[1]
|
Klessig, D.F., Choi, H.W. and Dempsey, D.A. (2018) Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions®, 31, 871-888. https://doi.org/10.1094/mpmi-03-18-0067-cr
|
[2]
|
Sneader, W. (2000) The Discovery of Aspirin: A Reappraisal. BMJ, 321, 1591-1594. https://doi.org/10.1136/bmj.321.7276.1591
|
[3]
|
Raskin, I. (1992) Salicylate, a New Plant Hormone. Plant Physiology, 99, 799-803. https://doi.org/10.1104/pp.99.3.799
|
[4]
|
Jones, J.D.G., Staskawicz, B.J. and Dangl, J.L. (2024) The Plant Immune System: From Discovery to Deployment. Cell, 187, 2095-2116. https://doi.org/10.1016/j.cell.2024.03.045
|
[5]
|
Kachroo, P., Liu, H. and Kachroo, A. (2020) Salicylic Acid: Transport and Long-Distance Immune Signaling. Current Opinion in Virology, 42, 53-57. https://doi.org/10.1016/j.coviro.2020.05.008
|
[6]
|
Peng, Y., Yang, J., Li, X. and Zhang, Y. (2021) Salicylic Acid: Biosynthesis and Signaling. Annual Review of Plant Biology, 72, 761-791. https://doi.org/10.1146/annurev-arplant-081320-092855
|
[7]
|
Jia, X., Wang, L., Zhao, H., Zhang, Y., Chen, Z., Xu, L., et al. (2024) The Origin and Evolution of Salicylic Acid Signaling and Biosynthesis in Plants. Molecular Plant, 16, 245-259. https://doi.org/10.1016/j.molp.2022.12.002
|
[8]
|
Koo, Y.M., Heo, A.Y. and Choi, H.W. (2020) Salicylic Acid as a Safe Plant Protector and Growth Regulator. The Plant Pathology Journal, 36, 1-10. https://doi.org/10.5423/ppj.rw.12.2019.0295
|
[9]
|
Liu, X., Rockett, K.S., Kørner, C.J. and Pajerowska-Mukhtar, K.M. (2015) Salicylic Acid Signalling: New Insights and Prospects at a Quarter-Century Milestone. Essays in Biochemistry, 58, 101-113. https://doi.org/10.1042/bse0580101
|
[10]
|
Rivas-San Vicente, M. and Plasencia, J. (2011) Salicylic Acid Beyond Defence: Its Role in Plant Growth and Development. Journal of Experimental Botany, 62, 3321-3338. https://doi.org/10.1093/jxb/err031
|
[11]
|
Rajjou, L., Belghazi, M., Huguet, R., Robin, C., Moreau, A., Job, C., et al. (2006) Proteomic Investigation of the Effect of Salicylic Acid on Arabidopsis Seed Germination and Establishment of Early Defense Mechanisms. Plant Physiology, 141, 910-923. https://doi.org/10.1104/pp.106.082057
|
[12]
|
Xie, Z., Zhang, Z., Hanzlik, S., Cook, E. and Shen, Q.J. (2007) Salicylic Acid Inhibits Gibberellin-Induced Alpha-Amylase Expression and Seed Germination via a Pathway Involving an Abscisic-Acid-Inducible WRKY Gene. Plant Molecular Biology, 64, 293-303. https://doi.org/10.1007/s11103-007-9152-0
|
[13]
|
Guan, L. and Scandalios, J.G. (1995) Developmentally Related Responses of Maize Catalase Genes to Salicylic Acid. Proceedings of the National Academy of Sciences, 92, 5930-5934. https://doi.org/10.1073/pnas.92.13.5930
|
[14]
|
Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S.Y. (2006) Plant Stomata Function in Innate Immunity against Bacterial Invasion. Cell, 126, 969-980. https://doi.org/10.1016/j.cell.2006.06.054
|
[15]
|
Mateo, A., Mühlenbock, P., Rustérucci, C., Chang, C.C., Miszalski, Z., Karpinska, B., et al. (2004) LESION SIMULATING DISEASE 1 Is Required for Acclimation to Conditions That Promote Excess Excitation Energy. Plant Physiology, 136, 2818-2830. https://doi.org/10.1104/pp.104.043646
|
[16]
|
Khurana, J.P. and Cleland, C.F. (1992) Role of Salicylic Acid and Benzoic Acid in Flowering of a Photoperiod-Insensitive Strain, Lemna paucicostata LP6. Plant Physiology, 100, 1541-1546. https://doi.org/10.1104/pp.100.3.1541
|
[17]
|
Morris, K., ‐Mackerness, S.A.‐H., Page, T., John, C.F., Murphy, A.M., Carr, J.P., et al. (2000) Salicylic Acid Has a Role in Regulating Gene Expression during Leaf Senescence. The Plant Journal, 23, 677-685. https://doi.org/10.1046/j.1365-313x.2000.00836.x
|
[18]
|
García-Sánchez, S., Bernales, I. and Cristobal, S. (2015) Early Response to Nanoparticles in the Arabidopsis Transcriptome Compromises Plant Defence and Root-Hair Development through Salicylic Acid Signalling. BMC Genomics, 16, Article No. 341. https://doi.org/10.1186/s12864-015-1530-4
|
[19]
|
Kim, T., Kunz, H., Bhattacharjee, S., Hauser, F., Park, J., Engineer, C., et al. (2012) Natural Variation in Small Molecule-Induced TIR-NB-LRR Signaling Induces Root Growth Arrest via EDS1-and PAD4-Complexed R Protein VICTR in Arabidopsis. The Plant Cell, 24, 5177-5192. https://doi.org/10.1105/tpc.112.107235
|
[20]
|
Zhao, X., Wang, J., Yuan, J., Wang, X., Zhao, Q., Kong, P., et al. (2015) NITRIC OXIDE‐ASSOCIATED PROTEIN1 (ATNOA1) Is Essential for Salicylic Acid‐Induced Root Waving in Arabidopsis thaliana. New Phytologist, 207, 211-224. https://doi.org/10.1111/nph.13327
|
[21]
|
Pasternak, T., Groot, E.P., Kazantsev, F.V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., et al. (2019) Salicylic Acid Affects Root Meristem Patterning via Auxin Distribution in a Concentration-Dependent Manner. Plant Physiology, 180, 1725-1739. https://doi.org/10.1104/pp.19.00130
|
[22]
|
Zhou, D., Shen, W., Cui, Y., Liu, Y., Zheng, X., Li, Y., et al. (2021) APICAL SPIKELET ABORTION (ASA) Controls Apical Panicle Development in Rice by Regulating Salicylic Acid Biosynthesis. Frontiers in Plant Science, 12, Article 636877. https://doi.org/10.3389/fpls.2021.636877
|
[23]
|
Xu, L., Zhao, H., Wang, J., Wang, X., Jia, X., Wang, L., et al. (2023) AIM1‐Dependent High Basal Salicylic Acid Accumulation Modulates Stomatal Aperture in Rice. New Phytologist, 238, 1420-1430. https://doi.org/10.1111/nph.18842
|
[24]
|
Xu, Z., Jia, X., Li, R., Wang, L., Xu, L. and Yi, K. (2025) The Basal Level of Salicylic Acid Represses the PRT6 N-Degron Pathway to Modulate Root Growth and Stress Response in Rice. Plant Communications, 6, Article 101239. https://doi.org/10.1016/j.xplc.2025.101239
|
[25]
|
Kourelis, J. and van der Hoorn, R.A.L. (2018) Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. The Plant Cell, 30, 285-299. https://doi.org/10.1105/tpc.17.00579
|
[26]
|
White, R.F. (1979) Acetylsalicylic Acid (Aspirin) Induces Resistance to Tobacco Mosaic Virus in Tobacco. Virology, 99, 410-412. https://doi.org/10.1016/0042-6822(79)90019-9
|
[27]
|
Shine, M.B., Yang, J., El‐Habbak, M., Nagyabhyru, P., Fu, D., Navarre, D., et al. (2016) Cooperative Functioning between Phenylalanine Ammonia Lyase and Isochorismate Synthase Activities Contributes to Salicylic Acid Biosynthesis in Soybean. New Phytologist, 212, 627-636. https://doi.org/10.1111/nph.14078
|
[28]
|
Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., et al. (1993) Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance. Science, 261, 754-756. https://doi.org/10.1126/science.261.5122.754
|
[29]
|
Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., et al. (1994) A Central Role of Salicylic Acid in Plant Disease Resistance. Science, 266, 1247-1250. https://doi.org/10.1126/science.266.5188.1247
|
[30]
|
Zhang, Y., Shi, X., Li, B., Zhang, Q., Liang, W. and Wang, C. (2016) Salicylic Acid Confers Enhanced Resistance to Glomerella Leaf Spot in Apple. Plant Physiology and Biochemistry, 106, 64-72. https://doi.org/10.1016/j.plaphy.2016.04.047
|
[31]
|
Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., et al. (2018) Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell, 173, 1454-1467.E15. https://doi.org/10.1016/j.cell.2018.03.044
|
[32]
|
Zhou, J. and Zhang, Y. (2020) Plant Immunity: Danger Perception and Signaling. Cell, 181, 978-989. https://doi.org/10.1016/j.cell.2020.04.028
|
[33]
|
Zhang, Y. and Li, X. (2019) Salicylic Acid: Biosynthesis, Perception, and Contributions to Plant Immunity. Current Opinion in Plant Biology, 50, 29-36. https://doi.org/10.1016/j.pbi.2019.02.004
|
[34]
|
Liu, X., Dai, H., Zhang, F., Wang, J., Shi, J., Chen, J., et al. (2024) The miR7125‐MdARF1 Module Enhances the Resistance of Apple to colletotrichum Gloeosporioides by Promoting Lignin Synthesis in Response to Salicylic Acid Signalling. Plant Biotechnology Journal, 22, 2741-2755. https://doi.org/10.1111/pbi.14401
|
[35]
|
Liu, N., Wang, Y., Li, K., Li, C., Liu, B., Zhao, L., et al. (2023) Transcriptional Analysis of Tea Plants (Camellia sinensis) in Response to Salicylic Acid Treatment. Journal of Agricultural and Food Chemistry, 71, 2377-2389. https://doi.org/10.1021/acs.jafc.2c07046
|
[36]
|
Liu, A., Wang, M., Dong, J., Yan, Z., Wang, X., Li, J., et al. (2024) Foliar Application of Exogenous Salicylic Acid Mitigates the Detrimental Effects Caused by Salt Stress in Sunflower Seedlings. Industrial Crops and Products, 222, Article 119854. https://doi.org/10.1016/j.indcrop.2024.119854
|
[37]
|
Abdelrahman, M., Selim, M.E., ElSayed, M.A., Ammar, M.H., Hussein, F.A., ElKholy, N.K., et al. (2021) Developing Novel Rice Genotypes Harboring Specific QTL Alleles Associated with High Grain Yield under Water Shortage Stress. Plants, 10, Article 2219. https://doi.org/10.3390/plants10102219
|
[38]
|
Elsisi, M., Elshiekh, M., Sabry, N., Aziz, M., Attia, K., Islam, F., et al. (2024) The Genetic Orchestra of Salicylic Acid in Plant Resilience to Climate Change Induced Abiotic Stress: Critical Review. Stress Biology, 4, Article No. 31. https://doi.org/10.1007/s44154-024-00160-2
|
[39]
|
Alonso-Ramírez, A., Rodríguez, D., Reyes, D., Jiménez, J.A., Nicolás, G., López-Climent, M., et al. (2009) Evidence for a Role of Gibberellins in Salicylic Acid-Modulated Early Plant Responses to Abiotic Stress in Arabidopsis Seeds. Plant Physiology, 150, 1335-1344. https://doi.org/10.1104/pp.109.139352
|
[40]
|
Guo, J., Wang, Z., Li, J., Qu, L., Chen, Y., Li, G., et al. (2024) Salicylic Acid Promotes Endosperm Development and Heat-Tolerance of Waxy Maize (Zea mays L. var. ceratina Kulesh) under Heat Stress. Plant Stress, 14, Article 100684. https://doi.org/10.1016/j.stress.2024.100684
|
[41]
|
Khalvandi, M., Siosemardeh, A., Roohi, E. and Keramati, S. (2021) Salicylic Acid Alleviated the Effect of Drought Stress on Photosynthetic Characteristics and Leaf Protein Pattern in Winter Wheat. Heliyon, 7, e05908. https://doi.org/10.1016/j.heliyon.2021.e05908
|
[42]
|
Fu, G., Song, J., Xiong, J., Liao, X., Zhang, X., Wang, X., et al. (2012) Thermal Resistance of Common Rice Maintainer and Restorer Lines to High Temperature during Flowering and Early Grain Filling Stages. Rice Science, 19, 309-314. https://doi.org/10.1016/s1672-6308(12)60055-9
|
[43]
|
Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., et al. (2010) Auxins Reverse Plant Male Sterility Caused by High Temperatures. Proceedings of the National Academy of Sciences, 107, 8569-8574. https://doi.org/10.1073/pnas.1000869107
|
[44]
|
Smith, A.R. and Zhao, D. (2016) Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains. Frontiers in Plant Science, 7, Article 1503. https://doi.org/10.3389/fpls.2016.01503
|
[45]
|
Deng, Y., Srivastava, R., Quilichini, T.D., Dong, H., Bao, Y., Horner, H.T., et al. (2016) IRE1, a Component of the Unfolded Protein Response Signaling Pathway, Protects Pollen Development in Arabidopsis from Heat Stress. The Plant Journal, 88, 193-204. https://doi.org/10.1111/tpj.13239
|
[46]
|
Feng, B., Zhang, C., Chen, T., Zhang, X., Tao, L. and Fu, G. (2018) Salicylic Acid Reverses Pollen Abortion of Rice Caused by Heat Stress. BMC Plant Biology, 18, Article No. 245. https://doi.org/10.1186/s12870-018-1472-5
|
[47]
|
Gondor, O.K., Pál, M., Janda, T. and Szalai, G. (2022) The Role of Methyl Salicylate in Plant Growth under Stress Conditions. Journal of Plant Physiology, 277, Article 153809. https://doi.org/10.1016/j.jplph.2022.153809
|
[48]
|
Fung, R.W.M., Wang, C.Y., Smith, D.L., Gross, K.C. and Tian, M. (2004) MeSA and MeJA Increase Steady-State Transcript Levels of Alternative Oxidase and Resistance against Chilling Injury in Sweet Peppers (Capsicum annuum L.). Plant Science, 166, 711-719. https://doi.org/10.1016/j.plantsci.2003.11.009
|
[49]
|
Arif, Y., Sami, F., Siddiqui, H., Bajguz, A. and Hayat, S. (2020) Salicylic Acid in Relation to Other Phytohormones in Plant: A Study Towards Physiology and Signal Transduction under Challenging Environment. Environmental and Experimental Botany, 175, Article 104040. https://doi.org/10.1016/j.envexpbot.2020.104040
|
[50]
|
Li, Z., Xu, J., Gao, Y., Wang, C., Guo, G., Luo, Y., et al. (2017) The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination. Frontiers in Plant Science, 8, Article 1153. https://doi.org/10.3389/fpls.2017.01153
|
[51]
|
Guan, Y., Li, Z., He, F., Huang, Y., Song, W. and Hu, J. (2015) “On-Off” Thermoresponsive Coating Agent Containing Salicylic Acid Applied to Maize Seeds for Chilling Tolerance. PLOS ONE, 10, e0120695. https://doi.org/10.1371/journal.pone.0120695
|
[52]
|
Xu, Q., Yan, Y., Wei, Q., Wang, H., Chi, C., Pan, L., et al. (2025) Salicylic Acid Alleviates Cold Stress in Rice via Regulating Nutrient Absorption, Osmotic Material Content, Antioxidation System, and Expression of Cold Tolerance Genes. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-024-11615-1
|
[53]
|
Cui, L., Shan, J., Shi, M., Gao, J. and Lin, H. (2015) DCA1 Acts as a Transcriptional Co-Activator of DST and Contributes to Drought and Salt Tolerance in Rice. PLOS Genetics, 11, e1005617. https://doi.org/10.1371/journal.pgen.1005617
|
[54]
|
Murata, Y., Mori, I.C. and Munemasa, S. (2015) Diverse Stomatal Signaling and the Signal Integration Mechanism. Annual Review of Plant Biology, 66, 369-392. https://doi.org/10.1146/annurev-arplant-043014-114707
|
[55]
|
Sukiran, N.A., Steel, P.G. and Knight, M.R. (2020) Basal Stomatal Aperture Is Regulated by GA-DELLAs in Arabidopsis. Journal of Plant Physiology, 250, Article 153182. https://doi.org/10.1016/j.jplph.2020.153182
|
[56]
|
Zhang, Y., Berman, A. and Shani, E. (2023) Plant Hormone Transport and Localization: Signaling Molecules on the Move. Annual Review of Plant Biology, 74, 453-479. https://doi.org/10.1146/annurev-arplant-070722-015329
|
[57]
|
Bari, R. and Jones, J.D.G. (2009) Role of Plant Hormones in Plant Defence Responses. Plant Molecular Biology, 69, 473-488. https://doi.org/10.1007/s11103-008-9435-0
|
[58]
|
Tian, H., Xu, L., Li, X. and Zhang, Y. (2024) Salicylic Acid: The Roles in Plant Immunity and Crosstalk with Other Hormones. Journal of Integrative Plant Biology, 67, 773-785. https://doi.org/10.1111/jipb.13820
|
[59]
|
Kaya, C., Ugurlar, F., Ashraf, M. and Ahmad, P. (2023) Salicylic Acid Interacts with Other Plant Growth Regulators and Signal Molecules in Response to Stressful Environments in Plants. Plant Physiology and Biochemistry, 196, 431-443. https://doi.org/10.1016/j.plaphy.2023.02.006
|
[60]
|
Tan, S., Abas, M., Verstraeten, I., Glanc, M., Molnár, G., Hajný, J., et al. (2020) Salicylic Acid Targets Protein Phosphatase 2A to Attenuate Growth in Plants. Current Biology, 30, 381-395.e8. https://doi.org/10.1016/j.cub.2019.11.058
|
[61]
|
Yu, X., Cui, X., Wu, C., Shi, S. and Yan, S. (2022) Salicylic Acid Inhibits Gibberellin Signaling through Receptor Interactions. Molecular Plant, 15, 1759-1771. https://doi.org/10.1016/j.molp.2022.10.001
|
[62]
|
Yu, X., Xu, Y. and Yan, S. (2021) Salicylic Acid and Ethylene Coordinately Promote Leaf Senescence. Journal of Integrative Plant Biology, 63, 823-827. https://doi.org/10.1111/jipb.13074
|
[63]
|
Bertoni, G. (2020) Ethylene versus Salicylic Acid in Apical Hook Formation. The Plant Cell, 32, 531-531. https://doi.org/10.1105/tpc.20.00031
|
[64]
|
Aerts, N., Pereira Mendes, M. and Van Wees, S.C.M. (2020) Multiple Levels of Crosstalk in Hormone Networks Regulating Plant Defense. The Plant Journal, 105, 489-504. https://doi.org/10.1111/tpj.15124
|
[65]
|
Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T., et al. (2018) Hydrogen Peroxide and Abscisic Acid Mediate Salicylic Acid-Induced Freezing Tolerance in Wheat. Frontiers in Plant Science, 9, Article 1137. https://doi.org/10.3389/fpls.2018.01137
|
[66]
|
Jiang, C., Shimono, M., Sugano, S., Kojima, M., Yazawa, K., Yoshida, R., et al. (2010) Abscisic Acid Interacts Antagonistically with Salicylic Acid Signaling Pathway in Rice-Magnaporthe grisea Interaction. Molecular Plant-Microbe Interactions®, 23, 791-798. https://doi.org/10.1094/mpmi-23-6-0791
|
[67]
|
Hou, S. and Tsuda, K. (2022) Salicylic Acid and Jasmonic Acid Crosstalk in Plant Immunity. Essays in Biochemistry, 66, 647-656. https://doi.org/10.1042/ebc20210090
|
[68]
|
Roychowdhury, R., Mishra, S., Anand, G., Dalal, D., Gupta, R., Kumar, A., et al. (2024) Decoding the Molecular Mechanism Underlying Salicylic Acid (SA)‐Mediated Plant Immunity: An Integrated Overview from Its Biosynthesis to the Mode of Action. Physiologia Plantarum, 176, e14399. https://doi.org/10.1111/ppl.14399
|
[69]
|
Loake, G. and Grant, M. (2007) Salicylic Acid in Plant Defence—The Players and Protagonists. Current Opinion in Plant Biology, 10, 466-472. https://doi.org/10.1016/j.pbi.2007.08.008
|
[70]
|
Zhou, J., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., et al. (2000) NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the Pr-1 Gene Required for Induction by Salicylic Acid. Molecular Plant-Microbe Interactions®, 13, 191-202. https://doi.org/10.1094/mpmi.2000.13.2.191
|
[71]
|
Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., et al. (2017) uORF-Mediated Translation Allows Engineered Plant Disease Resistance without Fitness Costs. Nature, 545, 491-494. https://doi.org/10.1038/nature22372
|
[72]
|
Lefevere, H., Bauters, L. and Gheysen, G. (2020) Salicylic Acid Biosynthesis in Plants. Frontiers in Plant Science, 11, Article 2655. https://doi.org/10.3389/fpls.2020.00338
|
[73]
|
Nawrath, C., Heck, S., Parinthawong, N. and Métraux, J. (2002) EDS5, an Essential Component of Salicylic Acid-Dependent Signaling for Disease Resistance in Arabidopsis, Is a Member of the MATE Transporter Family. The Plant Cell, 14, 275-286. https://doi.org/10.1105/tpc.010376
|
[74]
|
Mishra, A. and Baek, K. (2021) Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules, 11, Article 705. https://doi.org/10.3390/biom11050705
|
[75]
|
Nawrath, C. and Métraux, J. (1999) Salicylic Acid Induction-Deficient Mutants of Arabidopsis Express PR-2 and Pr-5 and Accumulate High Levels of Camalexin after Pathogen Inoculation. The Plant Cell, 11, 1393-1404. https://doi.org/10.1105/tpc.11.8.1393
|
[76]
|
Garcion, C., Lohmann, A., Lamodière, E., Catinot, J., Buchala, A., Doermann, P., et al. (2008) Characterization and Biological Function of the ISOCHORISMATE SYNTHASE2 Gene of Arabidopsis. Plant Physiology, 147, 1279-1287. https://doi.org/10.1104/pp.108.119420
|
[77]
|
Wu, J., Zhu, W. and Zhao, Q. (2023) Salicylic Acid Biosynthesis Is Not from Phenylalanine in Arabidopsis. Journal of Integrative Plant Biology, 65, 881-887. https://doi.org/10.1111/jipb.13410
|
[78]
|
Uppalapati, S.R., Ishiga, Y., Wangdi, T., Kunkel, B.N., Anand, A., Mysore, K.S., et al. (2007) The Phytotoxin Coronatine Contributes to Pathogen Fitness and Is Required for Suppression of Salicylic Acid Accumulation in Tomato Inoculated with Pseudomonas syringae Pv. tomato Dc3000. Molecular Plant-Microbe Interactions®, 20, 955-965. https://doi.org/10.1094/mpmi-20-8-0955
|
[79]
|
Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., et al. (2011) Metabolic Priming by a Secreted Fungal Effector. Nature, 478, 395-398. https://doi.org/10.1038/nature10454
|
[80]
|
Yokoo, S., Inoue, S., Suzuki, N., Amakawa, N., Matsui, H., Nakagami, H., et al. (2018) Comparative Analysis of Plant Isochorismate Synthases Reveals Structural Mechanisms Underlying Their Distinct Biochemical Properties. Bioscience Reports, 38, BSR20171457. https://doi.org/10.1042/bsr20171457
|
[81]
|
Su, Z., Niu, C., Zhou, S., Xu, G., Zhu, P., Fu, Q., et al. (2024) Structural Basis of Chorismate Isomerization by Arabidopsis ISOCHORISMATE SYNTHASE1. Plant Physiology, 196, 773-787. https://doi.org/10.1093/plphys/kiae260
|
[82]
|
Wang, Z., Yang, G., Zhang, D., Li, G., Qiu, J. and Wu, J. (2024) Isochorismate Synthase Is Required for Phylloquinone, but Not Salicylic Acid Biosynthesis in Rice. aBIOTECH, 5, 488-496. https://doi.org/10.1007/s42994-024-00166-4
|
[83]
|
Choi, C., Hwang, S., Fang, I.R., Kwon, S.I., Park, S.R., Ahn, I., et al. (2015) Molecular Characterization of Oryza sativa wrky6, Which Binds to W‐Box‐Like Element 1 of the Oryza sativa Pathogenesis‐Related (PR) 10a Promoter and Confers Reduced Susceptibility to Pathogens. New Phytologist, 208, 846-859. https://doi.org/10.1111/nph.13516
|
[84]
|
Liu, Q., Li, X., Yan, S., Yu, T., Yang, J., Dong, J., et al. (2018) OsWRKY67 Positively Regulates Blast and Bacteria Blight Resistance by Direct Activation of PR Genes in Rice. BMC Plant Biology, 18, Article No. 257. https://doi.org/10.1186/s12870-018-1479-y
|
[85]
|
Widhalm, J.R. and Dudareva, N. (2015) A Familiar Ring to It: Biosynthesis of Plant Benzoic Acids. Molecular Plant, 8, 83-97. https://doi.org/10.1016/j.molp.2014.12.001
|
[86]
|
Hamberger, B. and Hahlbrock, K. (2004) The 4-Coumarate: CoA Ligase Gene Family in Arabidopsis thaliana Comprises One Rare, Sinapate-Activating and Three Commonly Occurring Isoenzymes. Proceedings of the National Academy of Sciences, 101, 2209-2214. https://doi.org/10.1073/pnas.0307307101
|
[87]
|
Jarvis, A.P., Schaaf, O. and Oldham, N.J. (2000) 3-Hydroxy-3-Phenylpropanoic Acid Is an Intermediate in the Biosynthesis of Benzoic Acid and Salicylic Acid but Benzaldehyde Is Not. Planta, 212, 119-126. https://doi.org/10.1007/s004250000377
|
[88]
|
Hertweck, C., Jarvis, A.P., Xiang, L., Moore, B.S. and Oldham, N.J. (2001) A Mechanism of Benzoic Acid Biosynthesis in Plants and Bacteria That Mirrors Fatty Acid β-Oxidation. ChemBioChem, 2, 784-786. https://doi.org/10.1002/1439-7633(20011001)2:10<784::aid-cbic784>3.0.co;2-k
|
[89]
|
Long, M.C., Nagegowda, D.A., Kaminaga, Y., Ho, K.K., Kish, C.M., Schnepp, J., et al. (2009) Involvement of Snapdragon Benzaldehyde Dehydrogenase in Benzoic Acid Biosynthesis. The Plant Journal, 59, 256-265. https://doi.org/10.1111/j.1365-313x.2009.03864.x
|
[90]
|
Moerkercke, A.V., Schauvinhold, I., Pichersky, E., Haring, M.A. and Schuurink, R.C. (2009) A Plant Thiolase Involved in Benzoic Acid Biosynthesis and Volatile Benzenoid Production. The Plant Journal, 60, 292-302. https://doi.org/10.1111/j.1365-313x.2009.03953.x
|
[91]
|
谷晓勇, 刘扬, 刘利静. 植物激素水杨酸生物合成和信号转导研究进展[J]. 遗传, 2020, 42(9): 858-869.
|
[92]
|
Ogawa, D., Nakajima, N., Sano, T., Tamaoki, M., Aono, M., Kubo, A., et al. (2005) Salicylic Acid Accumulation under O3 Exposure Is Regulated by Ethylene in Tobacco Plants. Plant and Cell Physiology, 46, 1062-1072. https://doi.org/10.1093/pcp/pci118
|
[93]
|
Takagi, K., Tasaki, K., Komori, H. and Katou, S. (2022) Hypersensitivity-Related Genes HSR201 and HSR203J Are Regulated by Calmodulin-Binding Protein 60-Type Transcription Factors and Required for Pathogen Signal-Induced Salicylic Acid Synthesis. Plant And Cell Physiology, 63, 1008-1022. https://doi.org/10.1093/pcp/pcac074
|