果

该研究纳入首次入住ICU并住院时间超过48小时的患者,排除了在ICU住院期间死亡及缺乏关键研究指标的患者。参与者根据UCR水平分为五组,间隔为20%。主要结局是ICU出院后30天和1年的全因死亡率,详细的患者筛选过程如图1所示。

2.3. 公式

UCR = Blood urea nitrogen/Creatinine (mg/dL)

2.4. 数据提取

根据文献回顾、相关临床知识及MIMIC-IV提供的数据,该研究使用Navicat Premium 16.0软件从数据库中收集以下五个方面的患者数据:(1) 基本人口统计数据:包括患者的年龄、性别、体重、种族,以及首次入住ICU的类型:内科重症监护室(MICU)、外科重症监护室/创伤外科重症监护室(SICU/TSICU)、心脏重症监护室(CCU)、神经重症监护室(NICU);(2) 合并症:根据国际疾病分类(ICD-9和ICD-10)对患者合并症数据进行分类,包括高血压、糖尿病(DM)、冠心病(CHD)、慢性阻塞性肺病(COPD)、慢性肾病5期(CKD5)、慢性肝病、脑卒中、创伤性脑损伤(TBI)、肺炎、脓毒症、消化道出血;(3) ICU入院时常用疾病严重程度评分:简化急性生理评分-II (SAPS-II)、牛津急性疾病严重程度评分(OASIS)、序贯器官衰竭评估评分(SOFA)、格拉斯哥昏迷量表评分(GCS);(4) 实验室检查:规定为患者入住ICU第一个24小时内的实验室检查,包括白细胞(WBC)计数、红细胞(RBC)计数、血小板(PLT)计数、血红蛋白(Hb)、血尿素氮(BUN)、血清肌酐(SCr)、估算肾小球滤过率(eGFR);以及离开ICU后第一个24小时内的血尿素氮(BUN)、血清肌酐(SCr);(5) 在ICU期间接受的治疗措施:有创机械通气(IMV)、血管活性药物、镇静药物、连续性肾脏替代治疗(CRRT)、肠外营养(PN),在该项研究中,以上治疗措施均归类为二元变量,也就是区分患者有无接受相应的治疗后,简单标记为“是”或“否”。在该研究中,所有研究变量均无缺失,而其余非关键变量的缺失率均在15%以内。因为UCR的极端值与整体数据水平相差甚远,我们将处于0.5%分位数以下的数据统一替换为0.5%分位数所对应的值;将高于99.5%分位数的数据替换为99.5%分位数所对应的值。

Figure 1. The specific flowchart for identifying the study subjects

1. 研究确定研究对象的具体流程图

2.5. 统计分析

采用STATA (15.1版本)和R语言软件(4.3.3版本)进行数据整合和分析。采用多重插值法对缺失数据进行补全。将其中符合正态分布的连续变量以均数(标准差)表示,组间比较采用独立样本T检验。符合偏态分布的连续变量以中位数(四分位数间距)表示,组间比较采用非参数Mann-Whitney U检验。分类变量以频数(构成比)表示,组间比较采用χ2检验。

为明确UCR与危重症患者预后的关联性,构建单变量及多变量Cox回归风险模型,分别评估该指标对30天及1年全因死亡终点的独立预测价值。基于以往关于UCR对危重症患者死亡率的影响和UCR影响因素的研究中确定的可能混杂因素,建立了三个模型对潜在混杂因素进行校正。模型1针对人口要素(年龄、性别、体重、种族和ICU类型)进行了校正。模型2在模型1的基础上增加合并症和各项评分(DM、COPD、CKD5、CLD、脑卒中、TBI、肺炎、败血症、消化道出血、SAPS-II、GCS评分)。模型3在模型2的基础上增加了实验室检查和治疗措施(WBC计数、PLT计数、Hb、eGFR、IMV、CRRT和PN)。各个协变量之间的方差膨胀因子(VIF)均小于5,提示各个协变量间没有显著的共线性。为验证UCR与疾病严重程度评分的独立性,绘制UCR与常见疾病严重程度评分(SAPS-II、OASIS、SOFA评分、GCS评分)的散点图,并进行Spearmam分析。在模型3的框架内绘制限制性立方样条曲线(RCS),进一步评估UCR与死亡风险之间的关联。

对各组患者的预后资料进行描述性统计:采用Kaplan-Meier分析评估各组患者的生存率,采用Log-rank检验评估组间差异。此外,为进一步评估研究变量对不同人群的影响是否存在差异,研究纳入ICU幸存者的年龄、性别、种族、ICU类型、SOFA评分、GCS评分、eGFR、DM、CKD5、CLD、消化道出血以及是否接受CRRT和PN进行了全面的亚组分析。亚组分析在多因素Cox回归模型3的框架内进行。在整个统计分析过程中采用双尾检验的方式,以双侧P值小于0.05作为判断差异具有统计学意义的标准。

3. 结果

3.1. 基线数据分析

该研究共纳入16,613名患者。整体队列中患者中位年龄为67.4岁,女性占多数(56.2%)。根据UCR水平,从低值到高值五分法顺序分为5组:Q1组(UCR < 13.84; n = 3322)、Q2组(13.84 ≤ UCR < 18.33; n = 3199)、Q3组(18.33 ≤ UCR < 23.33; n = 3358)、Q4组(23.33 ≤ UCR < 30; n = 3038)及Q5组(UCR ≥ 30; n = 3696)。各组患者的基线特征可见表1。30天及1年全因死亡率分别为7.5%和20.8%。

Table 1. Baseline characteristics of the study population and those categorized by UCR

1. 总体及基于UCR分组的人群基线特征

变量

总体(n = 16613)

Q1组

(n = 3322)

Q2组

(n = 3199)

Q3组

(n = 3358)

Q4组

(n = 3038)

Q5组

(n = 3696)

p

基本信息

年龄(岁)

67.4 (55.4~78.3)

58.9 (45.2~70.4)

65.8 (54.2~77.0)

69.1 (58.1~79.3)

70.1 (59.2~80.8)

71.2 (60.7~81.3)

<0.001

女性,例(%)

9330 (56.2%)

1994 (60%)

1899 (59.4%)

1972 (58.7%)

1698 (55.9%)

1767 (47.8%)

<0.001

体重(kg)

79.0 (66.1~94.1)

80.0 (67.7~94.7)

80.0 (68.0~95.0)

79.5 (67.0~94.8)

78.0 (65.6~93.4)

76.8 (63.8~93.1)

<0.001

种族,例(%)

<0.001

白人

11229 (67.6%)

1958 (58.9%)

2114 (66.1%)

2383 (71%)

2140 (70.4%)

2634 (71.3%)

黑人/非裔

1474 (8.9%)

506 (15.2%)

306 (9.6%)

244 (7.3%)

205 (6.7%)

213 (5.8%)

其他

3910 (23.5%)

858 (25.8%)

779 (24.4%)

731 (21.8%)

693 (22.8%)

849 (23%)

ICU类型,例(%)

<0.001

MICU

5126 (30.9%)

1222 (36.8%)

857 (26.8%)

922 (27.5%)

864 (28.4%)

1261 (34.1%)

SICU/TSICU

4825 (29%)

1038 (31.2%)

886 (27.7%)

907 (27%)

852 (28%)

1142 (30.9%)

CCU

5397 (32.5%)

792 (23.8%)

1197 (37.4%)

1277 (38%)

1102 (36.3%)

1029 (27.8%)

NICU

1265 (7.6%)

270 (8.1%)

259 (8.1%)

252 (7.5%)

220 (7.2%)

264 (7.1%)

续表

合并症,例(%)

高血压

11249 (67.7%)

1993 (60%)

2128 (66.5%)

2377 (70.8%)

2134 (70.2%)

2617 (70.8%)

<0.001

糖尿病

4973 (29.9%)

956 (28.8%)

866 (27.1%)

1054 (31.4%)

954 (31.4%)

1143 (30.9%)

<0.001

冠心病

5294 (31.9%)

807 (24.3%)

1108 (34.6%)

1227 (36.5%)

1054 (34.7%)

1098 (29.7%)

<0.001

COPD

935 (5.6%)

119 (3.6%)

168 (5.3%)

174 (5.2%)

190 (6.3%)

284 (7.7%)

<0.001

慢性肾脏病5期

544 (3.3%)

415 (12.5%)

51 (1.6%)

32 (1%)

27 (0.9%)

19 (0.5%)

<0.001

慢性肝病

1038 (6.2%)

200 (6%)

162 (5.1%)

179 (5.3%)

186 (6.1%)

311 (8.4%)

<0.001

脑卒中

2072 (12.5%)

408 (12.3%)

360 (11.3%)

403 (12%)

374 (12.3%)

527 (14.3%)

0.003

创伤性脑损伤

707 (4.3%)

165 (5%)

132 (4.1%)

133 (4%)

125 (4.1%)

152 (4.1%)

0.257

肺炎

4591 (27.6%)

730 (22%)

645 (20.2%)

789 (23.5%)

879 (28.9%)

1548 (41.9%)

<0.001

脓毒症

2737 (16.5%)

563 (16.9%)

446 (13.9%)

451 (13.4%)

481 (15.8%)

796 (21.5%)

<0.001

消化道出血

620 (3.7%)

131 (3.9%)

89 (2.8%)

111 (3.3%)

117 (3.9%)

172 (4.7%)

<0.001

疾病严重程度评分

SAPS-II

35.0 (27.0~44.0)

31.0 (22.0~40.0)

33.0 (26.0~41.0)

35.0 (27.0~43.0)

37.0 (29.0~45.0)

39.0 (32.0~48.0)

<0.001

OASIS

32.0 (27.0~39.0)

31.0 (24.0~37.0)

31.0 (25.0~37.0)

32.0 (26.0~38.0)

33.0 (27.0~39.0)

35.0 (30.0~42.0)

<0.001

SOFA

5.0 (3.0~7.0)

4.0 (2.0~7.0)

4.0 (2.0~7.0)

4.0 (3.0~7.0)

5.0 (3.0~8.0)

6.0 (3.0~9.0)

<0.001

GCS

14.0 (11.0~15.0)

14.0 (12.0~15.0)

14.0 (12.0~15.0)

14.0 (11.0~15.0)

14.0 (10.0~15.0)

13.0 (9.0~14.0)

<0.001

实验室检查

WBC (×109/L)

10.5 (7.6~14.7)

10.2 (7.3~14.2)

10.2 (7.4~14.1)

10.4 (7.5~14.3)

10.7 (7.8~14.9)

11.1 (7.8~15.6)

<0.001

RBC (×1012/L)

3.8 (3.2~4.4)

3.9 (3.3~4.4)

3.9 (3.3~4.5)

3.9 (3.3~4.4)

3.8 (3.2~4.4)

3.8 (3.2~4.3)

<0.001

PLT (×109/L)

211.0 (160.0~276.0)

217.0 (163.0~286.0)

212.0 (161.0~274.0)

209.5 (160.0~271.0)

209.0 (159.0~272.0)

210.0 (156.0~277.0)

<0.001

Hb (mg/dl)

11.5 (9.7~13.2)

11.6 (9.7~13.3)

11.6 (9.7~13.3)

11.6 (9.8~13.3)

11.5 (9.7~13.2)

11.3 (9.5~13.0)

<0.001

BUN (mg/dl)

19.0 (12.0~30.0)

10.0 (7.0~17.0)

14.0 (11.0~20.0)

18.0 (14.0~26.0)

22.0 (17.0~32.0)

29.0 (21.0~43.0)

<0.001

SCr (mg/dl)

0.9 (0.6~1.2)

0.9 (0.7~1.6)

0.9 (0.7~1.3)

0.9 (0.7~1.3)

0.9 (0.6~1.2)

0.8 (0.6~1.1)

<0.001

eGFR

77.8 (47.3~101.1)

77.5 (36.3~105.5)

74.3 (47.0~99.4)

73.9 (46.0~97.5)

76.0 (47.7~97.9)

84.5 (54.0~104.2)

<0.001

UCR

20.6 (15.0~28.1)

11.0 (8.6~12.5)

16.2 (15.0~17.1)

20.0 (19.5~21.8)

25.8 (24.4~27.5)

36.0 (32.0~42.3)

<0.001

治疗措施,例(%)

有创机械通气

8977 (54%)

1531 (46.1%)

1659 (51.9%)

1784 (53.1%)

1700 (56%)

2303 (62.3%)

<0.001

血管活性药物

7160 (43.1%)

1198 (36.1%)

1319 (41.2%)

1440 (42.9%)

1370 (45.1%)

1833 (49.6%)

<0.001

镇静药物

9829 (59.2%)

1770 (53.3%)

1836 (57.4%)

1935 (57.6%)

1848 (60.8%)

2440 (66%)

<0.001

CRRT

363 (2.2%)

151 (4.5%)

63 (2%)

45 (1.3%)

38 (1.3%)

66 (1.8%)

<0.001

肠外营养

707 (4.3%)

100 (3%)

85 (2.7%)

115 (3.4%)

129 (4.2%)

278 (7.5%)

<0.001

注:MICU:内科重症监护室;SICU:外科重症监护室;TSICU,创伤外科重症监护室;CCU:心脏重症监护室;NICU:神经重症监护室;COPD:慢性阻塞性肺疾病;SAPS-II:简化急性生理评分-II;OASIS:牛津急性疾病严重程度评分;GCS:格拉斯哥昏迷量表评分;SOFA:序贯器官衰竭评估评分;WBC:白细胞计数;RBC:红细胞计数;Hb:血红蛋白;PLT:血小板计数;BUN:血尿素氮;SCr:血清肌酐;eGFR:估算肾小球滤过率;UCR:尿素/肌酐比值;CRRT:连续肾脏替代治疗;数值为中位数(四分位数间距)或n (%)。

3.2. 预后分析

对各组患者的预后资料进行描述性统计分析。结果显示,Q5组患者的30天、90天、180天和1年全因死亡率显著高于其他组(p < 0.05)。同时,研究发现Q5组患者的中位住院时间(13.1天)、中位ICU住院时间(5.1天)、中位ICU转出后住院时间(4.8天)均更长,另外,患者的UCR水平越高,出院后前往护理或康复机构、医疗机构等非家庭场所的可能性越大(表2)。图2展示了五组患者的Kaplan-Meier生存曲线,Q5组患者在30天、180天及1年的生存率始终均低于其他组,经log-rank检验,组间差异具有统计学意义(p < 0.05)。

Table 2. The outcomes of each group of patients

2. 各组患者的临床结局

结局

总体 (n = 16613)

Q1组

(n = 3322)

Q2组

(n = 3199)

Q3组

(n = 3358)

Q4组

(n = 3038)

Q5组

(n = 3696)

p

住院时间(天)

9.5 (6.2~15.8)

8.5 (5.8~13.8)

8.1 (5.7~13.1)

8.8 (6.0~13.9)

10.0 (6.6~16.0)

13.1 (8.2~21.8)

<0.001

ICU住院时间(天)

3.6 (2.6~6.0)

3.1 (2.4~4.7)

3.0 (2.3~4.6)

3.3 (2.5~5.0)

4.0 (2.8~6.2)

5.1 (3.1~9.8)

<0.001

ICU转出后 住院时间(天)

3.9 (2.0~7.7)

3.9 (2.0~7.1)

3.4 (1.9~6.5)

3.8 (2.0~7.0)

3.9 (2.0~7.7)

4.8 (2.0~9.7)

<0.001

30天全因 死亡率(%)

1250 (7.5%)

126 (3.8%)

143 (4.5%)

221 (6.6%)

239 (7.9%)

521 (14.1%)

<0.001

90天全因 死亡率(%)

2104 (12.7%)

255 (7.7%)

248 (7.8%)

354 (10.5%)

431 (14.2%)

816 (22.1%)

<0.001

180天全因 死亡率(%)

2722 (16.4%)

360 (10.8%)

347 (10.8%)

468 (13.9%)

548 (18%)

999 (27%)

<0.001

1年全因 死亡率(%)

3459 (20.8%)

504 (15.2%)

476 (14.9%)

612 (18.2%)

673 (22.2%)

1194 (32.3%)

<0.001

出院后去向,例(%)

<0.001

家庭场所

7493 (45.1%)

1944 (58.5%)

1711 (53.5%)

1603 (47.7%)

1222 (40.2%)

1013 (27.4%)

护理或康复机构

7709 (46.4%)

1092 (32.9%)

1276 (39.9%)

1528 (45.5%)

1586 (52.2%)

2227 (60.3%)

医疗机构

648 (3.9%)

151 (4.5%)

95 (3%)

101 (3%)

115 (3.8%)

186 (5%)

其它

763 (4.6%)

135 (4.1%)

117 (3.7%)

126 (3.8%)

115 (3.8%)

270 (7.3%)

注:数值为中位数(四分位间距)或n (%)。

Figure 2. Kaplan-Meier survival curves for 30-day (A), 180-day (B), and 1-year (C) survival in different groups of patients

2. 各组患者30天(A)、180天(B)和1年(C)生存率的Kaplan-Meier生存曲线

3.3. 相关性分析

采用多因素Cox回归模型检验危重患者UCR水平与短期和长期死亡率之间的关系,以研究结局发生率最低的组为参照。分析显示,在未经调整的模型中,以Q1组作为参考,Q5组30天全因死亡风险显著增加了294.8% (Q1 vs Q5: HR [95% CI], 3.948 [3.250~4.796], p < 0.001)。这种关联在调整后的模型中仍然显著:模型1 (Q1 vs Q5: HR [95% CI], 2.762 [2.262~3.373], p < 0.001)、模型2 (Q1 vs Q5: HR [95% CI], 2.372 [1.914~2.938], p < 0.001)和模型3 (Q1 vs Q5: HR [95% CI], 2.731 [2.195~3.397], p < 0.001)。UCR与1年死亡风险之间也有着相似的关系(表3)。在多重共线性检验中,所有因素的方差膨胀因子(VIF)均小于5,因此各因素之间不存在共线性问题。

Table 3. Multivariate Cox regression model was used to evaluate the relationship between UCR and ICU survivor mortality

3. 多因素Cox回归模型评估UCR和ICU幸存者死亡率之间的关系

组别

未调整模型

模型1

模型2

模型3

30天全因死亡率

Q1

Ref.

Ref.

Ref.

Ref.

Q2

1.186 (0.933~1.507)

1.066 (0.838~1.357)

1.155 (0.900~1.482)

1.178 (0.917~1.512)

Q3

1.759 (1.413~2.189)***

1.422 (1.139~1.776)**

1.498 (1.187~1.890)*

1.598 (1.265~2.019)**

Q4

2.118 (1.707~2.628)***

1.597 (1.282~1.990)***

1.565 (1.242~1.971 **

1.672 (1.326~2.109)**

Q5

3.948 (3.250~4.796)***

2.762 (2.262~3.373)***

2.372 (1.914~2.938)***

2.731 (2.195~3.397)***

p

<0.001

<0.001

<0.001

<0.001

1年全因死亡率

Q1

1.017 (0.897~1.152)

1.128 (0.994~1.280)

1.020 (0.895~1.163)

1.002 (0.878~1.142)

Q2

Ref.

Ref.

Ref.

Ref.

Q3

1.253 (1.112~1.413)***

1.135 (1.006~1.279)*

1.115 (0.988~1.257)

1.149 (1.019~1.296)*

Q4

1.567 (1.393~1.762)***

1.349 (1.199~1.517)***

1.252 (1.112~1.408)***

1.291 (1.147~1.454)***

Q5

2.479 (2.229~2.756)***

2.021 (1.815~2.249) ***

1.676 (1.504~1.869)***

1.786 (1.600~1.994)***

p

<0.001

<0.001

<0.001

<0.001

注:P值:*p < 0.05,**p < 0.01,***p < 0.001。数值为中位数(四分位间距)或n (%)。模型1:对年龄、性别、体重、种族和ICU类型进行了调整;模型2:在模型1的基础上增加合并症和各项评分(DM、COPD、CKD5、CLD、脑卒中、TBI、肺炎、败血症、消化道出血、SAPS-II、GCS评分);模型3:在模型2的基础上增加了实验室检查和治疗措施(WBC、PLT、Hb、eGFR、IMV、CRRT和PN)。

Spearman分析显示,在研究队列中,患者进入ICU时的疾病严重程度评分(SAPS-II、OASIS和SOFA评分)与出院时的UCR呈显著正相关(p < 0.001),与GCS评分呈负相关(p < 0.001),图3(A)~(D))。患者的UCR水平随ICU住院时间的延长而增加(p < 0.001,图3(E))。在多因素Cox回归模型3的框架下绘制了限制性立方样条(RCS)曲线结果示,ICU幸存者30天内UCR与全因死亡率之间存在显著的线性正相关(总体p < 0.001,非线性p = 0.245,图4(A))。UCR与患者1年全因死亡率之间呈J型关系(总体p < 0.001,非线性p = 0.003,图4(B))。阈值效应分析表明,RCS曲线的拐点在UCR = 11的水平。UCR与患者1年全因死亡率之间的关联表现为:在拐点左侧区间,UCR每升高1个单位,ICU幸存者1年全因死亡率降低4.4% (HR [95% CI], 0.956 [0.918~0.995], p = 0.027);在拐点的右侧区间,UCR每增加1个单位,ICU幸存者1年全因死亡率则将上升2.3% (HR 95% CI, 1.023 [1.02~1.026], p < 0.001),详见补充表1

Figure 3. (A~D): scatterplot of common scores and UCR at ICU admission; (E): scatterplot of length of ICU stay and UCR

3. (A~D):入院常见评分和UCR的散点图;(E):ICU住院时间和UCR的散点图

Figure 4. (A): RCS curve of UCR versus patient’s 30-day risk of all-cause mortality; (B): RCS curve of UCR versus patient’s 1-year risk of all-cause mortality

4. (A): UCR与患者30天全因死亡风险的RCS曲线;(B):UCR与患者1年全因死亡风险的RCS曲线

3.4. 亚组分析

基于年龄(≥65岁、<65岁)、性别、种族、ICU类型(MICU, SICU/TSICU, CCU, NICU)、格拉斯哥昏迷量表(GCS ≥ 9, <9)、慢性肝病、慢性肾脏病5期、消化道出血、eGFR (国际肾脏组织分级)、CRRT及肠外营养进行分层分析。结果显示,在大多数人群中,Q2组、Q3组、Q4组和Q5组的患者30天全因死亡风险均高于Q1组(补充表2)。各亚组患者UCR与1年全因死亡风险存在相似的J型相关性(表4)。交互作用进一步揭示,UCR对患者1年全因死亡率的影响与入院首次入住ICU类型和接受CRRT存在交互作用。具体而言,在入住NICU或未接受CRRT治疗的患者中,UCR与1年全因死亡率之间的相关性更为明显。

Table 4. Subgroup analysis of the relationship between groups and 1-year mortality by HR

4. 通过风险比进行的组间与1年全因死亡率关系的亚组分析

亚组

组别

交互p

Q1

Q2

Q3

Q4

Q5

年龄(岁)

0.788

<65

0.911 (0.733~1.133)

Ref.

1.165 (0.926~1.467)

1.352 (1.075~1.700)

1.784 (1.448~2.199)

≥65

0.969 (0.821~1.144)

Ref.

1.183 (1.027~1.363)

1.335 (1.162~1.534)

1.945 (1.707~2.215)

性别

0.102

女性

1.005 (0.849~1.188)

Ref.

1.066 (0.910~1.247)

1.298 (1.112~1.515)

1.602 (1.383~1.857)

男性

1.000 (0.810~1.235)

Ref.

1.280 (1.062~1.544)

1.296 (1.077~1.560)

2.021 (1.708~2.393)

种族

0.146

白人

1.005 (0.852~1.186)

Ref.

1.189 (1.030~1.373)

1.273 (1.102~1.469)

1.865 (1.634~2.130)

黑人/非裔

0.819 (0.581~1.155)

Ref.

0.980 (0.668~1.440)

1.432 (0.992~2.066)

1.191 (0.824~1.722)

其他

1.093 (0.822~1.454)

Ref.

1.108 (0.841~1.461)

1.328 (1.022~1.725)

1.775 (1.388~2.269)

ICU类型

0.019

MICU

1.038 (0.856~1.259)

Ref.

1.246 (1.037~1.497)

1.259 (1.047~1.513)

1.676 (1.416~1.983)

SICU/TSICU

0.856 (0.658~1.113)

Ref.

1.063 (0.842~1.343)

1.192 (0.948~1.499)

1.605 (1.298~1.984)

CCU

1.075 (0.803~1.438)

Ref.

1.093 (0.851~1.404)

1.358 (1.066~1.731)

1.980 (1.569~2.497)

NICU

0.697 (0.401~1.212)

Ref.

1.052 (0.657~1.684)

1.585 (0.997~2.519)

2.060 (1.330~3.191)

GCS

0.121

<9

0.645 (0.465~0.894)

Ref.

1.035 (0.776~1.380)

0.991 (0.754~1.301)

1.331 (1.033~1.714)

≥9

1.089 (0.942~1.258)

Ref.

1.165 (1.020~1.330)

1.308 (1.146~1.493)

1.817 (1.606~2.055)

慢性肝病

0.395

0.978 (0.850~1.125)

Ref.

1.121 (0.988~1.272)

1.274 (1.125~1.441)

1.786 (1.592~2.005)

1.184 (0.788~1.779)

Ref.

1.494 (0.992~2.248)

1.375 (0.908~2.081)

1.787 (1.226~2.604)

CKD5

0.073

0.952 (0.828~1.095)

Ref.

1.151 (1.020~1.300)

1.295 (1.149~1.460)

1.771 (1.584~1.980)

1.229 (0.720~2.098)

Ref.

0.556 (0.213~1.452)

0.601 (0.251~1.441)

0.929 (0.371~2.325)

消化道出血

0.240

0.995 (0.869~1.140)

Ref.

1.146 (1.006~1.307)

1.299 (1.141~1.478)

1.826 (1.615~2.064)

1.114 (0.648~1.915)

Ref.

1.188 (0.710~1.986)

1.012 (0.611~1.678)

1.264 (0.780~2.048)

eGFR

0.261

≥90

0.877 (0.672~1.144)

Ref.

1.138 (0.894~1.448)

1.217 (0.958~1.545)

1.610 (1.298~1.997)

60~89

1.065 (0.803~1.413)

Ref.

1.430 (1.115~1.833)

1.699 (1.335~2.162)

2.081 (1.658~2.613)

30~59

0.956 (0.723~1.265)

Ref.

0.999 (0.798~1.251)

1.091 (0.870~1.367)

1.589 (1.289~1.958)

15~29

1.188 (0.840~1.679)

Ref.

0.974 (0.703~1.349)

1.208 (0.885~1.648)

1.964 (1.443~2.674)

<15

1.154 (0.817~1.629)

Ref.

1.138 (0.726~1.784)

0.905 (0.549~1.494)

2.872 (1.587~5.199)

CRRT

0.004

1.000 (0.873~1.144)

Ref.

1.155 (1.022~1.305)

1.287 (1.141~1.451)

1.788 (1.599~2.000)

1.065 (0.559~2.030)

Ref.

1.006 (0.459~2.205)

1.338 (0.617~2.899)

1.325 (0.650~2.701)

肠外营养

0.277

1.007 (0.879~1.153)

Ref.

1.159 (1.024~1.312)

1.324 (1.172~1.496)

1.820 (1.625~2.040)

0.977 (0.559~1.707)

Ref.

1.084 (0.650~1.810)

0.939 (0.562~1.567)

1.360 (0.868~2.131)

注:缩写与表1相同。

4. 讨论

先前有研究强调,重症患者通常更注重长期生存机会而不是短期治疗目标,重申了以患者为中心的护理计划制定的必要性[20]。因此,医务人员制定诊疗决策时,不应仅将目光聚焦于患者当下所患的急性疾病及其直接产生的影响,而是需要优先把患者的生存预期以及个体化需求融入其中。该回顾性队列研究纳入了16,613名ICU幸存者,通过系统性地收集并分析ICU幸存者的临床资料,包括UCR水平数据以及随访期间的生存结局信息,深入探讨了ICU幸存者UCR水平与死亡风险之间的关系。该研究队列的30天全因死亡率为7.5%,1年全因死亡率为20.8%。该结果与既往研究报道的ICU出院患者1年死亡率范围(15.9%~28%) [21]-[24]一致。在调整潜在的混杂因素后,可观察到UCR水平与ICU幸存者30天全因死亡率之间存在显著的线性正相关,UCR水平与患者1年全因死亡率之间的关联呈J型关系。在拐点(UCR = 11)左侧区间,UCR每降低1个单位,ICU幸存者1年全因死亡率降低4.4% (HR [95% CI], 0.956 [0.918~0.995], p = 0.027);在拐点的右侧区间,UCR每增加1个单位,ICU幸存者1年全因死亡率则将上升2.3% (HR 95% CI, 1.023 [1.02~1.026], p < 0.001),即双侧偏离拐点均与1年全因死亡率上升相关。亚组分析的结果显示,这种关系在不同的患者群体中仍然显著。据目前所知,这种相关性此前没有被报道过,与传统的预后标志物相比,UCR是一种潜在的简单而经济的生物标志物,可用于识别死亡风险较高的ICU存活者,是临床风险分层和患者管理的重要工具。

血尿素氮和肌酐作为人体氮代谢的最终产物,反映了肾功能、营养状况和整体代谢状态。已有研究表明,UCR水平在不同人群中均显示出对不良临床结局的独立预测效应。虽然将UCR水平升高与ICU幸存者死亡风险增加联系起来的确切机制暂不清楚,但现有证据表明,营养不良、全身炎症和代谢失调等因素可能会导致我们观察到的结果。首先,2023年发表在《临床营养学》(Clinical Nutrition)杂志上的一项多中心前瞻性研究证实,营养不良和肌力下降与ICU幸存者的一年死亡率独立相关[25]。血清肌酐水平的降低提示骨骼肌损失[26] [27],UCR升高可能反映了肌肉生物能量衰竭[28]和持续性肌肉萎缩[29]。其次,近期一项针对638例长期ICU住院患者(≥28天)的研究进一步揭示了UCR的动态变化特征[30]。研究发现,UCR在入院前7天快速上升(+6.3%/天),随后增速趋缓但仍维持小幅增长(+0.3%/天),其轨迹反映了危重症患者分解代谢的持续性与肌肉储备耗竭的双重特征。并且急性肾损伤患者UCR整体变化趋势与其他患者一致,提示UCR升高主要源于蛋白质分解而非单纯肾功能异常,或许能提供一些解释。本研究散点图表明患者ICU入院时的疾病严重程度评分(SAPS-II、OASIS和SOFA评分)与出院时UCR水平呈显著正相关(p < 0.001,见图3(A)~(C)),是结论的佐证之一。

ICU幸存者30天时观察到的线性关系与之前的研究结果一致,即UCR水平升高与重症患者分解代谢活动和蛋白质能量消耗增加有关。相比之下,1年时发现的J型关系则带来了新的复杂性。当UCR低于拐点时,随着UCR水平的下降,患者的死亡风险也会增加。这可能与UCR值较低的人群中慢性肝病和慢性肾脏病患者比例较高,导致长期死亡风险较高有关。UCR = 11时的拐点表明,UCR 的适度升高可能代表着适应性代谢过程,而极端的偏差–过低或过高–则可能预示着持续性器官功能障碍或营养不良。这种双相模式与在危重症幸存者中观察到的“肥胖悖论”[31] [32]相一致,即适度的代谢储备可赋予生存优势,而极端的代谢储备则反映了营养不良或病理过度激活。

亚组分析显示,UCR水平对不同患者群体的短期和长期死亡率都有不同程度的影响。值得注意的是,与其他亚组相比,NICU队列显示UCR水平与患者预后之间的相关性更为明显,这一发现与已有文献相符[33] [34]。在NICU人群中,有充分的证据表明,脑损伤可诱发阵发性交感神经亢进(PSH),这是一种以代谢需求升高为特征的疾病,其临床表现包括心动过速,高血压,出汗,高热,强直体位[35]。此外,研究表明急性脑缺血后UCR水平持续进行性升高,这意味着早期脑损伤可能会显著改变蛋白质合成途径[34] [36]。该研究还发现,UCR水平与特定患者亚组的预后结果之间的相关性是有限的,这些患者包括需要肾脏替代治疗、肾小球滤过率降低、依赖肠外营养、慢性肝功能不全和慢性肾脏病5期的患者。这种关联性的降低可能是由于肝脏/肾脏病理生理学与蛋白质代谢之间复杂的相互作用造成的。肝功能障碍会破坏尿素循环的运行,而肾功能损伤则会损害尿素排泄和肌酐清除机制。此外,高蛋白的肠外营养可能会引起尿素水平的显著变化,从而混淆UCR与预后的关系。这些观察结果表明,在这些特定的ICU幸存者亚组中,UCR的预后作用可能较为有限,这促使研究人员重新评估其在不同患者人口统计学中的普遍临床适用性。

该研究强调了UCR作为一种在临床易于获取、方便快捷、重复测量性高的生物标志物的潜力。也许它可以用来指导临床干预,以改善重症监护室幸存者的预后。例如,将UCR测量纳入出院评估计划有助于识别死亡风险较高的患者,这些患者可能会受益于有针对性的康复策略。在该研究中,UCR水平较高的患者出院后更有可能去康复机构或疗养院,针对UCR水平的个性化营养策略(如高蛋白饮食或氨基酸补充剂)可能会改善康复效果。此外,对于非重症监护病房患者,已有许多研究表明UCR与不同疾病的预后风险之间存在关联[37] [38]。作为一项评估分解代谢状态的指标,其与非重症监护病房幸存者的预后关系仍值得进一步研究。

然而,我们也应注意到某些局限性。首先,作为一项回顾性队列研究,虽然对潜在的混杂因素进行了调整,以提高研究结果的可靠性,但无法明确确定因果关系。而且,尽管缺失变量较少,并应用了多重插值法进行补充,但估计值仍然可能不准确,这可能会使结果产生偏差。其次,由于数据是从单一机构获得的,因此在将这些结果推广到其他机构时需要谨慎。最后,我们只记录了单个时间点的UCR值,因此无法进行动态分析。由于样本量大,且每个患者的测量时间不一致,因此不可能完全跟踪患者在入住重症监护室期间和出院后UCR的每日变化。未来的研究应着眼于克服这些障碍,以更全面地了解UCR的动态变化及其对患者预后的影响。尽管存在这些局限性,该研究关于UCR水平与ICU幸存者死亡风险之间关系的研究仍具有重要意义,它为预后标志物及其在指导临床决策方面的潜在作用提供了宝贵的见解。

5. 结论

总而言之,ICU幸存者的UCR水平与30天全因死亡率呈显著线性正相关,与1年全因死亡率呈J型关系。UCR水平的升高和降低都与1年死亡风险的增加有关。出院时UCR水平在13.84到18.33之间的ICU幸存者的1年全因死亡率最低。虽然UCR水平可能有助于指导这一患者群体的风险分层,但要确定针对UCR水平的干预措施是否能改善ICU幸存者的长期或短期预后,还需要进一步的研究。

致 谢

我们感谢所有创建和维护MIMIC-IV数据库的开发人员和研究人员。

附 录

Supplementary Table 1. Threshold effect analysis

补充1. 阈值效应分析

HR (95% CI)

p

标准线性回归

1.022 (1.019~1.025)

<0.001

两阶段回归模型

拐点

11

<11

0.956 (0.918~0.995)

0.027

>11

1.023 (1.02~1.026)

<0.001

似然比检验p

0.001

Supplementary Table 2. Subgroup analysis of the relationship between groups and 30-day mortality by HR

补充2. 通过风险比进行的组间与30天全因死亡率关系的亚组分析

亚组

组别

交互p

Q1

Q2

Q3

Q1

Q2

年龄(岁)

0.480

<65

Ref.

0.897 (0.568~1.417)

1.597 (1.061~2.403)

1.780 (1.181~2.682)

2.735 (1.894~3.950)

≥65

Ref.

1.383 (1.017~1.882)

1.760 (1.315~2.355)

1.842 (1.381~2.459)

3.171 (2.409~4.174)

性别

0.082

女性

Ref.

1.129 (0.825~1.545)

1.378 (1.021~1.860)

1.462 (1.084~1.973)

2.075 (1.560~2.759)

男性

Ref.

1.273 (0.841~1.928)

1.988 (1.362~2.902)

2.053 (1.413~2.982)

3.857 (2.716~5.477)

种族

0.566

白人

Ref.

1.125 (0.817~1.549)

1.555 (1.157~2.090)

1.518 (1.126~2.048)

2.648 (2.003~3.501)

黑人/非裔

Ref.

1.538 (0.746~3.172)

2.427 (1.213~4.855)

3.190 (1.623~6.268)

3.012 (1.499~6.054)

其他

Ref.

1.056 (0.647~1.726)

1.274 (0.795~2.041)

1.523 (0.975~2.379)

2.344 (1.538~3.572)

ICU类型

0.065

MICU

Ref.

1.183 (0.828~1.691)

1.846 (1.340~2.543)

1.584 (1.141~2.198)

2.597 (1.918~3.515)

SICU/TSICU

Ref.

1.201 (0.734~1.965)

1.337 (0.831~2.153)

1.604 (1.010~2.549)

2.445 (1.576~3.793)

CCU

Ref.

1.023 (0.572~1.831)

1.289 (0.733~2.267)

1.544 (0.895~2.663)

3.010 (1.791~5.059)

NICU

Ref.

4.487 (0.990~20.329)

4.282 (0.958~19.142)

6.543 (1.489~28.748)

7.183 (1.643~31.400)

GCS

0.778

<9

Ref.

1.192 (0.693~2.053)

1.529 (0.907~2.579)

1.486 (0.908~2.431)

2.260 (1.407~3.629)

≥9

Ref.

1.195 (0.901~1.586)

1.623 (1.248~2.112)

1.651 (1.266~2.154)

2.725 (2.123~3.497)

慢性肝病

0.821

Ref.

1.189 (0.907~1.561)

1.644 (1.274~2.122)

1.733 (1.346~2.231)

2.827 (2.225~3.592)

Ref.

1.217 (0.624~2.374)

1.435 (0.774~2.659)

1.206 (0.638~2.277)

2.097 (1.197~3.672)

续表

CKD5

0.271

Ref.

1.284 (0.980~1.684)

1.730 (1.344~2.228)

1.822 (1.417~2.343)

2.938 (2.317~3.725)

Ref.

0.895 (0.329~2.438)

1.165 (0.336~4.040)

0.485 (0.107~2.195)

1.284 (0.283~5.837)

消化道出血

0.777

Ref.

1.209 (0.934~1.564)

1.642 (1.289~2.092)

1.728 (1.358~2.198)

2.807 (2.237~3.522)

Ref.

0.754 (0.261~2.173)

1.025 (0.398~2.640)

0.890 (0.355~2.231)

1.789 (0.780~4.102)

eGFR

0.106

≥90

Ref.

2.035 (1.071~3.868)

3.019 (1.654~5.511)

2.975 (1.628~5.438)

4.947 (2.797~8.749)

60~89

Ref.

1.081 (0.612~1.910)

2.173 (1.327~3.558)

2.424 (1.489~3.945)

3.073 (1.926~4.904)

30~59

Ref.

0.917 (0.544~1.546)

1.177 (0.729~1.900)

1.182 (0.730~1.913)

2.092 (1.336~3.276)

15~29

Ref.

1.115 (0.629~1.976)

1.029 (0.579~1.828)

1.156 (0.659~2.028)

2.585 (1.520~4.396)

<15

Ref.

1.453 (0.842~2.510)

1.603 (0.849~3.025)

1.292 (0.657~2.541)

2.917 (1.241~6.856)

CRRT

0.080

Ref.

1.253 (0.964~1.630)

1.741 (1.362~2.225)

1.778 (1.392~2.271)

2.958 (2.348~3.726)

Ref.

0.533 (0.181~1.574)

0.442 (0.116~1.690)

1.477 (0.517~4.223)

0.770 (0.268~2.214)

肠外营养

0.828

Ref.

1.197 (0.924~1.550)

1.623 (1.273~2.068)

1.733 (1.363~2.204)

2.830 (2.255~3.551)

Ref.

1.110 (0.397~3.100)

1.460 (0.585~3.645)

1.131 (0.446~2.869)

1.754 (0.759~4.057)

注:缩写与表1相同。

NOTES

*通讯作者。

参考文献

[1] Lim, S.S., Vos, T., Flaxman, A.D., Danaei, G., Shibuya, K., Adair-Rohani, H., et al. (2012) A Comparative Risk Assessment of Burden of Disease and Injury Attributable to 67 Risk Factors and Risk Factor Clusters in 21 Regions, 1990-2010: A Systematic Analysis for the Global Burden of Disease Study 2010. The Lancet, 380, 2224-2260.
https://doi.org/10.1016/s0140-6736(12)61766-8
[2] Bosutti, A., Malaponte, G., Zanetti, M., Castellino, P., Heer, M., Guarnieri, G., et al. (2008) Calorie Restriction Modulates Inactivity-Induced Changes in the Inflammatory Markers C-Reactive Protein and Pentraxin-3. The Journal of Clinical Endocrinology & Metabolism, 93, 3226-3229.
https://doi.org/10.1210/jc.2007-1684
[3] Vanhorebeek, I., Latronico, N. and Van den Berghe, G. (2020) ICU-Acquired Weakness. Intensive Care Medicine, 46, 637-653.
https://doi.org/10.1007/s00134-020-05944-4
[4] Wunsch, H. (2010) Three-Year Outcomes for Medicare Beneficiaries Who Survive Intensive Care. JAMA, 303, 849-856.
https://doi.org/10.1001/jama.2010.216
[5] Williams, T.A., Dobb, G.J., Finn, J.C., Knuiman, M.W., Geelhoed, E., Lee, K., et al. (2008) Determinants of Long-Term Survival after Intensive Care. Critical Care Medicine, 36, 1523-1530.
https://doi.org/10.1097/ccm.0b013e318170a405
[6] Iwashyna, T.J. (2010) Survivorship Will Be the Defining Challenge of Critical Care in the 21st Century. Annals of Internal Medicine, 153, 204-205.
https://doi.org/10.7326/0003-4819-153-3-201008030-00013
[7] Evans, L., Rhodes, A., Alhazzani, W., Antonelli, M., Coopersmith, C.M., French, C., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247.
https://doi.org/10.1007/s00134-021-06506-y
[8] Sood, M.M., Saeed, M., Lim, V., Cordova, F., Komenda, P., Malik, A., et al. (2015) The Urea-To-Creatinine Ratio Is Predictive of Worsening Kidney Function in Ambulatory Heart Failure Patients. Journal of Cardiac Failure, 21, 412-418.
https://doi.org/10.1016/j.cardfail.2015.02.003
[9] Bonilla, D.A., Kreider, R.B., Stout, J.R., Forero, D.A., Kerksick, C.M., Roberts, M.D., et al. (2021) Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients, 13, Article 1238.
https://doi.org/10.3390/nu13041238
[10] van Veldhuisen, D.J., Ruilope, L.M., Maisel, A.S. and Damman, K. (2015) Biomarkers of Renal Injury and Function: Diagnostic, Prognostic and Therapeutic Implications in Heart Failure. European Heart Journal, 37, 2577-2585.
https://doi.org/10.1093/eurheartj/ehv588
[11] Uchino, S., Bellomo, R. and Goldsmith, D. (2012) The Meaning of the Blood Urea Nitrogen/Creatinine Ratio in Acute Kidney Injury. Clinical Kidney Journal, 5, 187-191.
https://doi.org/10.1093/ckj/sfs013
[12] Inaguma, D., Koide, S., Ito, E., Takahashi, K., Hayashi, H., Hasegawa, M., et al. (2017) Ratio of Blood Urea Nitrogen to Serum Creatinine at Initiation of Dialysis Is Associated with Mortality: A Multicenter Prospective Cohort Study. Clinical and Experimental Nephrology, 22, 353-364.
https://doi.org/10.1007/s10157-017-1458-x
[13] Han, D., Zhang, L., Zheng, S., Xu, F., Li, C., Yang, R., et al. (2021) Prognostic Value of Blood Urea Nitrogen/Creatinine Ratio for Septic Shock: An Analysis of the MIMIC‐III Clinical Database. BioMed Research International, 2021, Article ID: 5595042.
https://doi.org/10.1155/2021/5595042
[14] Peng, R., Liu, K., Li, W., Yuan, Y., Niu, R., Zhou, L., et al. (2021) Blood Urea Nitrogen, Blood Urea Nitrogen to Creatinine Ratio and Incident Stroke: The Dongfeng-Tongji Cohort. Atherosclerosis, 333, 1-8.
https://doi.org/10.1016/j.atherosclerosis.2021.08.011
[15] Sujino, Y., Nakano, S., Tanno, J., Shiraishi, Y., Goda, A., Mizuno, A., et al. (2019) Clinical Implications of the Blood Urea Nitrogen/Creatinine Ratio in Heart Failure and Their Association with Haemoconcentration. ESC Heart Failure, 6, 1274-1282.
https://doi.org/10.1002/ehf2.12531
[16] Murata, A., Kasai, T., Matsue, Y., Matsumoto, H., Yatsu, S., Kato, T., et al. (2018) Relationship between Blood Urea Nitrogen-To-Creatinine Ratio at Hospital Admission and Long-Term Mortality in Patients with Acute Decompensated Heart Failure. Heart and Vessels, 33, 877-885.
https://doi.org/10.1007/s00380-018-1135-3
[17] Solimando, A.G., Susca, N., Borrelli, P., Prete, M., Lauletta, G., Pappagallo, F., et al. (2021) Short-Term Variations in Neutrophil-To-Lymphocyte and Urea-To-Creatinine Ratios Anticipate Intensive Care Unit Admission of COVID-19 Patients in the Emergency Department. Frontiers in Medicine, 7, Article 625176.
https://doi.org/10.3389/fmed.2020.625176
[18] Haines, R.W., Zolfaghari, P., Wan, Y., Pearse, R.M., Puthucheary, Z. and Prowle, J.R. (2019) Elevated Urea-To-Creatinine Ratio Provides a Biochemical Signature of Muscle Catabolism and Persistent Critical Illness after Major Trauma. Intensive Care Medicine, 45, 1718-1731.
https://doi.org/10.1007/s00134-019-05760-5
[19] Johnson, A.E.W., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S., et al. (2023) MIMIC-IV, a Freely Accessible Electronic Health Record Dataset. Scientific Data, 10, Article No. 1.
https://doi.org/10.1038/s41597-022-01899-x
[20] Mazur, D.J. and Hickam, D.H. (1990) Interpretation of Graphic Data by Patients in a General Medicine Clinic. Journal of General Internal Medicine, 5, 402-405.
https://doi.org/10.1007/bf02599425
[21] Szakmany, T., Walters, A.M., Pugh, R., Battle, C., Berridge, D.M. and Lyons, R.A. (2019) Risk Factors for 1-Year Mortality and Hospital Utilization Patterns in Critical Care Survivors: A Retrospective, Observational, Population-Based Data Linkage Study. Critical Care Medicine, 47, 15-22.
https://doi.org/10.1097/ccm.0000000000003424
[22] Kang, J. and Lee, K.M. (2024) Three-year Mortality, Readmission, and Medical Expenses in Critical Care Survivors: A Population-Based Cohort Study. Australian Critical Care, 37, 251-257.
https://doi.org/10.1016/j.aucc.2023.07.036
[23] Gayat, E., Cariou, A., Deye, N., Vieillard-Baron, A., Jaber, S., Damoisel, C., et al. (2018) Determinants of Long-Term Outcome in ICU Survivors: Results from the FROG-ICU Study. Critical Care, 22, Article No. 8.
https://doi.org/10.1186/s13054-017-1922-8
[24] Rosa, R.G., Falavigna, M., Robinson, C.C., Sanchez, E.C., Kochhann, R., Schneider, D., et al. (2020) Early and Late Mortality Following Discharge from the ICU: A Multicenter Prospective Cohort Study. Critical Care Medicine, 48, 64-72.
https://doi.org/10.1097/ccm.0000000000004024
[25] Ait Hssain, A., Farigon, N., Merdji, H., Guelon, D., Bohé, J., Cayot, S., et al. (2023) Body Composition and Muscle Strength at the End of ICU Stay Are Associated with 1-Year Mortality, a Prospective Multicenter Observational Study. Clinical Nutrition, 42, 2070-2079.
https://doi.org/10.1016/j.clnu.2023.09.001
[26] Thongprayoon, C., Cheungpasitporn, W. and Kashani, K. (2016) Serum Creatinine Level, a Surrogate of Muscle Mass, Predicts Mortality in Critically Ill Patients. Journal of Thoracic Disease, 8, E305-E311.
https://doi.org/10.21037/jtd.2016.03.62
[27] Groothof, D., Shehab, N.B.N., Erler, N.S., Post, A., Kremer, D., Polinder‐Bos, H.A., et al. (2024) Creatinine, Cystatin C, Muscle Mass, and Mortality: Findings from a Primary and Replication Population‐Based Cohort. Journal of Cachexia, Sarcopenia and Muscle, 15, 1528-1538.
https://doi.org/10.1002/jcsm.13511
[28] Puthucheary, Z.A., Astin, R., Mcphail, M.J.W., Saeed, S., Pasha, Y., Bear, D.E., et al. (2018) Metabolic Phenotype of Skeletal Muscle in Early Critical Illness. Thorax, 73, 926-935.
https://doi.org/10.1136/thoraxjnl-2017-211073
[29] Pfoh, E.R., Wozniak, A.W., Colantuoni, E., Dinglas, V.D., Mendez-Tellez, P.A., Shanholtz, C., et al. (2016) Physical Declines Occurring after Hospital Discharge in ARDS Survivors: A 5-Year Longitudinal Study. Intensive Care Medicine, 42, 1557-1566.
https://doi.org/10.1007/s00134-016-4530-1
[30] Zijlstra, H.W., Westland, G.J., Volbeda, M., van Meurs, M., Pillay, J., Franssen, C.F.M., et al. (2024) Time Course of Plasma Urea and Urinary Urea Excretion in Patients with a Prolonged ICU Stay. Scientific Reports, 14, Article No. 25779.
https://doi.org/10.1038/s41598-024-74579-y
[31] Simati, S., Kokkinos, A., Dalamaga, M. and Argyrakopoulou, G. (2023) Obesity Paradox: Fact or Fiction? Current Obesity Reports, 12, 75-85.
https://doi.org/10.1007/s13679-023-00497-1
[32] Zhou, D., Wang, C., Lin, Q. and Li, T. (2022) The Obesity Paradox for Survivors of Critically Ill Patients. Critical Care, 26, Article No. 198.
https://doi.org/10.1186/s13054-022-04074-1
[33] Tanaka, S., Ninomiya, T., Taniguchi, M., Tokumoto, M., Masutani, K., Ooboshi, H., et al. (2017) Impact of Blood Urea Nitrogen to Creatinine Ratio on Mortality and Morbidity in Hemodialysis Patients: The Q-Cohort Study. Scientific Reports, 7, Article No. 14901.
https://doi.org/10.1038/s41598-017-14205-2
[34] Albanna, W., Weiss, M., Veldeman, M., Conzen, C., Schmidt, T., Blume, C., et al. (2021) Urea-Creatinine Ratio (UCR) after Aneurysmal Subarachnoid Hemorrhage: Association of Protein Catabolism with Complication Rate and Outcome. World Neurosurgery, 151, e961-e971.
https://doi.org/10.1016/j.wneu.2021.05.025
[35] Fernandez-Ortega, J.F., Baguley, I.J., Gates, T.A., Garcia-Caballero, M., Quesada-Garcia, J.G. and Prieto-Palomino, M.A. (2017) Catecholamines and Paroxysmal Sympathetic Hyperactivity after Traumatic Brain Injury. Journal of Neurotrauma, 34, 109-114.
https://doi.org/10.1089/neu.2015.4364
[36] Rass, V. and Helbok, R. (2019) Early Brain Injury after Poor-Grade Subarachnoid Hemorrhage. Current Neurology and Neuroscience Reports, 19, Article No. 78.
https://doi.org/10.1007/s11910-019-0990-3
[37] Deng, L., Wang, C., Qiu, S., Bian, H., Wang, L., Li, Y., et al. (2019) Association between Blood Urea Nitrogen-To-Creatinine Ratio and Three-Month Outcome in Patients with Acute Ischemic Stroke. Current Neurovascular Research, 16, 166-172.
https://doi.org/10.2174/1567202616666190412123705
[38] Matsue, Y., van der Meer, P., Damman, K., Metra, M., O’Connor, C.M., Ponikowski, P., et al. (2016) Blood Urea Nitrogen-To-Creatinine Ratio in the General Population and in Patients with Acute Heart Failure. Heart, 103, 407-413.
https://doi.org/10.1136/heartjnl-2016-310112